This is a National Phase Application filed under 35 U.S.C. 371 as a national stage of PCT/EP2018/068865, filed Jul. 12, 2018, an application claiming the benefit of German Application No. 102017125288.6, filed Oct. 27, 2017, the content of each of which is hereby incorporated by reference in its entirety.
The invention relates to amusement ride according to the features of the preamble of claim 1.
The invention relates in particular to amusement rides having an amusement ride which travels at least once through a liquid, for example, water. Such water amusement rides are very popular in the summer, when it is hot. Traveling into the water offers a refreshing experience and increases the level of fun, in particular if the vehicle is guided from above into the water and thus generates the very popular splash effect upon contact with the water.
DE 10 2014 103 226 A1 of the applicant describes, for example, a water amusement ride having a water vehicle which can travel along a route having rails. A first water pool is provided on the route, which can be filled with water and through which the vehicle is guided. The pool has either a low level or a zero level, or a high level. Further pools are provided, which are connected to the first water pool by lock gates. The water vehicle is firstly accelerated along the route at low level, the lock gates are then opened, so that the water level of the first water pool rises to the high water level. The vehicle is then guided into the first water pool having high water level to thus generate the popular splash or water spray.
In this amusement ride, the vehicle continuously has to be controlled using drives. In particular, linear drives have to be used to brake the vehicle. This is because it is known that when the vehicle runs through the water, it is strongly braked. The pool can therefore only be filled with water at a high level at the end of the trip. The braking on the basis of the water alone can only be controlled with difficulty in this amusement ride, however, so that further braking means are necessary.
The freedom of movement and the speed of the vehicle are additionally strongly limited on such a route guide.
The object of the invention is therefore to provide an amusement ride in which the vehicle is freer in its movement and which still offers even more fun.
This object is achieved by an amusement ride having the features of claim 1.
Refinements of the invention are the subject matter of the dependent claims.
The amusement ride according to the invention comprises at least one vehicle, which comprises one or more passenger compartments for accommodating passengers, and a pool, wherein the amusement ride is designed in such a way that at least one pendulum movement of the vehicle is possible, and is distinguished in that the amusement ride is configured such that the pool can be at least partially filled with a liquid and the vehicle comes into contact with the liquid of the pool in the course of the pendulum movement.
The amusement ride is accordingly embodied as a giant pendulum, i.e., the vehicle is fastened in such a way that its center of gravity can swing around an idle position. The vehicle can move in a majority of directions because the vehicle is no longer necessarily bound to rails or other guide means. In the course of the pendulum movement, the vehicle is then guided over the pool filled with liquid. A water effect can thus be generated.
The contact of the vehicle with the liquid of the pool results due to a relative movement of the two. The contact does not have to take place during each traversal of the pool because of the strong deceleration effect of the liquid. Rather, a minimum distance between the vehicle, on the one hand, and the liquid or the pool, on the other hand, can be varied in the course of the pendulum movement. A fill level of the pool can be varied during the trip for this purpose. The fill level in the pool can also remain constant and the distance of the vehicle in relation to the pool can be changed during the trip. It is important that in the course of the pendulum movement of the vehicle, an overlap of a movement radius of the vehicle with the liquid occurs at least once.
According to one particularly advantageous embodiment, the pool comprises at least one section, over which the liquid can flow, wherein means are provided using which a flow rate of the liquid on the section of the pool can be varied arbitrarily.
The liquid thus flows within the pool over the section, which can be arranged at an edge of the pool, down to a base of the pool. While the pool in the prior art only has two levels, the flow rate of the liquid, and thus also a fill level of the pool, can be varied arbitrarily according to the invention, so that when the vehicle travels above or through the liquid, both the deceleration effect of the liquid and also the splash effect can be controlled. The degree of pleasure of the amusement ride can thus be set in dependence on the public. Particularly large bow waves can be generated in this case. It is also conceivable that no liquid flows over the section at the beginning of the trip, and the liquid is only gradually introduced over the section into the pool, so that the bow waves become larger and larger during the travel of the vehicle in the pool, or vice versa. Further braking means can be omitted by the vehicle being able to be braked in a controlled manner using the liquid of the pool. It is important in particular that the loss of liquid in the pool linked to the splash effect can be compensated for on the basis of the means for varying the flow rate of the liquid. This has the result that the vehicle can generate a splash effect during each traversal. This is not the case with conventional water amusement rides. For this purpose it is conceivable, for example, that the deceleration effect of the liquid during the passage of the filled pool is compensated for using a drive, which accelerates the vehicle after passing the liquid, so that the vehicle can travel arbitrarily many transits having splash effect.
The vehicle is released from a high position with switched-off drive and can swing solely by means of the acceleration of gravity, wherein every time that the vehicle travels through the liquid of the pool, it is decelerated until it comes to its idle state. No further drives are required for this purpose, since the vehicle no longer travels on a rail and the fill level of the liquid in the pool is selected or refilled in such a way that an idle state can be achieved within a desired time. The amusement ride is therefore particularly energy-saving and requires fewer parts.
The vehicle is preferably rotatably mounted on a fastening element, for example, via at least one rod. The vehicle thus has one to three rotational degrees of freedom, depending on the type of the connection between the fastening element and the vehicle. This type of mounting actually corresponds to the arrangement of a pendulum. The vehicle can thus move freely around the fastening element along a spherical surface and can therefore have a plurality of movement options. The fastening element can be formed, for example, as a rod or as a ball element. Therefore, tracks are no longer required for the vehicle, but rather only a support structure for the fastening element is required, which substantially facilitates the arrangement of the amusement ride. This also means that the vehicle stands almost freely in space, which is particularly exciting for the passengers.
According to one preferred embodiment, the amusement ride is designed in such a way that in addition to a pendulum movement, at least one further movement of the vehicle and/or the one or more passenger compartments of the vehicle is possible. With the proliferation of the possible movements of the vehicle and/or the passenger compartments, even more complex routes and movements can be developed, which offers a higher level of flexibility in the selection of the routes and movements. Moreover, passengers are always on the search for new impressions and experiences, which can be fulfilled using the amusement ride according to the invention.
In particular, the vehicle and/or the one or more passenger compartments of the vehicle can rotate around themselves. Since the vehicle already rotates around the fastening element, the passenger is particularly confused by these multiple rotations, up to the point that he no longer knows where precisely he is located in space. This confusion substantially contributes to the fun during the trip.
According to one particularly simple embodiment, the vehicle swings between two end positions. Swinging is considered here to be a special type of pendulum movement, namely the pendulum movement of a thread pendulum. In this case, the movement of the vehicle around the fastening element is restricted, so that the center of gravity of the vehicle can only travel along a circular surface. The center of gravity of the vehicle thus travels within a single plane. The amusement ride then functions like a boat swing. These end positions are preferably arranged symmetrically in relation to a plane of the fastening element. The vehicle can be moved via a drive up to the first end position and then can be released to swing with decoupled drive up to the second end position, where the drive is switched on again, and so on. A particularly high speed can thus be achieved by means of the acceleration of gravity, without switching on the drive. In particular hydraulic drives, electric motors, and LSM motors come into consideration as the drive. It thus has to be understood that the swinging between the end positions only forms a part of the overall trip, namely the main part. During the remainder of the trip, the vehicle only swings between positions which are arranged lower than the end positions, since the vehicle does not have enough energy to reach the end positions.
To further enhance the fun of the passengers, the amusement ride can be designed so that a 360° rotation of the vehicle around the fastening element is possible. Such upside-down trips are very popular, since the passenger themselves are placed upside down for a short time. The vehicle can then be rotated multiple times around the fastening element on the route, for example.
Means are preferably also provided to restrict or shut down individual movement directions of the vehicle and/or the one or more passenger compartments of the vehicle. These means can be in particular brakes, clutches, positioning motors, or locking cylinders. This is because the amusement ride according to the invention has a high number of movement options. However, all movement options are frequently not required. It can also be that one only wishes to switch on certain movements from or up to a particular point in time. Using these means, only desired movements can then be permitted, which ensures a higher level of control of the trip. Moreover, these means offer an enhanced level of safety. In addition, a loading and unloading position of the amusement ride can be fixed using these means, so that safe entry and exit are ensured.
To improve the travel experience, the amusement ride can be designed so that the vehicle can generate a splash or other liquid effects. The splash involves spraying of liquid out of the pool. The splash can make the passengers of the vehicle and/or the spectators of the amusement ride wet. Such a liquid effect is generated in particular when the vehicle travels at sufficient speed into the liquid flowing over the section of the pool. This thus presumes that the means for varying the flow rate of the liquid are set in such a way that sufficient liquid flows. Inter alia, bow waves are then generated, which the passengers enjoy greatly.
It is particularly preferable if the vehicle itself is designed in such a way that it can maximize liquid effects. The vehicle can comprise, for example, a preferably hemispherical element on a lower side, which displaces the liquid out of the pool as it plunges into the liquid. The vehicle thus acts like a type of hammer, which strikes the liquid of the pool.
According to one particularly advantageous embodiment, the vehicle comprises means for carrying along the liquid, which are preferably arranged on a lower side of the vehicle. In particular, the vehicle can comprise a carrier on the base, which is designed, for example, as a housing open to the front. As the vehicle travels into the pool, the housing of the vehicle thus carries along liquid through its open end. After the vehicle has traveled out of the pool and is on the return, the carrier can then let the water spray outward, for example, onto happy spectators. The distribution can have different strengths depending on the movement and speed.
It is particularly advantageous if the section of the pool over which the liquid can flow comprises a ramp or a stair, which is preferably arranged at an edge of the pool. In addition, the section can be connected to the means, using which a flow rate of the liquid can be varied arbitrarily. By the liquid flowing over the ramp or the stair into the pool, a type of waterfall is formed which makes the travel experience even more adventurous and refreshing. If the vehicle travels over the stair or the ramp with running liquid, a particularly strong and impressive splash effect can be generated. In particular, the means for varying the flow rate of the liquid are driven in such a way that the liquid level on the section is higher than a movement radius of the vehicle, so that an overlap of the liquid and the path of the vehicle results.
A dynamic and closed liquid cycle can be formed in that the means, using which the flow rate of the liquid can be varied, comprise at least one pump and one reservoir. The liquid can then, for example, be pumped out of the reservoir by the pump and then run over the section of the pool and arrive in the reservoir again. The reservoir offers the option of refilling the pool again and again and as often as necessary, so that the desired fill level in the pool or the desired flow on the section can be achieved. The liquid can flow easily and rapidly into the pool using the pump. Using these means, the flow rate of the liquid, and thus the fill level in the pool, can thus be controlled. It is also conceivable that the amusement ride comprises multiple pumps or nozzles, which are arranged and designed in such a way that the liquid can be conveyed from the reservoir by the pumps sufficiently high that the provided flow partially overlaps the path of the vehicle. A water effect is thus generated.
In order that the vehicle can be accelerated, the amusement ride can comprise one or more drives, in particular LSM (linear synchronous motor) stators, using which the vehicle can be driven. LSM stators are very widespread and can reach high speeds. The drive or drives can be arranged on the vehicle itself, on the pool, or on the support structure.
In order that the passengers can have access to the passenger compartments, means can be provided which form a loading and unloading platform at a standstill, for example, in the form of a turntable.
The passenger compartments of the vehicle are preferably arranged in a circle. This design is particularly advantageous if the entire vehicle or only one element of the vehicle, which comprises the passenger compartments, can rotate around itself.
The vehicle can be designed as a boat. This design is preferable in the case of a swinging movement, since then the vehicle forms a giant swing, which is particularly simple to accelerate in a certain direction. With its front and rear ends, the boat can effectively press the liquid away in both directions to generate the mentioned “splash effect”.
The amusement ride according to the present invention is explained in greater detail hereafter on the basis of five exemplary embodiments with reference to the appended figures. In the figures:
In the following figures, if not indicated otherwise, identical reference signs identify identical parts having identical meaning.
The support structure 5 comprises a fastening element 51, which is formed as a rod having an axis D, and support elements 52, which connect the fastening element 51 to a base (not shown in greater detail), in such a way that the fastening element 51 is securely and solidly connected to the base. The two support elements 52 are formed V-shaped in the present case having two linear rods connected to one another, which form a receptacle 53 for the fastening element 51 at a connecting point and are solidly screwed onto the base or a transportable platform at ends 54. The support elements 52 can be designed as telescopic, so that a distance between the base of the platform and the fastening element 51 can be varied. In addition, a drive 6 for driving the vehicle 1 is arranged laterally on the receptacle 53 in the fastening element 51. In the present case, this is an electric motor. The support structure 5 is manufactured substantially from steel in the present example.
The vehicle 1 is connected to the fastening element 51 of the support structure 5 by a plurality of support elements 4, in the present case two. The support elements 4 comprise two rods, which have an acute angle in relation to one another. The rods form an eye for accommodating the fastening element 51 at a connecting point, so that the support elements 4 are movably arranged on the fastening element 51, namely around the axis D of the fastening element 51. The support elements 4 additionally each comprise two ends, which are each connected to a connecting element 18 of the vehicle 1. The rods are rigid and thus define a fixed distance between the vehicle 1 and the fastening element 51 of the support structure 5. It is also conceivable that the support elements are formed as single rods, which are fixedly connected to the connecting element.
The vehicle 1 thus forms, together with the support structure 5, a swing ride, which floats over the ground. The vehicle 1 can rotate around the axis D of the fastening element 51, while further movements of the vehicle 1 in relation to the fastening element 51 are not permitted.
The pool 2 is arranged on the base. The pool 2 comprises a substantially rectangular footprint, which extends along a longitudinal axis, which runs in parallel to the axis A of the vehicle when the vehicle 1 is in an idle state, as is the case in
A trip of the vehicle 1 takes place as follows. Firstly, the vehicle 1 is located in a starting position, which is shown in
The traveled route and the switching on of the pumps 22 can obviously be selected as desired. In particular, the fill level of the liquid 3 in the pool 2 does not have to be changed during the pendulum movement. This is because it is also conceivable that during the trip, a distance of the vehicle 1 in relation to the pool 2 is changed, for example, by way of a change of the length of the elements 52 or 4, if they are designed as telescopic. The vehicle 1 is thus plunged into the liquid 3 already present in the pool 2.
The vehicle 201 is designed as an oblong boat and additionally comprises the wheel 210, which is connected to the boat by a rod 204. The rod 204 connects a center of the boat to the fastening element 51, in such a way that the vehicle 201 can swing around the axis D of the fastening element 51. The wheel 210 comprises a rim 211 and a hub 214, which are connected to one another via a plurality of spokes 212, five in the present case. The passenger compartments 211 are arranged in a circle on the rim 213. In the present case, the wheel 210 can accommodate 56 passengers. The hub 214 comprises an opening 215 for accommodating the rod 204. The wheel 210 is thus placed through the opening 215 on the rod 204 in such a way that the wheel 210 can rotate around an axis of the rod 204. In the present case, the wheel 210 is fixedly arranged on the rod 204 and the rod 204 is designed so that it can itself rotate. It is also conceivable that the rod is arranged rotationally fixed and the wheel 210 can rotate around the rod 204 by way of a drive. The rotation of the wheel 210 forms an additional movement of the passenger compartments 211 in any case, so that during a trip of the vehicle 201, the vehicle 201 can swing with the wheel 210 and the wheel 210 with the passenger compartments 211 can rotate around the axis of the rod 204 independently of the swinging movement. The travel experience for the passengers becomes much more exciting with this double movement.
A platform 216 is used so that the passengers can have access to the passenger compartments 211 of the wheel 210. This platform 216 is composed of two plates 217 movable along an axis, which are designed so that when they are assembled, they form a receptacle 219 for the wheel 210. When the vehicle 201 is at a standstill, the plates 217 are moved toward one another from opposing sides until they form the platform 217 and accommodate the wheel 210. This situation is shown in
The vehicle 301 comprises a wheel 310, which is designed precisely like the wheel 210 of
The support structure 5 is formed pyramidal having three identically formed rods 352, which are fixedly connected at one end to the base and are connected at another end to a fastening element 351. The fastening element 351 is formed essentially plate-shaped in the present case, having three arms extending outward from a center point, which are each connected to one rod 352, and a centrally arranged receptacle for the rod 304. In addition, a drive (not shown in greater detail) is provided on the fastening element. However, this drive can also be arranged on the vehicle 301 itself, on the pool 302, or at other locations of the support structure 305.
The vehicle 301 is rotatably mounted on the fastening element 351. For this purpose, the rod 304 has a spherical element 340 at a free end, which is not connected to the vehicle 301, this element being accommodated by the receptacle of the fastening element 351 to form a ball and socket connection. The vehicle 3 can thus rotate around the fastening element 351 freely, i.e., in all directions. A center of gravity of the vehicle 301 can thus move on a spherical surface, the center point of which is the center point of the fastening element 351, so that a typical pendulum movement of the vehicle 301 results therefrom. The vehicle 301 thus comprises a plurality of movement options, since the vehicle 301 can rotate around itself around the rod 304, and the rod 304 can itself rotate around the connecting point between the fastening element 351 and the element 340.
The pool 302 is formed essentially circular and comprises a circular base 328 and, viewed radially in the direction of a center of the pool 302, a plurality of stairs 321 leading downward, which connect edges of the pool 302 to the base 328 of the pool 302 and over which a liquid 303 can flow. In the present case, the stairs 321 are arranged circumferentially on the base 302. In this exemplary embodiment, an interior of the pool 302, which is delimited by the base 328 and the circumferential stairs 321, forms a reservoir for the liquid 303. The interior of the pool 302 is therefore continuously filled at least partially with the liquid 303.
A trip of the vehicle 301 takes place as follows: the vehicle 301 is accelerated by means of the drive arranged on the fastening element 351, in such a way that a pendulum movement is generated. The drive is controlled so that the vehicle 301 reaches higher and higher end positions. When the drive is decoupled, the vehicle 301 is accelerated by the acceleration of gravity. If desired, a rotation of the vehicle 301 around itself can also be switched on or off to amplify the travel experience even more. If the vehicle 301 reaches a desired end position, the at least one pump 322 can be switched on and can pump out the liquid 303 up to the stairs 321. The vehicle 301 is then guided through the liquid 303 by the acceleration of gravity. In particular, the vehicle 301 runs up over the stairs 321 filled with liquid and strikes with its hemispherical element 312 arranged on the base against the liquid 303, in such a way that a water effect 331, for example, a splash or a bow wave, is generated which can also make spectators standing on the outside wet for the greatest pleasure of the passengers of the vehicle 301 and of the spectators themselves. The situation is shown in
The described trip is only by way of example and can obviously be designed differently.
The vehicle 401 is formed circular similarly as in the amusement ride 300, having a wheel and a hemispherical element (not shown in greater detail) arranged on a lower side of the wheel for ejecting liquid out of the pool 402.
The support structure 405 comprises a circular platform 453 having a column 452 arranged in a center of the platform 453 and standing perpendicular to the platform 453. The column 452 supports a ring-shaped element 454, which is arranged in a plane extending inclined in relation to a plane of the platform 453 and is connected to the column 452 by arms 455, in the present case four, which are formed integrally with the element 454 in the present case and are arranged at various locations of the column 452. In the present case, the angle between the plane of the platform 453 and the plane of the ring-shaped element 454 is fixed. However, it is also conceivable that this angle is adjustable, for example, by a telescopic formation of the arms 455 supporting the element 454. A fastening element 451 for fastening the vehicle 401 is arranged at an end of the column 453 opposite to the platform 453, in such a way that the fastening element 451 is rotatable around a longitudinal axis of the column 452. In the present case, the fastening element 451 is designed as a rotatable plate having two parallel support plates, formed essentially triangular and arranged perpendicular to the rotatable plate, between which a rod is arranged. The rod is arranged in such a way that an axis of the rod is perpendicular to the axis of the column 452.
The vehicle 401 is connected to the support structure 405 by a rod 404, which is arranged at a first end in an opening of a central hub of the wheel of the vehicle 401. The rod 404 has an eye at another end, which accommodates the rod of the fastening element 451 in such a way that the rod 404 is arranged so it is rotatable together with the vehicle 401 around the rod of the fastening element 451. In addition, a ring 441 is arranged around the rod 404, which is coaxial to the rod 404 and has a larger diameter than the rod 404. The ring 441 can interact with the ring-shaped element 454 of the support structure 405. For this purpose, the ring 441 is arranged in such a way that a circumferential surface of the ring 441 is continuously in contact with an upper surface of the ring-shaped element 454. When the fastening element 451 rotates around the axis of the column 452 due to a drive (not shown in greater detail), the rod 404 thus also rotates together with the vehicle 401, wherein the ring 441 runs on the outer surface of the ring-shaped element 454 during this rotation. The rod 441 can thus only travel on a single route, namely the circular route around a center point of the fastening element 451 determined by the ring-shaped element 454. The ring-shaped element 454 thus acts as means for restricting the movement of the rod 404. The rod 404 also comprises an articulated connection 442 in the vicinity of the vehicle 401, so that the vehicle 401 can rotate around an axis of the articulated connection 442. In addition, the vehicle 401 can rotate around itself. The vehicle 401 thus has three movement options: a first rotational movement around the column 452, in the plane of the circular element 454, a second rotational movement around the articulated connection 442, and a third rotational movement around itself. A complex, inclined, elliptical movement of the vehicle 401 thus results.
The pool 402 has as the basic shape a circular section having a plurality of stairs 421, which extend downward down to a base 428 of the pool 402, which is also formed in the form of a circular section. In particular, the plurality of openings 426, 427 are recognizable, through which the liquid conveyed by pumps or nozzles (not shown in greater detail) can run, in a similar functionality as in the embodiment of
The liquid level in the pool 502 is initially low or zero at the starting position of the vehicle 501, so that liquid cannot be carried along as the vehicle 501 begins to swing. During the last transit, when the pumps are switched on and the liquid 503 runs over the stairs down to the base, the liquid level increases in the pool 502, so that when the vehicle 501 travels through the pool 502 and the liquid 503 and generates a splash effect 321, the carrier 512 accommodates liquid through the opening 513. This situation is shown in
The invention is obviously not limited to the exemplary embodiments shown above and comprises in particular amusement rides which form a combination of the exemplary embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 125 288 | Oct 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/068865 | 7/12/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/081077 | 5/2/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
989280 | Palmer | Apr 1911 | A |
1731532 | Hoppes | Oct 1929 | A |
4960275 | Magon | Oct 1990 | A |
5790990 | Hall | Aug 1998 | A |
5947828 | Fabbri | Sep 1999 | A |
7156714 | Kian | Jan 2007 | B2 |
7988562 | Kojiro | Aug 2011 | B2 |
8083599 | Crawford et al. | Dec 2011 | B2 |
20100009767 | Crawford et al. | Jan 2010 | A1 |
20160243451 | Burger | Aug 2016 | A1 |
20160325189 | Sornik et al. | Nov 2016 | A1 |
20170333800 | Zamperla | Nov 2017 | A1 |
20190270024 | Morosini | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
106457050 | Feb 2017 | CN |
2811614 | Sep 1979 | DE |
9410114 | Sep 1994 | DE |
102013222910 | May 2015 | DE |
102014103226 | Sep 2015 | DE |
1524016 | Apr 2005 | EP |
2004041380 | May 2004 | WO |
Entry |
---|
Office Action dated Jun. 12, 2018, in parallel German patent application No. 102017125288.6. |
International Search Report dated Nov. 15, 2018, of PCT/2018/068865. |
Examination and Search report completed Jan. 11, 2021 for corresponding application in Australia 2018355629. |
Wonderla water Pendulam [Viewed on Jan. 11, 2021] Viewed on Internet. < URL: https://www.youtube.com/watch?v=BsRqBUiYkyY >, Published on Jun. 26, 2010. |
Chinese office action dated Mar. 29, 2021, for corresponding application No. 201880069943.6. |
Canadian Office Action dated May 26, 2021, for corresponding application CA 3,077,264. |
Number | Date | Country | |
---|---|---|---|
20200324212 A1 | Oct 2020 | US |