The invention relates to an amusement ride having a base to which is fastened at least one pivotable or rotatable support for holding rows of seats mounted in gondolas on the support, according to the preamble of claim 1.
In a variety of amusement rides for use at fairs and the like, passengers are taken for a ride in gondolas which are moved with the amusement ride at a certain speed in the vertical direction. The movement can be linear or circular. A circular movement is used in particular on Ferris wheels, in which a plurality of gondolas is fastened to a rotating wheel. The gondolas of the Ferris wheel are pivotally mounted on the periphery of the wheel. In some Ferris wheels, they can also be rotated in a horizontal plane. When the Ferris wheel stops, one or more gondolas located on the platform at the bottom can be loaded and unloaded.
In other swinging amusement rides, seats are located at both ends of a support beam, which can be moved by the movement of the passengers themselves, and/or moved by a motor. The loading and unloading in this version are carried out in a state in which a gondola is situated in the lower area on a platform. The beam must be mechanically fixed when the gondola is unloaded in an unbalanced state, so as to secure the beam.
The process of mounting seats in gondolas by Cardan suspension, so as to provide for movement in three planes, is also known. Such gondolas are lifted by means of a hoisting mast to a greater height after they are loaded, and can then perform the desired movement patterns, either by manual operation or by means of a motor drive. The disadvantage of such an arrangement is that the amusement operation of the ride is interrupted during the raising and lowering of the gondolas and during the loading and unloading.
The invention is therefore based on the object of further developing an amusement ride with gondolas mounted by Cardan suspension, in such a way that at least two corresponding gondolas can be operated at the same time and can be alternately loaded and unloaded, wherein the energy required to operate the amusement ride is minimized and the operation time of the amusement ride per unit of time can be increased.
This object is achieved by the invention defined in claim 1. Advantageous developments of the invention are specified in the dependent claims.
The invention proceeds from an amusement ride having a base to which is fastened at least one pivotable or rotatable support for holding rows of seats mounted in gondolas, wherein the gondolas are movable on the support with respect to the base, at least in the vertical direction, and the rows of seats in the gondola are rotatable or pivotable in in at least two planes which are perpendicular to each other.
According to the invention, the support comprises at least two gondolas which are formed by frames which interlock in a gimbal-like manner, such that the rows of seats in the gondola are movable in three mutually perpendicular planes.
While one of the gondolas can be loaded and unloaded in its starting position, other gondolas fastened to the support can continue to be operated in a program.
Such an amusement ride has the advantage that the special design of the gondolas in the form of a Cardan suspension of the seats can achieve a great amusement effect, and, on the other hand, the operator of the amusement ride can achieve a high passenger turnover rate. The energy required to operate the amusement ride is relatively low. Likewise, the space required for the amusement ride is relatively small.
The support of the amusement ride is preferably an angled or arcuate support beam curved with respect to the base, which is mounted on the base in the central region thereof and carries one gondola on each of its upwardly swept ends. In this ride designed in the manner of a seesaw swing, the support has one gondola at each end. The support is fastened to the base via a pivot joint. If the support is mounted at a high position with respect to the base, relatively high heights can be achieved at the ends upon the movement of the support. The movement control of the gondolas and/or rows of seats arranged in the gondolas is preferably motorized. The up and down movements of the ends of the support are also motorized—for example, by electric motor, hydraulically, or pneumatically. The movements of the support and the gondolas can be adapted to each other with regard to the speed of movement and the movement patterns.
In an alternative embodiment, instead of a pivoting movement about a pivot axis, the support can also be displaced along an arcuate guideway between the support and the base, such that the ends of the support can reach great heights in this way as well.
In another embodiment of the invention, the support is designed as a carrying wheel which is rotatably mounted about a central axis of rotation connected to the base, wherein the carrying wheel includes at least two gondolas on the periphery thereof. The rows of seats in the gondolas are also mounted by Cardan suspension. Although the basic principle corresponds to that of a Ferris wheel, introducing a Cardan suspension of the individual gondolas and/or the rows of seats of the gondolas achieves an elevated amusement effect. The selected number of gondolas can also be greater than two.
In another embodiment, two parallel supports can be used, each having one gondola at each end thereof, such that only one of the gondolas needs to be lowered for loading and unloading during the operation of the amusement ride, while the support which does not need to be loaded can continue to operate and the gondola opposite the gondola needing to be loaded or unloaded can remain at a great height.
With the same basic design, each of the two supports can have only one gondola at one end thereof, while the opposite end of the support is equipped with a counterweight, such that, rather than a second gondola on one support, weight can be balanced in this manner during continuing operation.
The frames of the gondolas which are interconnected in a gimbal-like manner are preferably rectangular, oval or circular. In this design, an outer frame is rotatably mounted on the two arms of each support, while the rows of seats are fastened to an inner frame. An intermediate frame interlocks the outer and inner frames with each other in a gimbal-like manner. Preferably, the rows of seats are fastened to both ends of a leg of the inner frame. The rows of seats can also be fastened to two opposite legs of the inner frame to establish better symmetry of weight. In this embodiment, however, suitable arrangements for loading and unloading the seats must be provided on the platform. These are easier to produce when only one leg is loaded or unloaded and the inner frame is vertical.
The rows of seats arranged on the leg or legs of the inner frame can also be rotatable or pivotable.
The invention will be explained in more detail below with reference to several embodiments, wherein:
The bearing 9 is located on the base 1 on a raised frame 11, such that the ends of the arcuate support 2 can each be pivoted sufficiently far down to enable entering or exiting the gondolas 3 or 8.
The gondolas 3 and 8 are arranged on the support 2 on the ends thereof, and consist of three nested frames, which are mounted perpendicularly to each other. The outer frame 7 is mounted in a bearing 12. The intermediate frame 6 is mounted with its bearing axis perpendicular to the bearing axis 12 in the outer frame 7. Inside the intermediate frame 6, the inner frame 5 is mounted via the bearing 13 with respect to the intermediate frame 6. The arrangement of the bearings 12, 13, 14 of the interlocked frames 5, 6, 7 results in a cardanic mount, such that the inner frame 5 is movable in mutually perpendicular planes. The movement is preferably motorized according to a preselected control program.
The inner frame 5 has, on the free leg 15, two parallel rows of seats 4, wherein the individual seats of the rows of seats are fastened to both sides of the leg. The opposite leg 16 of the inner frame 5 may have a counterweight. However, the leg 16 can also accommodate rows of seats if the loading and unloading of the rows of seats on the platform can be suitably ensured. For this purpose, the legs 15 and 16 should be rotatable relative to the inner frame 5, so that each of the rows of seats can be kept in an upright position during loading and unloading.
The gondolas formed by the frames 5, 6, 7 are preferably rectangular in shape, but they can also be any other shape—such as oval or circular.
For loading and unloading a gondola, the support 2 is lowered at one end far enough that the leg of the inner frame which carries the rows of seats can be lowered to the base 1. After the rows of seats are loaded, the corresponding end of the support 2 can be raised again while the opposite end of the support is lowered. The gondolas can thereby be moved up and down synchronously in the manner of a seesaw swing.
In this embodiment, the loading and unloading of the two parallel gondolas 19 and 20 takes place at the same time; in the first embodiment, the gondolas 3 and 8 are alternately loaded and unloaded.
A further embodiment of the invention is shown in
In the figures, the gondolas are shown as an open frame arrangement. However, the gondolas may also be given a closed design if the outer frame forms a housing in which the intermediate frames and the inner frames are accommodated. The inner frame may also form a housing in which the rows of seats or individual seats can be accommodated in a different arrangement. The housings have doors and are made with or without windows. In this case, the housings can also be provided with projection surfaces on which visual representations are displayed, which can further increase the amusement effect for the passengers.
Number | Date | Country | Kind |
---|---|---|---|
17165809.9 | Apr 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/058165 | 3/29/2018 | WO | 00 |