Amusement Park Flight Device

Information

  • Patent Application
  • 20230072919
  • Publication Number
    20230072919
  • Date Filed
    September 08, 2022
    a year ago
  • Date Published
    March 09, 2023
    a year ago
  • Inventors
    • Abramyan; Andrey (Panorama City, CA, US)
Abstract
A flight-themed amusement park ride is disclosed, comprising at least one airplane-shaped vehicle tethered to a central base by an articulated arm. All the propulsion force for the vehicle comes from the vehicle itself; the central base provides no propulsion force. Each of the vehicles is independently controllable by the user, and can change its altitude, pitch, yaw, and roll independently of any of the other vehicles on the ride.
Description
BACKGROUND

Many people enjoy the sensation of flying, and amusement parks capitalize on that enjoyment by providing many devices to give people that sensation. Many such devices comprise a vehicle (or a plurality of vehicles) on a rotating arm that rotates around a central axis. Typically, the torque necessary to rotate the vehicle comes from a central motor rather than from the vehicle itself, and the vehicle's path, altitude, and rotation is controlled externally for all the vehicles rather than internally by the passenger.


It is known that while some amusement park users are more adventurous and desire a more intense ride experience, some other ones are less adventurous and desire a less intense ride experience. A one-size-fits-all ride will therefore leave many people unsatisfied.


There is a need for an amusement park ride that provides each passenger with a customizable ride experience, depending on their age and desired intensity, while remaining safe for all the passengers.


There is also a need for an amusement park ride where the motive force for the ride is provided by each vehicle rather than by a central motor, to reduce power consumption and complexity.





LIST OF FIGURES


FIG. 1 shows an embodiment of the system of the present invention while the vehicles are stationary.



FIG. 2A shows an embodiment of the system of the present invention while the vehicles are in motion.



FIG. 2B shows an embodiment of the system of the present invention while the vehicles are in motion.



FIG. 3A shows a close up view of one of the vehicles of the system of the present invention.



FIG. 3B shows a close up view of one of the vehicles of the system of the present invention.



FIG. 4 shows an embodiment of the system of the present invention while the vehicles are in motion.





SUMMARY OF THE INVENTION

An object of the present invention is to provide an amusement-park device that can rotate a vehicle around a central base, wherein the motive force for the rotation is provided by the vehicle itself.


Another object of the present invention is to provide an amusement-park device comprising a winged vehicle, wherein the winged vehicles are tethered to a central base, wherein each winged vehicle is independently controllable by its passenger.


The system of the present invention comprises a central base around which vehicles can rotate, attached to the central base by articulated arms. Each vehicle comprises a propeller for propelling it forward, a passenger compartment, and at least two wings that can lift the vehicle. Each wing can be independently tilted. The passenger compartment comprises controls for controlling the speed of the vehicle, the altitude of the vehicle, or the tilt of the wings, which can initiate a “barrel roll”, or a rotation of the vehicle around its own axis. The passenger compartment also comprises controls for starting and stopping the vehicle. All the propulsion force for the ride is generated by the vehicles themselves; the central base has no means of generating the propulsion force. Each vehicle is attached to the central base by an articulated arm that enables it to change altitude independently of any other vehicle or to initiate a barrel roll regardless of what the other vehicles are doing.


In an embodiment, the system can comprise two or more articulated arms, attached to the central base in a way that the angle between the articulated arms in the horizontal plane does not change (the angle between them in the vertical plane can change, however.) In an embodiment, there are six articulated arms and six vehicles.


In an embodiment, each articulated arm comprises two segments joined together by a hinge joint.


In an embodiment, the vehicle attachment point for attaching the articulated arm to the vehicle comprises a collar encircling the vehicle, wherein the collar can rotate freely around the vehicle. The collar is attached to the articulated arm. The attachment point between the collar and the articulated arm can be a rigid attachment, a hinge joint, or a ball and socket joint that can move freely in any direction.


In an embodiment, each vehicle comprises a safety harness, a canopy over the passenger seat to prevent the passenger from falling out, or both.


In an embodiment, the central base comprises a brake for stopping all the articulated arms from rotating around the central base.


In an embodiment, each vehicle comprises a controller that controls the propeller and the wing tilt and receives control signals from the controls located in the passenger compartment. The controller may include pre-programmed patterns for takeoff, landing, or aerobatic maneuvers such as a barrel roll, a loop, or a roll.


DETAILED DESCRIPTION


FIG. 1 shows a diagram of the present invention 100 while it is stationary. Vehicles 120 are attached to a central base 106 by articulated arms, comprising a first segment 110a and a second segment 110b. Platform 102 is provided to enable users to enter or exit the ride. In an embodiment, retractable stairs 104 are provided to help users enter or exit the vehicles 120.


The central base 106 and the articulated arms 110a/110b provide no motive force to the ride. Their only role is to support the vehicles and to keep them tethered. The first segment and second segment of the articulated arms are connected by a simple hinge joint; the attachment point between the articulated arms 110a and the base 106 is free to spin in either direction at any speed. The only motive force for the ride comes from the vehicles 120. In an embodiment, the central base also comprises a brake to stop the vehicles in an emergency or when the ride is over.


Because the articulated arms can move in the vertical plane independent of each other, the system of the present invention enables each vehicle 120 to change altitude or to do a barrel roll independent of what the other vehicles are doing. Each vehicle comprises controls to enable its passenger to control the altitude or the rotation of the vehicle independently.



FIGS. 2A and 2B shows an embodiment of the system of the present invention in motion. Since each vehicle 120 is attached to its respective articulated arm 110b by a rotating collar 130, the vehicle is free to turn around its own axis or to rise to any altitude, regardless of the angle of the articulated arm. As shown in the Figures, each vehicle 120 comprises tiltable wings and a propeller to provide lift and a forward motive force to enable it to move. If a user wishes to rise higher, they can do so by tilting the wings appropriately. If a user wishes to do a roll, they can tilt the wings in opposite directions, as shown in the Figures. The rotating collar 130 is preferably such that the vehicle 120 can spin freely around its own axis in either direction, to enable the vehicle to do a roll


The top of the central base 106 comprises an attachment to which the articulated arms 120 are attached. The attachment can rotate around the axis of the central base (unless stopped by a brake). The articulated arms 120 are attached in such a way that the angles between them in the horizontal plane stay constant; i.e. they are free to move up and down, but not sideways. This prevents the vehicles from bumping into each other.


The articulated arms comprise one middle hinge separating a first segment 110a from a second segment 110b, to enable the articulated arm to support the vehicle as it moves up and down. The middle hinge is designed in such a way as to move up and down, but not sideways, to prevent the vehicles from bumping into each other.


In an embodiment, the articulated arm comprises more than one hinge in order to provide more flexibility and freedom of motion for supporting the vehicle. The present invention is not limited to an articulated arm with only one middle hinge. In an embodiment, the articulated arm is constructed in such a way as to allow the vehicle to tilt or move up and down, but to maintain the same angle with all the other articulated arms in the horizontal plane, to prevent collisions.


In an embodiment, the collar is rigidly attached to the articulated arm, as shown in the Figure. In alternate embodiments, the collar may be attached to the articulated arm by a flexible hinge, to enable the vehicle to tilt or to turn. The flexible hinge may have one degree of freedom or may be a ball-and-socket joint that has multiple degrees of freedom. This enables the vehicle to fly at a tilted angle, to turn in the horizontal direction to get closer to the central base or further away from the base, or to perform other aerobatic maneuvers, all without any interference with the other vehicles. In this embodiment, the vehicle would even be able to perform a loop maneuver, for example, without interference with the other vehicles.



FIGS. 3A and 3B show a diagram of the vehicle 120. In the presently displayed embodiment, it comprises two wings 200 and a propeller 210 that can propel it forward. The wings 200 are preferably designed in such a way as to be able to lift the vehicle and keep it in flight. The propeller 210 is preferably designed in such a way as to provide sufficient forward propulsion to enable the wings to lift the vehicle. The vehicle may be powered by electric power, gas, airplane fuel, or any other fuel capable of providing sufficient energy to power the propeller.


The vehicle 120 is preferably shaped like a tiltwing aircraft, in that each wing 200 can be independently tilted by the passenger. This enables the aircraft to take off from the ground, to increase or decrease altitude easily, or to perform advanced maneuvers such as a roll or a loop. The vehicle preferably comprises a tail 240 and stabilizers 230 for greater stability in flight.


The vehicle 110 comprises a passenger compartment 220. The passenger compartment comprises at least one seat. Multiple seats are also included in the present invention; for example, the passenger compartment could comprise two seats, three seats, or four seats. The seats may be equipped with safety harnesses or four-point restraints to prevent the passenger or passengers from falling out. In an embodiment, the passenger compartment comprises a canopy over the passenger seat or seats, to provide more security for the passenger.


The passenger compartment 220 comprises controls that at least one of the passengers of the vehicle can operate. The controls preferably look like the controls of a real airplane in order to enhance the verisimilitude of the experience. In an embodiment, the controls enable the passenger to start the vehicle in motion and to tilt each one of the wings 200. Changing the wing tilt for both wings simultaneously will enable the vehicle to increase or decrease altitude; changing it for only one wing, or tilting the wings in opposite directions, will enable the vehicle to spin around its own axis in a roll maneuver. Changing the wing tilt abruptly and increasing speed will enable the vehicle to perform a loop maneuver.


The vehicle preferably comprises a control module that is capable of providing control signals to the propeller, the wings (i.e. to tilt them), and receiving control signals from the user interface, such as the joystick or the wing tilt controls. The control module preferably comprises a processor and memory that is capable of handling the tasks required. In an embodiment, the control module can also provide pre-programmed patterns of control signals to the propeller and the wings in order to enable the user to perform maneuvers such as a barrel roll, a loop, or other aerobatic maneuver easily. The control module can also provide pre-programmed patterns of control signals to enable the user to perform a takeoff or a landing, even if the user is insufficiently skilled to be able to do so without assistance.



FIG. 4 shows the system of the present invention enabling one of the users to fly upside-down (or nearly upside-down) while the remaining four vehicles are taking a more sedate approach. The system of the present invention thus can deliver a personalized ride experience to each user without undue complexity.


Exemplary embodiments are described above. It will be understood that the present invention encompasses other embodiments that are apparent to a person of reasonable skill in the art.

Claims
  • 1. An amusement park ride for simulating airplane flight, comprising: a. a central base;b. at least one articulated arm attached to the central base at an arm attachment point, wherein the arm attachment point allows the arm to rotate around the central base;c. a vehicle attached to each of the at least one articulated arm at a vehicle attachment point, wherein the vehicle attachment point is located on an end of the articulated arm that is opposite the arm attachment point;d. wherein the vehicle attachment point allows the vehicle to rotate freely around its own axis;e. wherein the articulated arm is articulated in such a way as to allow the vehicle to change its altitude with respect to the ground;f. wherein each of the at least one vehicle comprises: i. a passenger compartment;ii. a propeller for propelling the vehicle forward;iii. at least two wings capable of lifting the vehicle, wherein each wing can be tilted independently;iv. controls located within the passenger compartment for performing at least one of the following functions: 1. start the vehicle in motion;2. stop the vehicle;3. change the speed of the vehicle;4. change the altitude of the vehicle;5. tilt one or more of the wings;6. initiate rotation of the vehicle around its own axis;g. a control module, comprising a processor and a memory, wherein the control module is configured to perform the following functions: i. receive signals from the controls;ii. control the speed of the propeller;iii. control wing tilt for each wing;h. wherein all the propulsion force for the ride is generated by the at least one vehicle and wherein the central base does not comprise any means of generating any propulsion force.
  • 2. The amusement park ride of claim 1, comprising two or more articulated arms, wherein an angle between the two or more arms in the horizontal plane does not change.
  • 3. The amusement park ride of claim 1, comprising six articulated arms, wherein each one of the six articulated arms is attached in such a way as to not change an angle between it and any other articulated arm in a horizontal plane.
  • 4. The amusement park ride of claim 1, wherein each articulated arm comprises: a. a first segment, comprising a first end and a second end, wherein the first segment comprises the arm attachment point located at the first end of the first segment, wherein the arm attachment point allows the first segment to rotate around an axis of the central base and to change its angle of elevation with respect to a horizontal plane;b. a second segment, comprising a first end and a second end, wherein the first end of the second segment and the second end of the first segment are joined by a hinge joint allowing an angle between the first segment and the second segment to change;c. wherein the second end of the second segment comprises the vehicle attachment point.
  • 5. The amusement park ride of claim 1, wherein each vehicle attachment point comprises: a. a collar encircling the vehicle, wherein the collar is free to rotate with respect to the vehicle;b. wherein the second end of the second segment is attached rigidly to the collar.
  • 6. The amusement park ride of claim 1, wherein each vehicle attachment point comprises: a. a collar encircling the vehicle, wherein the collar is free to rotate with respect to the vehicle;b. wherein the second end of the second segment is attached to the collar via a hinge joint.
  • 7. The amusement park ride of claim 1, wherein each vehicle attachment point comprises: a. a collar encircling the vehicle, wherein the collar is free to rotate with respect to the vehicle;b. wherein the second end of the second segment is attached to the collar via a joint that allows rotation in any direction.
  • 8. The amusement park ride of claim 1, wherein each vehicle comprises at least one passenger seat, wherein each passenger seat comprises one or more of the following: a. a safety harness;b. a canopy over the passenger seat.
  • 9. The amusement park ride of claim 1, wherein the central base comprises a brake for stopping all the articulated arms from rotating around the central base.
  • 10. The amusement park ride of claim 1, wherein the control module of each vehicle is pre-programmed with at least one control pattern, wherein the at least one control pattern causes the vehicle to perform at least one of the following functions: a. taking off;b. landing;c. performing an aerobatic maneuver.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application takes priority from U.S. Provisional Application No. 63/242,153, filed Sep. 9, 2021, which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63242153 Sep 2021 US