Amusement water rides involving games of chance

Information

  • Patent Grant
  • 7857704
  • Patent Number
    7,857,704
  • Date Filed
    Friday, September 15, 2006
    18 years ago
  • Date Issued
    Tuesday, December 28, 2010
    13 years ago
Abstract
A system may enable a participant to play games of chance in a water environment. A gambling facility may be part of a water ride. The gambling facility is coupled to a water amusement system. Gambling stations may be at least partially submerged in the body of water. Gambling apparatus may float on or be coupled to structures in the body of water. A participant may move from station to station, or apparatus to apparatus, by swimming, floating, traveling underwater, walking or jogging in the body of water, or using a conveyor. In some embodiments, participant identifiers are coupled to the one or more participants. The participant identifiers may be used to assess a status of the participants in the gambling facility or water amusement park system.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure generally relates to water amusement attractions and rides. More particularly, the disclosure generally relates to water-powered rides and to a system and method in which participants may be actively involved in water rides that involve or allow participation in games of chance.


2. Description of the Relevant Art


The 80's decade has witnessed phenomenal growth in the participatory family water recreation facility, i.e., the waterpark, and in water oriented ride attractions in the traditional themed amusement parks. The main current genre of water ride attractions, e.g., waterslides, river rapid rides, and log flumes, and others, require participants to walk or be mechanically lifted to a high point, wherein, gravity enables water, rider(s), and riding vehicle (if appropriate) to slide down a chute or incline to a lower elevation splash pool, whereafter the cycle repeats. Some rides can move riders uphill and downhill but for efficiency and performance reasons these rides also generally start on an elevated tower and generally require walking up steps to reach the start of the ride.


With this phenomenal growth came the subsequent problem of finding enough appropriate land available for development in water recreation facilities. One of the problems facing waterpark developers is finding enough land upon which to develop their waterparks. The development of waterparks is an expensive enterprise to which the addition of having to purchase large tracts of land only further adds to the expense of developing waterparks.


Generally speaking, the traditional downhill water rides are short in duration (normally measured in seconds of ride time) and have limited throughput capacity. The combination of these two factors quickly leads to a situation in which patrons of the parks typically have long queue line waits of up to two or three hours for a ride that, although exciting, lasts only a few seconds. Additional problems like hot and sunny weather, wet patrons, and other difficulties combine to create a very poor overall customer feeling of satisfaction or perceived entertainment value in the waterpark experience. Poor entertainment value in waterparks as well as other amusement parks is rated as the biggest problem of the waterpark industry and is substantially contributing to the failure of many waterparks and threatens the entire industry.


Additionally, none of the typical downhill waterpark rides is specifically designed to transport guests between rides. In large amusement parks transportation between rides or areas of the park may be provided by a train or monorail system, or guests are left to walk from ride to ride or area to area. These forms of transportation have relatively minor entertainment value and are passive in nature in that they have little if any active guest-controlled functions such as choice of pathway, speed of riders or rider activity besides sightseeing from the vehicle. They are also generally unsuitable for waterparks because of their high installation and operating costs and have poor ambience within the parks. These types of transportation are also unsuitable for waterpark guests who, because of the large amount of time spent in the water, are often wet and want to be more active because of the combination of high ambient temperatures in summertime parks and the normal heat loss due to water immersion and evaporative cooling. Water helps cool guests and encourages a higher level of physical activity. Guests also want to stay in the water for fun. Waterparks are designed around the original experience of a swimming hole combined with the new sport of river rafting or tubing. The preferred feeling is one of natural ambience and organic experience. A good river ride combines calm areas and excitement areas like rapids, whirlpools, and beaches. Mechanical transportation systems do not fit in well with these types of rides. There exists a need in waterparks for a means of transportation through the park and between the rides.


For water rides that involve the use of a floatation device (e.g., an inner tube or floating board) the walk back to the start of a ride may be particularly arduous since the rider must usually carry the floatation device from the exit of the ride back to the start of the ride. Floatation devices could be transported from the exit to the entrance of the ride using mechanical transportation devices, but these devices are expensive to purchase and operate. Both of these processes reduce guest enjoyment, cause excess wear and tear on the floatation devices, contributes to guest injuries, and makes it impossible for some guests to access the rides. Also, a park that includes many different non-integrated rides may require guests to use different floatation devices for different rides, which makes it difficult for the park operators to provide the guests with a general purpose floatation device. It is advantageous to standardize riding vehicles for rides as much as possible.


Almost all water park rides require substantial waiting periods in a queue line due to the large number of participants at the park. This waiting period is typically incorporated into the walk from the bottom of the ride back to the top, and can measure hours in length, while the ride itself lasts a few short minutes, if not less than a minute. A series of corrals are typically used to form a meandering line of participants that extends from the starting point of the ride toward the exit point of the ride. Besides the negative and time-consuming experience of waiting in line, the guests are usually wet, exposed to varying amounts of sun and shade, and are not able to stay physically active, all of which contribute to physical discomfort for the guest and lowered guest satisfaction. Additionally, these queue lines are difficult if not impossible for disabled guests to negotiate.


Typically waterparks are quite large in area. Typically guests must enter at one area and pass through a changing room area upon entering the park. Rides and picnic areas located in areas distant to the entry area are often underused in relation to rides and areas located near the entry area. More popular rides are overly filled with guests waiting in queue lines for entry onto them. This leads to conditions of overcrowding in areas of the park which leads to guest dissatisfaction and general reduction of optimal guest dispersal throughout the park. The lack of an efficient transportation system between rides accentuates this problem in waterparks.


SUMMARY

Various systems and methods for enabling a participant to play games of chance in a water environment are described. In certain embodiments, a gambling facility may be part of a water ride. In some embodiments, a gambling facility is coupled to a water amusement system. For example, a gambling facility may be coupled to a floating river system. A gambling facility may include a body of water that assists or resists movement of a participant between stations or apparatus in the facility. Gambling stations may be at least partially submerged in the body of water. Gambling apparatus may float on or be coupled to structures in the body of water. A participant may move from station to station, or apparatus to apparatus, by swimming, floating (e.g., floating on a flotation device), traveling underwater, walking or jogging in the body of water, or using a conveyor (e.g., standing on an underwater conveyor).


In an embodiment, a water amusement park system includes a body of water and two or more gambling apparatus located on or adjacent the body of water. The gambling apparatus may allow participants to gamble while in or on the body of water. One or more participant identifiers may be coupled to the one or more participants. The participant identifiers may be used to assess a status of the participants in the water amusement park system. In certain embodiments, participant identifiers are configured to assess monetary status of the participants. In certain embodiments, participant identifiers are used to authenticate the identity of the participants to the gambling apparatus. In one embodiment, a participant activates a gambling apparatus using a participant identifier.


In an embodiment, a water amusement park system includes gambling apparatus located on or adjacent the body of water. In some embodiments, the gambling apparatus allow one or more participants to gamble while in or on the body of water. In certain embodiments, the participant is allowed to gamble on the gambling apparatus while waiting to enter the water amusement ride.


In an embodiment, a water amusement park system includes a monitoring system for monitoring one or more participants in the water amusement park and a selection mechanism for randomly selecting one or more participants in the water amusement park as a winner of a game of chance. In some embodiments, the monitoring system includes video cameras for monitoring the water amusement park. In certain embodiments, the participants are monitored by the monitoring system using participant identifiers coupled to the participants. In one embodiment, the selection mechanism comprises selecting at least one participant as the winner based on a participant identifier coupled to the participant being proximate a randomly selected location in the water amusement park at a specified time.


In an embodiment, a gambling apparatus is coupled to a body of water in a water amusement park. The gambling apparatus is operated, at least in part, using water from the body of water. In some embodiments, the gambling apparatus comprises a mechanical device operated by water flowing from the body of water to the gambling apparatus. In one embodiment, the gambling apparatus is a roulette wheel driven by water (e.g., falling water, water jets). In another embodiment, the gambling apparatus is a craps table. The craps table may be located underwater in a body of water. The dice for the craps table may sink after being thrown by a participant of the gambling apparatus.


In an embodiment, a system for providing a gambling experience includes a body of water, gambling stations in the body of water, a processing unit that processes information relating to gambling activities by a participant, and a display for displaying information to the participant while the participant is at the gambling stations. The processing unit may provide directions and status information relating to gambling activities to the participant through the display.


In an embodiment, a system for providing a gambling experience includes a control unit coupled to a processing unit. The control unit may control and regulate gambling apparatus at one or more of the gambling stations. In one embodiment, a system includes a control device operable by a participant to control a gambling apparatus at one or more of the gambling stations.


In an embodiment, a system for providing a gambling experience includes sensors coupled to the processing unit. Each of the participants may be coupled to a participant identifier. The processing unit uses information received from the sensor to assess status (e.g., a location) of at least one of the participants.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description of the preferred embodiments and upon reference to the accompanying drawings.



FIG. 1 depicts an embodiment of a portion of a continuous water slide.



FIG. 2 depicts an embodiment of a portion of a continuous water slide.



FIG. 3 depicts an embodiment of a water amusement park.



FIG. 4 depicts a side view of an embodiment of a conveyor lift station coupled to a water ride.



FIG. 5 depicts a side view of an embodiment of a conveyor lift station with an entry conveyor coupled to a water slide.



FIG. 6 depicts a side view of an embodiment of a conveyor lift station coupled to an upper channel.



FIG. 7 depicts a cross-sectional side view of an embodiment of a water lock system with one chamber and a conduit coupling the upper body of water to the chamber.



FIG. 8 depicts an embodiment of a floating queue line with jets.



FIG. 9 depicts an embodiment of a ferris lock with two chambers.



FIG. 10 depicts an embodiment of a ferris lock with two chambers.



FIG. 11 depicts an embodiment of a positionable screen for a convertible water park.



FIG. 12 depicts an embodiment of a positionable screen for a convertible water park.



FIG. 13 depicts an embodiment of a participant identifier.



FIG. 14 depicts an embodiment of a gambling facility that may be part of a water ride.



FIG. 15 depicts an embodiment water-operated roulette wheel.



FIG. 16 depicts an embodiment of a craps table on a water ride.



FIG. 17 depicts a block diagram of a system for allowing participants to play games of chance in a body of water.





While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawing and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.


DETAILED DESCRIPTION

It is to be understood the present invention is not limited to particular devices or biological systems, which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include singular and plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a linker” includes one or more linkers.


Unless defined otherwise, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.


In some embodiments, a water amusement system (e.g., a waterpark) may include a “continuous water ride.” The continuous water ride may allow a participant using the continuous water ride to avoid long lines typically associated with many water amusement systems. Long lines and/or wait times are one of greatest problems associated with water amusement systems in the area of customer satisfaction.


Almost all water park rides require substantial waiting periods in a queue line due to the large number of participants at the park. This waiting period is typically incorporated into the walk from the bottom of the ride back to the top, and can measure hours in length, while the ride itself lasts a few short minutes, if not less than a minute. A series of corrals are typically used to form a meandering line of participants that extends from the starting point of the ride toward the exit point of the ride. Besides the negative and time-consuming experience of waiting in line, the guests are usually wet, exposed to varying amounts of sun and shade, and are not able to stay physically active, all of which contribute to physical discomfort for the guest and lowered guest satisfaction. Additionally, these queue lines are difficult if not impossible for disabled guests to negotiate.


The concept of a continuous water ride was developed to address the problems and issues stated above associated with water amusement parks. Continuous water rides may assist in eliminating and/or reducing many long queue lines. Continuous water rides may eliminate and/or reduce participants having to walk back up to an entry point of a water ride. Continuous water rides may also allow the physically handicapped or physically challenged to take advantage of water amusement parks. Where before that may have been difficult if not impossible due to many flights of stairs typically associated with water amusement parks.


In some embodiments, continuous water rides may include a system of individual water rides connected together. The system may include two or more water rides connected together. Water rides may include downhill water slides, uphill water slides, single tube slides, multiple participant tube slides, space bowls, sidewinders, interactive water slides, water rides with falling water, themed water slides, dark water rides, and/or accelerator sections in water slides. Connections may reduce long queue lines normally associated with individual water rides. Connections may allow participants to remain in the water and/or a vehicle (e.g., a floatation device) during transportation from a first portion of the continuous water ride to a second portion of the continuous water ride.


In some embodiments, an exit point of a first water ride may be connected to an entry point of a second water ride forming at least a portion of a continuous water ride. The exit point of the first water ride and the entry point of the second water ride may be at different elevation levels. An elevation system may be used to connect the exit point of the first water ride and the entry point of the second water ride. In some embodiments, an entry point of a second water ride may have a higher elevation than an exit point of a first water ride coupled to the entry point of the second water ride.


In some embodiments, elevation systems may include any system capable of transporting one or more participants and/or one or more vehicles from a first point at one elevation level to a second point at a different elevation level. Elevation systems may include a conveyor belt system. Elevation systems may include a water lock system. Elevation systems may include an uphill water slide, a spiral transport system, and/or a water wheel.



FIG. 1 depicts an embodiment of at least a portion of continuous water ride 2. Continuous water ride 2 may include body of water 4A. Body of water 4A may include pools, lakes, and/or wells. Body of water 4A may be natural, artificial, or an artificially modified natural body of water. A non-limiting example of an artificially modified natural body of water might include a natural lake which has been artificially enlarged and adapted for water amusement park purposes (e.g., entry ladders and/or entry steps). Continuous water ride 2 may include downhill water slide 6. Downhill water slide 6 may convey participants from body of water 4A at a first elevation to a lower second elevation into typically some type of water container (e.g., body of water, channel, floating queue line, and/or pool). The water container at the lower second elevation may include, for illustrative purposes only, second body of water 4B (e.g., a pool). Continuous water ride 2 may include elevation system 8. Elevation system 8 may include any system capable of safely moving participants and/or vehicles from a lower elevation to a higher elevation. Elevation system 8 is depicted as a conveyor belt system in FIG. 1. Elevation system 8 may convey participants to body of water 4C. FIG. 1 depicts merely a portion of one embodiment of continuous water ride 2.



FIG. 2 depicts an embodiment of a portion of continuous water ride 2. Continuous water ride 2 may include body of water 4C. Body of water 4C may be coupled to downhill water slide 6. Downhill water slide 6 may couple body of water 4C to body of water 4D. Body of water 4D may be positioned at a lower elevation than body of water 4C. Body of water 4D may include access point 10A. Access point 10A may allow participants to safely enter and/or exit body of water 4D. As depicted in FIG. 2 access points 10 may be stairs. Access points 10 may also include ladders and/or a gradually sloping walkway. Body of water 4D may be coupled to body of water 4C with elevation system 8. Elevation system 8 as depicted in FIG. 2 is a conveyor belt system. Elevation system 8 may be at least any system of elevation described herein. Body of water 4C may be coupled to a second water ride. The second water ride may be, for example, lazy river 12.



FIG. 2 depicts one small example of continuous water ride 2. Continuous water ride 2 may allow participants and/or their vehicles 14 (e.g., inner tubes) to ride continually without having to leave their vehicle. For example a participant may enter body of water 4C through access point 10B. The participant may ride vehicle 14 down downhill water slide 6 to body of water 4D. At this point the participant has the choice to exit body of water 4D at access point 10A or to ride their vehicle 14 up elevation system 8 to body of water 4C. For safety reasons one or both ends of elevation system 8 may extend below the surface of bodies of water 4. Extending the ends of elevation system 8 below the surface of the water may allow participants to float up on elevation system 8 more safely. Participants who choose to ride elevation system 8 to body of water 4C may then choose to either exit access point 10B, ride downhill water slide 6 again, or ride lazy river 12.


In some embodiments, bodies of water 4 may include multiple elevation systems 8 and multiple water rides connecting each other. In some embodiments, floating queue lines and/or channels may couple water rides and elevation systems. Floating queue lines may help control the flow of participants more efficiently than without using floating queue lines.



FIG. 3 depicts an embodiment of a water amusement park. Water amusement park 16 depicted in FIG. 3 shows several different examples of continuous water rides 2. Continuous water rides 2 may include elevation systems 8, downhill water slide 6, and floating queue systems 62. Elevation systems 8 may include, for example, conveyor belt systems as depicted in FIG. 3. Downhill water slides 6 may couple elevation systems 8 to floating queue systems 62.


In some embodiments, elevation systems may include a conveyor belt system. Conveyor belt systems may be more fully described in U.S. patent application Ser. No. 09/952,036 (Publication No. US-2002-0082097-A1), herein incorporated by reference. This system may include a conveyor belt system positioned to allow riders to naturally float up or swim up onto the conveyor and be carried up and deposited at a higher level.


The conveyor belt system may also be used to take riders and vehicles out of the water flow at stations requiring entry and/or exit from the continuous water ride. Riders and vehicles float to and are carried up on a moving conveyor on which riders may exit the vehicles. New riders may enter the vehicles and be transported into the continuous water ride at a desired location and velocity. The conveyor may extend below the surface of the water so as to more easily allow riders to naturally float or swim up onto the conveyor. Extending the conveyor below the surface of the water may allow for a smoother entry into the water when exiting the conveyor belt. Typically the conveyor belt takes riders and vehicles from a lower elevation to a higher elevation, however it may be important to first transport the riders to an elevation higher than the elevation of their final destination. Upon reaching this apex the riders then may be transported down to the elevation of their final destination on a water slide, rollers, or on a continuation of the original conveyor that transported them to the apex. This serves the purpose of using gravity to push the rider off and away from the belt, slide, or rollers into a second water ride of the continuous water ride and/or a floating queue. The endpoint of a conveyor may be near a first end of a horizontal hydraulic head channel wherein input water is introduced through a first conduit. This current of flowing may move the riders away from the conveyor endpoint in a quick and orderly fashion so as not to cause increase in rider density at the conveyor endpoint. Further, moving the riders quickly away from the conveyor endpoint may act as a safety feature reducing the risk of riders becoming entangled in any part of the conveyor belt or its mechanisms. A deflector plate may also extend from one or more ends of the conveyor and may extend to the bottom of the channel. When the deflector plate extends at an angle away from the conveyor it may help to guide the riders up onto the conveyor belt as well as inhibit access to the rotating rollers underneath the conveyor. These conveyors may be designed to lift riders from one level to a higher one, or may be designed to lift riders and vehicles out of the water, onto a horizontal moving platform and then return the vehicle with a new rider to the water.


The conveyor belt speed may also be adjusted in accordance with several variables. The belt speed may be adjusted depending on the rider density; for example, the speed may be increased when rider density is high to reduce rider waiting time. The speed of the belt may be varied to match the velocity of the water, reducing changes in velocity experienced by the rider moving from one medium to another (for example from a current of water to a conveyor belt). Decreasing changes in velocity is an important safety consideration due to the fact that extreme changes in velocity may cause a rider to become unbalanced. Conveyor belt speed may be adjusted so riders are discharged at predetermined intervals, which may be important where riders are launched from a conveyor to a water ride that requires safety intervals between the riders.


Several safety concerns should be addressed in connection with the conveyor system. The actual belt of the system should be made of a material and designed to provide good traction to riders and vehicles without proving uncomfortable to the riders touch. The angle at which the conveyor is disposed is an important safety consideration and should be small enough so as not to cause the riders to become unbalanced or to slide in an uncontrolled manner along the conveyor belt. Detection devices or sensors for safety purposes may also be installed at various points along the conveyor belt system. These detection devices may be variously designed to determine if any rider on the conveyor is standing or otherwise violating safety parameters. Gates may also be installed at the top or bottom of a conveyor, arranged mechanically or with sensors wherein the conveyor stops when the rider collides with the gate so there is no danger of the rider being caught in and pulled under the conveyor. Runners may cover the outside edges of the conveyor belt covering the space between the conveyor and the outside wall of the conveyor so that no part of a rider may be caught in this space. All hardware (electrical, mechanical, and otherwise) should be able to withstand exposure to water, sunlight, and various chemicals associated with water treatment (including chlorine or fluorine) as well as common chemicals associated with the riders themselves (such as the various components making up sunscreen or cosmetics).


Various sensors may also be installed along the conveyor belt system to monitor the number of people using the system in addition to their density at various points along the system. Sensors may also monitor the actual conveyor belt system itself for breakdowns or other problems. Problems include, but are not limited to, the conveyor belt not moving when it should be or sections broken or in need of repair in the belt itself. All of this information may be transferred to various central or local control stations where it may be monitored so adjustments may be made to improve efficiency of transportation of the riders. Some or all of these adjustments may be automated and controlled by a programmable logic control system.


Various embodiments of the conveyor lift station include widths allowing only one or several riders side by side to ride on the conveyor according to ride and capacity requirements. The conveyor may also include entry and exit lanes in the incoming and outgoing stream so as to better position riders onto the conveyor belt and into the outgoing stream.


More embodiments of conveyor systems are shown in FIGS. 4-6. FIG. 4 shows a dry conveyor 8 for transporting riders entering the system into a channel. It includes a conveyor belt portion ending at the top of downhill slide 6 which riders slide down on into the water. FIG. 5 shows a wet conveyor 8 for transporting riders from a lower channel to a higher one with downhill slide 6 substituted for the launch conveyor. FIG. 6 shows a river conveyor 8 for transporting riders from a channel to a lazy river. This embodiment does not have a descending portion.


In some embodiments, an elevation system may include a water lock system. These systems may be used to increase elevation and/or decrease elevation. In certain embodiments, an exit point of a first water ride of a continuous water ride may have an elevation below an entry point of a second water ride of the continuous water ride. In some embodiments, the water lock system includes a chamber for holding water coupled to the exit point of the first water ride and the entry point of the second water ride. A chamber is herein defined as an at least partially enclosed space. The chamber includes at least one outer wall, or a series of outer walls that together define the outer perimeter of the chamber. The chamber may also be at least partially defined by natural features such as the side of a hill or mountain. The walls may be substantially watertight. The outer wall of the chamber, in certain embodiments, extends below an upper surface of the first water ride and above the upper surface of the second water ride. The chamber may have a shape that resembles a figure selected from the group consisting of a square, a rectangle, a circle, a star, a regular polyhedron, a trapezoid, an ellipse, a U-shape, an L-shape, a Y-shape or a figure eight, when seen from an overhead view.


A first movable member may be formed in the outer wall of the chamber. The first movable member may be positioned to allow participants and water to move between the exit point of the first water ride and the chamber when the first movable member is open during use. A second movable member may be formed in the wall of the chamber. The second movable member may be positioned to allow participants and water to move between the entry point of the second water ride and the chamber when the second movable member is open during use. The second movable member may be formed in the wall at an elevation that differs from that of the first movable member.


In certain embodiments, the first and second movable members may be configured to swing away from the chamber wall when moving from a closed position to an open position during use. In certain embodiments, the first and second movable members may be configured to move vertically into a portion of the wall when moving from a closed position to an open position. In certain embodiments, the first and second movable members may be configured to move horizontally along a portion of the wall when moving from a closed position to an open position.


A bottom member may also be positioned within the chamber. The bottom member may be configured to float below the upper surface of water within the chamber during use. The bottom member may be configured to rise when the water in the chamber rises during use. In certain embodiments, the bottom member is substantially water permeable such that water in the chamber moves freely through the bottom member as the bottom member is moved within the chamber during use. The bottom member may be configured to remain at a substantially constant distance from the upper surface of the water in the chamber during use. The bottom member may include a wall extending from the bottom member to a position above the upper surface of the water. The wall may be configured to prevent participants from moving to a position below the bottom member. A floatation member may be positioned upon the wall at a location proximate the upper surface of the water. A ratcheted locking system may couple the bottom member to the inner surface of the chamber wall. The ratcheted locking system may be configured to inhibit the bottom member from sinking when water is suddenly released from the chamber. The ratcheted locking system may also include a motor to allow the bottom member to be moved vertically within the chamber. There may be one or more bottom members positioned within a single chamber. The bottom member may incorporate water jets to direct and/or propel participants in or out of the chamber.


The lock system may also include a substantially vertical first ladder coupled to the wall of the bottom member and a substantially vertical second ladder coupled to a wall of the chamber. The first and second ladders, in certain embodiments, are positioned such that the ladders remain substantially aligned as the bottom member moves vertically within the chamber. The second ladder may extend to the top of the outer wall of the chamber. The ladders may allow participants to exit from the chamber if the lock system is not working properly.


In certain embodiments, water may be transferred into and out of the water lock system via the movable members formed within the chamber wall. Opening of the movable members may allow water to flow into the chamber from the second water ride or out of the chamber into the first water ride.


The lock system may also include a controller for operating the system. The automatic controller may be a computer, programmable logic controller, or any other control device. The controller may be coupled to the first movable member, the second movable member, and the first water control system. The controller may allow manual, semi-automatic, or automatic control of the lock system. The automatic controller may be connected to sensors positioned to detect if people are in the lock or not, blocking the gate, or if the gate is fully opened or fully closed or the water levels within the chambers.


In certain embodiments, the participants may be floating in water during the entire transfer from the first water ride to the second water ride. The participants may be swimming in the water or floating upon a floatation device. Preferably, the participants are floating on an inner tube, a floatation board, raft, or other floatation devices used by riders on water rides.


In certain embodiments, the lock system may include multiple movable members formed within the outer wall of the chamber. These movable members may lead to multiple water rides and/or continuous water ride systems coupled to the chamber. The additional movable members may be formed at the same elevational level or at different elevations.


In some embodiments, a first and second movable members formed in the outer wall of a chamber of a lock system may be configured to move vertically into a portion of the wall when moving from a closed position to an open position. The members may be substantially hollow, and have holes in the bottom configured to allow fluid flow in and out of the member. In an open position, the hollow member may be substantially filled with water. To move the member to a closed position, compressed air from a compressed air source may be introduced into the top of the hollow member through a valve, forcing water out of the holes in the bottom of the member. As the water is forced out and air enters the member, the buoyancy of the member may increase and the member may float up until it reaches a closed position. In this closed position, the holes in the bottom of the member may remain submerged, thereby preventing the air from escaping through the holes. To move the member back to an open position, a valve in the top of the member may be opened, allowing the compressed air to escape and allowing water to enter through the holes in the bottom. As water enters and compressed air escapes, the gate may lose buoyancy and sink until it reaches the open position, when the air valve may be closed again.


An advantage to the pneumatic gate system may be that water may be easily transferred from a higher lock to a lower one over the top of the gate. This system greatly simplifies and reduces the cost of valves and pumping systems between lock levels. The water that progressively spills over the top of the gate as it is lowered is at low, near-surface pressures in contrast to water pouring forth at various pressures in a swinging gate lock system. This advantage makes it feasible to eliminate some of the valves and piping required to move water from a higher lock to a lower lock.


In certain embodiments a pneumatic or hydraulic cylinder may be used to vertically move a gate system. An advantage to this system may be that the operator has much more control over the gate than with a gate system operating on a principle of increasing and decreasing the buoyancy. More control of the gate system may allow the gates to be operated in concert with one another, as well as increasing the safety associated with the system. The gate may be essentially hollow and filled with air or other floatation material such as Styrofoam, decreasing the power needed to move the gate.


While described as having only a single chamber coupled to two water rides forming a continuous water ride, it should be understood that multiple chambers may be interlocked to couple two or more water rides of a first continuous water ride and/or a second continuous water ride. By using multiple chambers, a series of smaller chambers may be built rather than a single large chamber. In some situations it may be easier to build a series of chambers rather than a single chamber. For example, use of a series of smaller chambers may better match the slope of an existing hill. Another example is to reduce water depths and pressures operating in each chamber so as to improve safety and reduce structural considerations resulting from increased water pressure differentials. Another example is the use of multiple chambers to increase aesthetics or ride excitement. Another is the use of multiple chambers to increase overall speed and rider throughput of the lock.


The participants may be transferred from the first water ride to the second water ride by entering the chamber and altering the level of water within the chamber. The first movable member, coupled to the first water ride is opened to allow the participants to move into the chamber. The participants may propel themselves by pulling themselves along by use of rope or other accessible handles or be pushed directly with water jets or be propelled by a current moving from the lower water ride toward the chamber. The current may be generated using water jets positioned along the inner surface of the chamber. Alternatively, a current may be generated by altering the level of water in the first water ride. For example, by raising the level of water in the first water ride a flow of water from the first water ride into the chamber may occur.


After the participants have entered the chamber, the first movable member is closed and the level of water in the chamber is altered. The level may be raised or lowered, depending on the elevation level of the second water ride with respect to the first water ride. If the second water ride is higher than the first water ride, the water level is raised. If the first water ride is at a higher elevation than the second water ride, the water level is lowered. As the water level in the chamber is altered, the participants are moved to a level commensurate with the upper surface of the second water ride. While the water level is altered within the chamber, the participants remain floating proximate the surface of the water. A bottom member preferably moves with the upper surface of the water in the chamber to maintain a relatively constant and safe depth of water beneath the riders. The water level in the chamber, in certain embodiments, is altered until the water level in the chamber is substantially equal to the water level of the second water ride. The second movable member may now be opened, allowing the participants to move from the chamber to the second water ride. In certain embodiments, a current may be generated by filling the chamber with additional water after the level of water in the chamber is substantially equal to the level of water outside the chamber. As the water is pumped in the chamber, the resulting increase in water volume within the chamber may cause a current to be formed flowing from the chamber to the water ride. When the movable member is open, the formed current may be used to propel the participants from the chamber to a water ride. Thus, the participants may be transferred from a first water ride to a second water ride without having to leave the water forming a continuous water ride. The participants are thus relieved of having to walk up a hill. The participants may also be relieved from carrying any floatation devices necessary for the continuous water ride.



FIG. 7 depicts a water lock system for conveying a person or a group of people (i.e., the participants) from a lower body of water 40 to an upper body of water 42. It should be understood that while a system and method of transferring the participants from the lower body of water to the upper body of water is herein described, the lock system may also be used to transfer participants from an upper body to a lower body, by reversing the operation of the lock system. The upper and lower bodies of water may be receiving pools (i.e., pools positioned at the end of a water ride), entry pools (i.e., pools positioned to at the entrance of a water ride), another chamber of a water lock system, or a natural body of water (e.g., a lake, river, reservoir, pond, etc.). The water lock system, in certain embodiments, includes at least one chamber 44 coupled to the upper and lower bodies of water. First movable member 46 and second movable member 48 may be formed in an outer wall 50 of the chamber. First movable member 46 may be coupled to lower body of water 40 such that the participants may enter chamber 44 from the lower body of water while the water 52 in the chamber is at level 54 substantially equal to upper surface 56 of the lower body of water. After the participants have entered chamber 44, the level of water within the chamber may be raised to a height 58 substantially equal to upper surface 60 of upper body of water 42. Second movable member 48 may be coupled to upper body of water 42 such that the participants may move from chamber 44 to the upper body of water after the level of water in the chamber is raised to the appropriate height.


Outer wall 50 of chamber 44 may be coupled to both lower body of water 40 and upper body of water 42. Outer wall 50 may extend from a point below upper surface 56 of lower body of water 40 to a point above upper surface 60 of upper body of water 42. Water lock systems may be more fully described in U.S. patent application Ser. No. 09/952,036.


In some embodiments, elevation systems may not be mere systems of conveyance to different elevation levels. Elevations systems may be designed to be entertaining and an enjoyable part of the water ride as well as the water rides of the continuous water ride which the elevation system is connecting. For example, when the elevation system includes an uphill water slide, the entertainment value may be no less for the elevation system of the continuous water ride than for the connected water rides.


In some embodiments, elevation systems may be part of the entertainment experience (e.g., uphill water slides). In certain embodiments, an elevation system may include a “ferris lock.” The ferris lock being so named due to its similarity to a combination between a Ferris wheel and a water lock system as described herein. The ferris lock may include a chamber for holding water. The chamber may be configurable to hold one or more vehicles. The vehicles may be flexible. The vehicles may be inflatable (e.g., inner tubes). A rotational member may be coupled to the chamber. The rotational member may rotate the chamber between different elevation levels. There may be two or more elevation levels.


In some embodiments, different elevation levels of a ferris lock may include an entry point to a portion of a water amusement park (e.g., a water amusement ride). Different elevational levels of a ferris lock may include an entry and an exit point of two different portions of a water amusement park on the same elevation level. A chamber of a ferris lock may carry one or more vehicles and/or participants from one elevation level to another.


In some embodiments, a ferris lock system may include one or more safety features to prevent injury during use. One example of a safety feature may include retaining members coupled to a chamber of the ferris lock. Retaining members may inhibit vehicles from moving into or out of the chamber while moving between different elevation levels. Walls of the chamber may act naturally as retaining members if they are high enough relative to the water level in the chamber. However if the walls of the chamber are used as retaining members, this does not allow participants to see their surrounding environment very well during the ride. Not allowing participants to see their surrounding environment may reduce the entertainment factor of the ride. To overcome this problem the retaining members may be made of some type of bars, epoxy coated wire mesh, and/or plastic netting. In some embodiments, retaining members may be formed from thick sheets of glass or translucent polymers (e.g., polycarbonate). In one example, substantially all or most of chamber may be formed from translucent or substantially translucent materials. Providing a similar effect as demonstrated in, for example, glass bottomed boats.


In some embodiments, a ferris lock system may include a chamber where water levels within the chamber are kept intentionally low. Optimally water levels may be kept at a point where vehicles within the chamber freely float. As a safety feature water levels may be kept at a level which allows most participants to stand within the chamber and still keep at least their head above water. Keeping the water at such a low level may inhibit accidental drowning. Water levels within the chamber may be maintained any number of ways. Retaining members may be designed to keep vehicles and participants in the chamber while allowing water to drain off to an appropriate level in the chamber. Drain holes may bored into sides of the chambers at an appropriate level to allow excess water to drain out of the chamber during use.


In some embodiments, a chamber of a ferris lock may include a movable member. The movable member may act as a gate between the chamber and each elevation level. The movable member when in a first position may act to inhibit anything contained in the chamber from exiting (e.g., water, vehicles and/or participants). The movable member when in a second position may allow participants and/or vehicles to exit the chamber. Movable members may operate in a similar fashion to movable members as described in U.S. patent application Ser. No. 09/952,036 as regards water locks. Participants may exit the chamber under their own power. In some embodiments, participants/vehicles may be assisted in exiting a chamber. For example, water jets (depicted in FIG. 8), as described in U.S. patent application Ser. No. 09/952,036 as regards floating queue lines, may be used to direct participants out of the chamber. The water level in the chamber may be higher than the water level at an elevation level stop. The higher water level in the chamber may be due, for example, to the water being deeper in the chamber than in the elevation level stop. The higher water level in the chamber may be due, for example, to the chamber being designed to actually stop at a higher elevation level than the elevation level stop. When the movable member is moved to the second position, allowing participants to exit the chamber, and the water in the chamber is at a higher level, the movement of water from the chamber to the elevation level stop may assist participant/vehicles in moving into the elevation level stop.


In some embodiments, different elevation levels may include similar movable members as described regarding ferris lock chambers. The elevation level movable members may work in combination with chamber movable members to allow participants to exit and enter the ferris lock chamber.


In some embodiments, movable members may not be necessary to allow exit or entry into a chamber of a ferris lock. For example one elevational level may include a body of water. The body of water may be a natural or man made pool or lake. The chamber of the ferris lock may rotate to a position lower than the surface level of the lake. The chamber lowering to a level below the surface of the lake would allow participants to enter or exit the chamber safely. In some embodiments, all of the chamber except the retaining member may be below water. At least one of the retaining members may be positionable so as to allow access to the chamber. Once in the chamber, a participant and/or operator may reposition the retaining member so as to inhibit the participant from exiting the chamber while it is moving.



FIG. 9 depicts an embodiment of ferris lock 18. Ferris lock 18 may include chambers 20A-B and rotational member 22. Chambers 20A-B may be coupled to rotational member 22. Chambers 20A-B may be coupled to rotational member 22 using supports 24. Rotational member 22 may be coupled to a power source and/or engine (not shown). Rotational member 22 may rotate. Rotation of rotational member 22 may rotate supports 24 and chambers 20A-B. Chambers 20A-B may contain water during use. Water contained within chambers 20A-B may be of a level low enough to allow most participants to stand and keep at least their head above water, while still allowing participant vehicles contained within chambers 20A-B to float. For example, water in chambers 20A-B may be no more than about 3 feet deep and no less than about 1 foot deep. In some embodiments, water in chambers 20A-B may be no more than about 4 feet deep and no less than about 2 foot deep. Rotation of chambers 20A-B may transport vehicles and/or participants from body of water 4E to an entry point of downhill water slide 6. Supports 24 may include openings 26. Ends of chambers 20A-B may sit within openings 26. Ends of chambers 20A-B may sit within tracks in openings 26. Tracks within openings 26 may allow chambers 20A-B to rotate freely within openings 26. Freely rotating chambers 20A-B may allow chambers 20A-B to remain upright safely transporting participants between different elevational heights. Appropriate measures may be taken to ensure chambers 20A-B remain upright, for example, adding weight to the bottom of chambers 20A-B to inhibit chambers 20A-B from flipping over. Chambers 20A-B may include retaining members 28. Retaining members 28 may inhibit participants and/or vehicles from exiting chambers 20A-B while they are moving. Chambers 20A-B may be designed to hold any number of participants and/or vehicles. Ferris lock 18 is depicted in FIG. 9 with only two chambers 20, however, ferris lock 18 may be designed with three or more chambers 20 coupled to rotational member 22.



FIG. 10 depicts an embodiment of a ferris lock. Ferris lock 18 may function similarly to ferris lock 18 depicted in FIG. 9. Ferris lock 18 may include chambers 20C-F and rotational member 22. Chambers 20C-E may be coupled to rotational member 22. Chambers 20C-F may be coupled to rotational member 22 using supports 24. Ferris lock 18 depicted in FIG. 10 may include four chambers 20C-F coupled to rotational member 22.


In some embodiments, an exit point of a second water ride of a continuous water ride may be coupled to an entry point of a first water ride. Coupling the exit point of the second water ride to the entry point of the first water ride may form a true continuous water ride loop. The continuous water ride may include a second elevation system coupling the exit point of the second water ride to the entry point of the first water ride. The second elevation system may include any of the elevation systems described for use in coupling an exit point of the first water ride to the entry point of the second water ride. The second elevation system may be a different elevation system than the first elevation system. For example, the first elevation system may be an uphill water slide and the second water elevation system may be a conveyor belt system.


In some embodiments, a continuous water ride may include one or more floating queue lines. Floating queue lines may be more fully described in U.S. Patent Publication No. 20020082097. Floating queue lines may assist in coupling different portions of a continuous water ride. Floating queue line systems may be used for positioning riders in an orderly fashion and delivering them to the start of a ride at a desired time. In certain embodiments, this system may include a channel (horizontal or otherwise) coupled to a ride on one end and an elevation system on the other end. It should be noted, however, that any of the previously described elevation systems may be coupled to the water ride by the floating queue line system. Alternatively, a floating queue line system may be used to control the flow of participants into the continuous water ride from a dry position within a station.


In use, riders desiring to participate on a water ride may leave the body of water and enter the floating queue line. The floating queue line may include pump inlets and outlets similar to those in a horizontal channel but configured to operate intermittently to propel riders along the queue line, or the inlet and outlet may be used solely to keep a desired amount of water in the queue line. In the latter case, the channel may be configured with high velocity low volume jets that operate intermittently to deliver participants to the end of the queue line at the desired time.


In certain embodiments, the water moves participants along the floating queue line down a hydraulic gradient or bottom slope gradient. The hydraulic gradient may be produced by out-flowing the water over a weir at one end of the queue after the rider enters the ride to which the queue line delivers them, or by out-flowing the water down a bottom slope that starts after the point that the rider enters the ride. In certain embodiments, the water moves through the queue channel by means of a sloping floor. The water from the outflow of the queue line in any method can reenter the main channel, another ride or water feature/s, or return to the system sump. Preferably the water level and width of the queue line are minimized for water depth safety, rider control and water velocity. These factors combined deliver the participants to the ride in an orderly and safe fashion, at the preferred speed, with minimal water volume usage. The preferred water depth, channel width and velocity would be set by adjustable parameters depending on the type of riding vehicle, participant comfort and safety, and water usage. Decreased water depth may also be influenced by local ordinances that determine level of operator or lifeguard assistance, the preferred being a need for minimal operator assistance consistent with safety.


In some embodiments, continuous water rides may include exits or entry points at different portion of the continuous water ride. Floating queue lines coupling different portions and/or rides forming a continuous water ride may include exit and/or entry points onto the continuous water ride. Exit/entry points may be used for emergency purposes in case of, for example, an unscheduled shutdown of the continuous water ride. Exit/entry points may allow participants to enter/exit the continuous water ride at various designated points along the ride during normal use of the continuous water ride. Participants entering/exiting the continuous water ride during normal use of the ride may not disrupt the normal flow of the ride depending on where the entry/exit points are situated along the course of the ride.


Embodiments disclosed herein provide an interactive control system for a continuous water ride and/or portions of the continuous water ride. In certain embodiments, the control system may include a programmable logic controller. The control system may be coupled to one or more activation points, participant detectors, and/or flow control devices. In addition, one or more other sensors may be coupled to the control system. The control system may be utilized to provide a wide variety of interactive and/or automated water features. In some embodiments, participants may apply a participant signal to one or more activation points. The activation points may send activation signals to the control system in response to the participant signals. The control system may be configured to send control signals to a water system, a light system, and/or a sound system in response to a received activation signal from an activation point. A water system may include, for example, a water effect generator, a conduit for providing water to the water effect generator, and a flow control device. The control system may send different control signals depending on which activation point sent an activation signal. The participant signal may be applied to the activation point by the application of pressure, moving a movable activating device, a gesture (e.g., waving a hand), interrupting a light beam, a participant identifier and/or by voice activation. Examples of activation points include, but are not limited to, hand wheels, push buttons, optical touch buttons, pull ropes, paddle wheel spinners, motion detectors, sound detectors, and levers.


The control system may be coupled to sensors to detect the presence of a participant proximate to the activation point. The control system may be configured to produce one or more control systems to active a water system, sound system, and/or light system in response to a detection signal indicating that a participant is proximate to an activation point. The control system may also be coupled to flow control devices, such as, but not limited to: valves, and pumps. Valves may includes air valves and water valves configured to control the flow air or water, respectively, through a water feature. The control system may also be coupled to one or more indicators located proximate to one or more activation points. The control system may be configured to generate and send indicator control signals to turn an indicator on or off. The indicators may signal a participant to apply a participant signal to an activation point associated with each indicator. An indicator may signal a participant via a visual, audible, and/or tactile signal. For example, an indicator may include an image projected onto a screen.


In some embodiments, the control system may be configured to generate and send one or more activation signals in the absence of an activation signal. For example, if no activation signal is received for a predetermined amount of time, the control system may produce one or more control signals to activate a water system, sound system, and/or light system.


Throughout the system electronic signs or monitors may be positioned to notify riders or operators of various aspect of the system including, but not limited to: operational status of any part of the system described herein above; estimated waiting time for a particular ride; and possible detours around non operational rides or areas of high rider density.


In some embodiments, a water amusement park may include a cover or a screen. Screens may be used to substantially envelope or cover a portion of a water amusement park. Portions of the screen may be positionable. Positionable screen portions may allow portions of the park to be covered or uncovered. The decision to cover or uncover a portion of the water amusement park may be based on the weather. Inclement weather may prompt operators to cover portions of the water park with the positionable screens. While clear warm weather may allow operators to move the positionable screen so portions of the water amusement park remain uncovered.


In some embodiments, positionable screens may be formed from substantially translucent materials. Translucent materials may allow a portion of the visible light spectrum to pass through the positionable screens. Translucent materials may inhibit transmittance of certain potentially harmful portions of the light spectrum (e.g., ultraviolet light). Filtering out a potentially harmful portion of the light spectrum may provide added health benefits to the water amusement park relative to uncovered water amusement parks. A non-limiting example of possible screen material may include Foiltech. Foiltech has an R protective value of about 2.5. A non-limiting example of possible screen material may include polycarbonates. Polycarbonates may have an R protective value of about 2. In some embodiments, multiple layers of screen material (e.g., polycarbonate) may be used. Using multiple layers of screen material may increase a screen materials natural thermal insulating abilities among other things. Portions of the screening system described herein may be purchased commercially at Arqualand in the United Kingdom.


In some embodiments, portions of the positionable screen may assist in collecting solar radiation. Solar radiation collected by portions of the positionable screen may be used to increase the ambient temperature in the area enclosed by the screen. Increasing the ambient temperature in enclosed portions of the water amusement park using collected solar radiation may allow the water amusement park to remain open to the public even when the outside temperature is uncomfortably cold and unconducive to typical outside activities.


In some embodiments, positionable screens may be used to enclose portions of a water amusement park. Enclosed areas of the water amusement park may function as a heat sink. Heat emanating from bodies of water within the enclosed area of the water amusement park may be captured within the area between the body of water and the positionable screens. Heat captured under the positionable screens may be recirculated back into the water. Captured heat may be recirculated back into the water using heat pumps and/or other common methods known to one skilled in the art.


In some embodiments, screens may be mounted on wheels and/or rollers. Screen may be formed from relatively light but strong materials. For example panels may be formed from polycarbonate for other reasons described herein, while structural frameworks supporting these panels may be formed from, for example, aluminum. Lightweight, well-balanced, support structures on wheels/rollers might allow screens to be moved manually by only a few operators. Operators might simply push screens into position. Mechanisms may installed to assist operators in manually positioning screens (e.g., tracks, pulley mechanisms).


Examples of systems which facilitate movement of screens over bodies of water and/or channels (e.g., track based systems) are illustrated in U.S. Pat. No. 4,683,686 to Ozdemir and U.S. Pat. No. 5,950,253 to Last, each of which is incorporated by reference as if fully set forth herein.


In some positionable screen embodiments, screens may be moved using automated means. Powered engines (e.g., electrically driven) may be used to move positionable screens around using central control systems. Control systems may be automated to respond to input from sensors designed to track local weather conditions. For example, sensors may detect when it is raining and/or the temperature. When it begins to rain and/or the temperature drop below a preset limit an automated control system may move positionable screen to enclose previously unenclosed portions of the water amusement park.


In some embodiments, screens may be mounted to a fixed skeletal structure. The fixed skeletal structure may not move. The screens mounted to the fixed skeletal structure may be positionable along portions of the fixed skeletal structure. For example portions of a screen may be mounted on tracks positioned in the fixed skeletal structure. Tracks may allow the portions of the screens to be move up, down, and/or laterally. Positionable portions of screens mounted in a fixed skeletal structure may provide an alternative for opening/enclosing a portion of a waterpark to positionable screens as depicted in FIG. 11. In certain embodiments, the two concepts may be combined whereby portions of, for example, screen 30A are positionable within a skeletal structure of screen 30A.



FIG. 11 depicts an embodiment of a portion of a positionable screen system for use in a water amusement park. Screens 30A-C may be successively smaller. Making screens 30A-C successively smaller may allow the screens to be retracted within one another in a “stacked” configuration when not in use. During use (e.g., during inclement weather) screens 30A-C may be pulled out from under one another extending the screens over a portion of a waterpark (e.g., a river or channel) to protect participants from the elements. FIG. 12 depicts a cross-sectional view of an embodiment of a portion of a positionable screen system over a body of water. Screens 30A-C may include stops to ensure that when the screens are extended there is always a small overlap between the screens. Screens 30A-C may include seals to close the gaps between the screens when the screens are extended. In this way the portion of the waterpark is substantially enclosed within screens 30A-C. Screens 30A-C may be at least high enough to inhibit participants from colliding with the ceiling of the screens.


In a water amusement park embodiment depicted in FIG. 12, screens 30 have been extended over a portion of a channel or river. The channel connects different portions of a convertible water amusement park. In some embodiments, a channel (e.g., a river) including positionable screens may connect separate water amusement parks. Connecting separate water parks with screened channels may allow a participant to travel between waterparks without leaving the water even during inclement weather. Screens 30 allow for the use of the convertible water amusement park during inclement weather. Screens 30 may allow participants to travel between enclosed water park amusement area 32 and continuous water rides 2 as depicted in FIG. 3. Water park amusement area 32 may include food areas, games, water amusement games, water rides and/or any other popular forms of entertainment.


In some embodiments, screens form a convertible cover, i.e. in which panels forming the cover can slide relative to one another. Some sections, adapted for such structures, may include side grooves. Side grooves may facilitate positioning of the panels allowing the panels to slide relative to each other. In some embodiments, the convertible covers or screens may include curved arches forming the overall structure.


In some embodiments, sections of the framework forming a convertible cover or positionble screen may include frameworks known to one skilled in the art as relates to covers for swimming pools and/or greenhouses. For example, the framework may include substantially tubular metal frames. Portions of the tubular metal frames may include interior reinforcement members. Interior reinforcement members may strengthen the tubular metal frames. Interior reinforcement members may include hollow rectangular section positioned in the tubular metal frames.


In some embodiments, sections of the framework forming the positionable screens may be formed in the overall shape of an arch. Section may include one or more tracks positoined on on or more sides of the framework. The tracks may allow panels (i.e., portions of a screen) to slide along the sections of the framework relative to one another.


In some embodiments, screens may have several rigid frame members. The number may depend upon the length of the area being covered. Each frame member may include a plurality of sections which are connected together in end-to-end relationship. Sections may be any shape (e.g., rectangular, square, triangular). The connection between frame member sections may be by means known to one skilled in the art (e.g., bolts, hinges). Hinges may allow at least a portion of the structure to be folded if it is desired to remove the screen completely area. Each of the rigid frame members may include a pair of oppositely disposed substantially vertical wall sections and ceiling sections jointed together in an arch. Between the rigid frame members are panels of flexible material which may be a canvas or other easily foldable material. End panels may also be formed of a foldable material which is preferably transparent or translucent.


In certain embodiments, a ceiling section may include a pair of parallel, longitudinally extending, channel-shaped side elements and a pair of channel-shaped end elements. The side flanges of each of the four elements forming the section extend inwardly. The side and end elements may be welded together or they may be held together by means of suitable fasteners to form a rectangular frame section. Attached to the outer (upper) side flanges of the elements are spacers which extend around the periphery of the structure. Outwardly of the spacers and coextensive with the side elements are a pair of upwardly extending smaller channel elements which are of greater width than the spacer and thus protrude inwardly over and are spaced from the top web of the larger side elements. This spacing will accommodate a rigid panel of transparent or translucent material such as plexiglass. Around the panel may be a resilient bead of flexible material which serves as a weather seal for the panel. Bolts may be used to connect the end element of frame section to the opposite end element of the next adjacent frame section. If desired, braces may be bolted to the sides of the frame member sections for added rigidity and strength at the joint.


In some embodiments, extending along the sides of the body of water may be a pair of spaced, parallel, channel-shaped track members. The track members may be identical in construction. The track member may have a base, sides, and top flanges. Top flanges close a part of the channel-shaped track member leaving only the longitudinal slot-like opening visible from the top of the track. The tracks may extend well beyond one end of the body of water so that the screen may be stored at that end. For drainage as well as assembly purposes, it may be desirable that at least one end of the track be open. The track may be suitably anchored by conventional screw anchors or the like (not shown).


In some embodiments, attached to the lower ends of each of the frame member wall portions are guide means which extend into the interior of a respective one of the channel-shaped track members for engaging the interior of the track members. Guide means allow that the frame members may be guided along the track members toward and away from one another to selectively cover and uncover the body of water between the track members.


In certain embodiments, a wall panel of a screen as well as the entire rigid frame structure may be clamped in the desired position of adjustment with respect to the track.


In certain embodiments, there may be a laterally stabilizing roller for engaging the side walls of the channel track. This roller also serves as part of the guide means to guide the frame member along the track keeping it in longitudinal alignment.


In some embodiments, for purposes of stability and smooth rolling action there may be provided a horizontal roller and a vertical roller at each end of the wall panels of the screen. Thus each of the wall panels will have a pair of vertical rollers and a pair of horizontal rollers.


In some embodiments, each of the frame members may have a pair of spaced, parallel, transverse portions. The end elements and the panel maintain the spacing of the side elements and the rigidity of the frame members. The bottom element of the wall sections may flatly engage the top of the track over a substantial longitudinal distance. This provides a solid locked-in-place stability for the frame member and there is little tendency for the frame members to skew or otherwise become misaligned. The provision of the rollers at either end of the wall panel provide stability during movement of the frame member.


In some embodiments, the end element of frame members meet at obtuse angles. A wedge-like spacer may be placed between the end elements of the adjacent sections. The spacer may be tapered in accordance with the angle at which the two sections are to be joined. The spacer may be apertured or slotted to accommodate the bolts 60 which are used to connect the end elements together.


In some embodiments, the roller carriage acts as the clamp for clamping the frame members in position, however it is not essential that this carriage double as a clamp. The roller carriage may be fixed in place and it could carry not only the horizontal roller but also the vertical roller. Other locking means could be provided for clamping the base plate and the end element of the wall section in flat position against the top of the channel track.


In certain embodiments, only short particular sections covering the body of water or channel may be rigid. A series of short rigid sections as described herein may be coupled together by stretches of flexible material. The sections of flexible material may be much longer relative to the supporting short rigid sections. The flexible material may allow the screen to be collapsed at those points at the screens are repositioned and retracted. The flexible material may be translucent much like the panels making up the rigid sections of the screen.


In some embodiments, some water amusement park areas may include immovable screens substantially enclosing the water amusement area (e.g., a dome structure). While other water amusement areas may remain uncovered year round. Channels may connect different water amusement areas. Channels may include portions of a natural river. Channels may include portions of man-made rivers or reservoirs. Channels may include portions of a natural or man-made body of water (e.g., a lake). The portions of the natural or man-made body of water may include artificial or natural barriers to form a portion of the channel in the body of water. Channels may include positionable screens as described herein. In some embodiments, an entire waterpark may include permanent and/or positionable screens covering the waterpark. In some embodiments, only portions of a waterpark may include permanent and/or positionable screens.


There are advantages to covering the channels and/or portions of the park connected by the channels as opposed to covering the entire park in, for example, one large dome. One advantage may be financial, wherein enclosing small portions and/or channels of a park is far easier from an engineering standpoint and subsequently much cheaper than building a large dome. Channels that extend for relatively long distances may be covered far more easily than a large dome structure extending over the same distance which covers the channel and much of the surrounding area. It is also far easier to retract portions of the screens described herein to selectively expose portions of a waterpark than it is to selectively retract portions of a dome.


In some embodiments, a water amusement park may include participant identifiers. A participant identifier may be a device that is coupled to a participant that provides information about the participant to a sensor, a receiver, or a person. As used herein, the term “participant” may include anyone located in the confines of the water amusement park or related areas including, but not limited to, staff and/or patrons. Participant identifiers may be used for a variety of functions in the water amusement park. For example, participant identifiers may be used to locate and/or identify one or more participants inside the confines of the water amusement park. As another example, participant identifiers may work in conjunction with control systems for amusement rides in the water amusement park. Participant identifiers may be considered as one portion of a water amusement park control system in some embodiments. In certain embodiments, participant identifiers may be provided to each individual participant of the water amusement park. In some embodiments, participant identifiers may be provided for each member of staff working at the water amusement park.


In an embodiment, a participant identifier is an electrical device that transmits signals to an appropriate receiving device. For example, a participant identifier may transmit radio frequency or ultrasonic signals. In one embodiment, a participant identifier is part of a global positioning system A plurality of sensors may be located throughout an area of interest to receive signals from the participant identifiers. Sensors may function as receiver units. In one embodiment, sensors are positioned throughout the water amusement park. Sensors may be positioned, for example, at particular junctions (i.e., coupling points) along, for example, a continuous water ride. Sensors may be placed along, for example, floating queue lines, channels, entry/exit points along water rides, and/or entry/exit points between portions of the water amusement park. Participant identifiers working in combination with sensors may be used to locate and/or identify participants. In certain embodiments, a participant identifier may be a visual indicator that is read by a human eye or by a camera. In some embodiments, a participant identifier may include a bar code.


Participant identifiers may provide varying levels of detail of information. In one embodiment, a participant identifier contains information that allows identification of a specific individual (e.g., John Smith of Sioux Falls, S. Dak.) or a unique ID code for an individual (e.g., participant XG123). In another embodiment, a participant identifier provides information that some unspecified individual participant is present at the location of the participant identifier, but does not identify a specific individual. In some embodiments, a participant identifier identifies certain attributes of the participant (e.g., the participant is a member of the Blue Team in a competition).


Participant identifiers and their associated sensors may operate on the same frequency (e.g., radio frequency). In some embodiments, identification of individual participant identifiers may be achieved by a pulse timing technique whereby discrete time slots are assigned for pulsing by individual units on a recurring basis. Pulses received from sensors may be transmitted to decoder logic that identifies the locations of the various transmitter units in accordance with the time interval in which pulses are received from various sensors throughout the water amusement park. A status board or other display device may display the location and/or identity of the participant in the water amusement park. Status of a participant may be displayed in a number of ways. Status of a participant may be displayed as some type of icon on a multi-dimensional map. Status of a participant may be displayed as part of a chart displaying throughput for a portion of the water amusement park.


In some embodiments, programming means may be provided for a participant identifier. Participant identifiers may be substantially identical in construction and electronic adjustment. Participant identifiers may be programmed to predetermined pulse timing slots by the programming means. Any participant may use any participant identifier. The particular pulse timing slot may be identified as corresponding with a particular participant using a programmer. Participant identifiers may be associated with a particular participant by positioning the participant identifier in a receptacle. The receptacle may be coupled to the programmer. Receptacles may function to recharge a power source powering the participant identifier. In some embodiments, a receptacle may not be necessary and the participant identifier may be associated in the water amusement park with a particular participant via wireless communication between the participant identifier and a programmer.


In some embodiments, participant identifiers may be removably coupled to a participant. The participant identifier may be a band that couples around an appendage of a participant. The band may be attached around, for example, an arm and/or leg of a participant. Participant identifiers may include any shape. In some embodiments, identifiers may be worn around the neck of a participant much like a medallion. In other embodiments, an identifier may be substantially attached directly to the skin of a participant using an appropriate adhesive. In still other embodiments, an identifier may be coupled to an article of clothing worn by a participant. The identifier may be coupled to the article of clothing using, for example, a “safety pin”, a plastic clip, a spring clip, and/or a magnetic based clip. In some embodiments, identifiers may be essentially “locked” after coupling the identifier to a participant. A lock may inhibit the identifier from being removed from the participant by anyone other than a staff member except under emergency circumstances. Locking the identifier to the participant may inhibit loss of identifiers during normal use of identifiers. In some embodiments, a participant identifier may be designed to detach form a participant under certain conditions. Conditions may include, for example, when abnormal forces are exerted on the participant identifier. Abnormal forces may result from the participant identifier becoming caught on a protrusion, which could potentially endanger the participant.


In some embodiments, a participant identifier may include an enclosure (e.g., a case, housing, or sleeve) to protect sensitive components such as electronic circuitry and/or power sources. The enclosure may protect sensitive portions of the participant identifier from water and/or corrosive chemicals typically associated with a water amusement park. Participant identifiers may be formed from any appropriate material. Appropriate materials may include materials that are resistant to water and corrosive chemicals typically associated with a water amusement park. Participant identifiers may be at least partially formed from materials that are not typically thought of as resistant to water and/or chemicals, however, in some embodiments materials such as these may be treated with anticorrosive coatings. In certain embodiments, participant identifiers may be formed at least partially from polymers.


In some embodiments, a participant identifier may be brightly colored. Bright colors may allow the identifier to be more readily identified and/or spotted. For example, if the identifier becomes decoupled from a participant the identifier may be more easily spotted if the identifier is several feet or more under water. In some embodiments, a participant identifier may include a fluorescent dye. The dye may be embedded in a portion of the participant identifier. The dye may further assist in spotting a lost participant identifier under water and/or under low light level conditions (e.g., in a covered water slide).



FIG. 13 depicts an embodiment of a participant identifier. Participant identifier 34 may be a wrist band as depicted in FIG. 13. Participant identifier 34 may include locking mechanism 36. Locking mechanism 36 may be positioned internally in participant identifier 34 as depicted in FIG. 13. Locking mechanism 36 may function so that only waterpark operators can remove participant identifier 34. This may reduce the chance of participant identifier 34 being lost.


In certain embodiments, a participant identifier may be operable by the participant to perform actions or obtain information. As shown in FIG. 13, participant identifier 34 includes interactive point 38. Interactive point 38 may be a display screen, a touch screen, and/or a button. Interactive point 38 may allow a participant to send a signal with participant identifier 34 so as to activate and/or interact with a portion of an amusement park (e.g., an interactive game). Interactive point 38 may display relevant data to the participant (e.g., time until closing of the park, amount of electronic money stored on the wrist band, and/or participant location in the waterpark).


Other components which may be incorporated into a participant identifier system are disclosed in the following U.S. patents, herein incorporated by reference: a personal locator and display system as disclosed in U.S. Pat. No. 4,225,953; a personal locator system for determining the location of a locator unit as disclosed in U.S. Pat. No. 6,362,778; a low power child locator system as disclosed in U.S. Pat. No. 6,075,442; a radio frequency identification device as disclosed in U.S. Pat. No. 6,265,977; and a remote monitoring system as disclosed in U.S. Pat. No. 6,553,336.


In some embodiments, participant identifiers may be used as part of an automated safety control system. Participant identifiers may be used to assist in determining and/or assessing whether a participant has been separated from their vehicle. Sensors may be positioned along portions of a water amusement park. For example sensors may be placed at different intervals along a water amusement ride. Intervals at which sensors are placed may be regular or irregular. Placement of sensors may be based on possible risk of a portion of a water amusement ride. For example, sensors may be placed with more frequency along faster moving portions of a water amusement ride where the danger for a participant to be separated from their vehicle is more prevalent.


In some embodiments, vehicle identifiers may be used to identify a vehicle in a water amusement park. The vehicle identifier may be used to identify the location of the vehicle. The vehicle identifier may be used to identify the type of vehicle. For example, the vehicle identifier may be used to identify how many people may safely ride in the vehicle.


In some embodiments, sensors near an entry point of a portion of a water amusement ride may automatically assess a number of participant identifiers/participants associated with a particular vehicle. Data such as this may be used to assess whether a participant has been separated from their vehicle in another portion of the water amusement ride.


In some embodiments, an operator may manually input data into a control system. Data input may include associating particular participant identifier(s) and/or the number of participants with a vehicle.


In some embodiments, a combination of automated and manual operation of a safety control system may be used to initially assess a number of participants associated with a vehicle. For example, an operator may provide input to initiate a sensor or a series of sensors to assess the number of participants associated with the vehicle. The assessment may be conducted at an entry point of a water amusement ride.


In certain embodiments, participant identifiers may be used in combination with a recording device. The recording device may be positioned in a water amusement park. One or more recording devices may be used throughout the water amusement park. The participant identifier may be used to activate the recording device. The participant identifier may be used to remotely activate the recording device. The recording device may include a sensor as described herein. The identifier may automatically activate the recording device upon detection by the sensor coupled to the recording device. The participant may activate the recording device by activating the participant identifier using participant input (e.g., a mechanical button, a touch screen). The participant identifier may activate one or more recording devices at one or more different times and/or timing sequences. For example several recording devices may be positioned along a length of a downhill slide. A participant wearing a participant identifier may activate (automatically or upon activation with user input) a first recording device positioned adjacent an entry point of the slide. Activating the first recording device may then activate one or more additional recording devices located along the length of the downhill water slide. Recording devices may be activated in a particular sequence so as to record the participant progress through the water slide.


In some embodiments, a recording device may record images and/or sound. The recording device may record other data associated with recorded images and/or sound. Other data may include time, date, and/or information associated with a participant wearing a participant identifier. The recording device may record still images and/or moving (i.e., short movie clips). Examples of recording devices include, but are not limited to, cameras and video recorders.


In some embodiments, a recording device may be based on digital technology. The recording device may record digital images and/or sound. Digital recording may facilitate storage of recorded events, allowing recorded events to be stored on magnetic media (e.g., hard drives, floppy disks, etc. . . . ). Digital recordings may be easier to transfer as well. Digital recordings may be transferred electronically from the recording device to a control system and/or processing device. Digital recordings may be transferred to the control system via a hard-wired connection and/or a wireless connection.


Upon recording an event, the recording device may transfer the digital recording to the control system. The participant may purchase a copy of the recording as a souvenir. The participant may purchase a copy while still in a water amusement park, upon exiting the water amusement park, and/or at a later date. The control system may print a hard copy of the digital recording. The control system may transfer an electronic copy of the recorded event to some other type of media that may be purchased by the participant to take home with them. The control system may be connected to the Internet. Connecting the control system to the Internet may allow a participant to purchase a recorded event through the Internet at a later time. A participant may be able to download the recorded event at home upon arranging for payment.


In some embodiments, participant identifiers may be used in combination with sensors to locate a position of a participant in a water amusement park. Sensors may be positioned throughout the water park. The sensors may be connected to a control system. Locations of sensors throughout the water park may be programmed into the control system. The participant identifier may activate one of the sensors automatically when it comes within a certain proximity of the sensor. The sensor may transfer data concerning the participant (e.g., time, location, and/or identity) to the control system.


In some embodiments, participant identifiers may be used to assist a participant to locate a second participant. For example, identifiers may assist a parent or guardian to locate a lost child. The participant may consult an information kiosk or automated interactive information display. The interactive display may allow the participant to enter a code, name, and/or other predetermined designation for the second participant. The interactive display may then display the location of the second participant to the participant. The location of the second participant may be displayed, for example, as an icon on a map of the park. Security measures may be taken to ensure only authorized personnel are allowed access to the location of participants. For example, only authorized personnel (e.g., water park staff) may be allowed access to interactive displays and/or any system allowing access to identity and/or location data for a participant. Interactive displays may only allow participants from a predetermined group access to participant data from their own group.


In some embodiments, participant identifier may be used to assist in regulating throughput of participants through portions of a water amusement park. Participant identifiers may be used in combination with sensors to track a number of participants through a portion of the water amusement park. Keeping track of numbers of participants throughout the water park may allow adjustments to be made to portions of the water park. Adjustments made to portions of the water park may allow the portions to run more efficiently. Adjustments may be at least partially automated and carried out by a central control system. Increasing efficiency in portions of the water park may decrease waiting times for rides.


In some embodiments, sensors may be positioned along one or both sides of a floating queue line. Sensors in floating queue lines may be able to assist in detecting participants wearing participant identifiers. Data including about participants in the floating queue lines may be transferred to a control system. Data may include number of participants, identity of the participants, and/or speed of the participants through the floating queue lines. Based on data collected from the sensors, a control system may try to impede or accelerate the speed and/or throughput of participants through the floating queue line as described herein. Adjustment of the throughput of participants through the floating queue lines may be fully or partially automated. As numbers of participants in a particular ride increase throughput may decrease. In response to data from sensors the control system may increase the flow rate of participants to compensate. The control system may automatically notify water park staff if the control system is not able to compensate for increased flow rate of participants.


In certain embodiments (an example of which is depicted in FIG. 8), floating queue system 62 includes a queue channel 64 coupled to a water ride at a discharge end 66 and coupled to a transportation channel on the input end 68. The channel 64 contains enough water to allow riders to float in the channel 64. The channel 64 additionally comprises high velocity low volume jets 70 located along the length of the channel 64. The jets are coupled to a source of pressurized water (not shown). Riders enter the input end 68 of the queue channel 64 from the coupled transportation channel, and the jets 70 are operated intermittently to propel the rider along the channel at a desired rate to the discharge end 66. This rate may be chosen to match the minimum safe entry interval into the ride, or to prevent buildup of riders in the queue channel 64. The riders are then transferred from the queue channel 64 to the water ride, either by a sheet flow lift station (as described previously) or by a conveyor system (also described previously) without the need for the riders to leave the water and/or walk to the ride. Alternatively, propulsion of the riders along the channel 64 may be by the same method as with horizontal hydraulic head channels; that is, by introducing water into the input end 68 of the channel 64 and removing water from the discharge end 66 of the channel 64 to create a hydraulic gradient in the channel 64 that the riders float down. In this case, the introduction and removal of water from the channel 64 may also be intermittent, depending on the desired rider speed.


In some embodiments, participant identifiers may be used with interactive games. Interactive games may include interactive water games. Interactive games may be positioned anywhere in a water amusement park. Interactive games may be positioned along a floating queue line, an elevation system, and/or a water ride. Interactive games positioned along portions of the water amusement park where delays are expected may make waiting more tolerable or even pleasurable for participants.


An interactive water game including a control system as described above may include a water effect generator; and a water target coupled to the control system. In some embodiments, the water effect generator may include a water cannon, a nozzle, and/or a tipping bucket feature. The water effect generator may be coupled to a play structure. During use a participant may direct the water effect generator toward the water target to strike the water target with water. A participant may direct the water effect using a participant identifier to activate the water effect generator. Upon being hit with water, the water target may send an activation signal to the control system. Upon receiving an activation signal from the water target, the control system may send one or more control signals to initiate or cease predetermined processes.


The water target may include a water retention area, and an associated liquid sensor. In some embodiments, the liquid sensor may be a capacitive liquid sensor. The water target may further include a target area and one or more drains. The water target may be coupled to a play structure.


In some embodiments, the interactive water game may include one or more additional water effect generators coupled to the control system. Upon receiving an activation signal from the water target, the control system may send one or more control signals to the additional water effect generator. The additional water effect generator may be configured to create one or more water effects upon receiving the one or more control signals from the control system. For example, the one or more water effects created by the additional water effect generator may be directed toward a participant. The additional water effect generator may include, but is not limited to: a tipping bucket feature, a water cannon, and/or a nozzle. The additional water effect generator may be coupled to a play structure.


A method of operating an interactive water game may include applying a participant signal to an activation point associated with a water system. The participant signal may be fully automated and originate from a participant identifier. The participant signal may be activated when a participant wearing the participant identifier positions themselves in predetermined proximity of the activation point. Participant input may activate the participant signal using the participant identifier. An activation signal may be produced in response to the applied participant signal. The activation signal may be sent to a control system. A water system control signal may be produced in the control system in response to the received activation signal. The water system control signal may be sent from the control system to the water system. The water system may include a water effect generator. The water effect generator may produce a water effect in response to the water system control signal. The water effect generator may be directed toward a water target to strike the water target with water. An activation signal may be produced in the water target, if the water target is hit with water. The water target may send the activation signal to the control system. A control signal may be produced in the control system in response to the received water target activation signal. In some embodiments, the interactive water game may include an additional water effect generator. The control system may direct a control signal to the additional water effect generator if the water target is struck by water. The additional water effect generator may include, but is not limited to: a water cannon, a nozzle, or a tipping bucket feature. The additional water effect generator may produce a water effect in response to a received control signal. The water effect may be directed toward a participant.


In certain embodiments, a water amusement system includes a gambling facility. A gambling facility includes one or more gambling apparatus (e.g., blackjack tables, craps tables, sports books, and/or other gaming apparatus). A gambling facility may be a large casino-type facility with several types of gambling apparatus or a small facility with only a few or only one gambling apparatus (e.g., a few electronic gambling machines or one individual gambling apparatus).


A gambling facility may include or be coupled to a body of water. In some embodiments, a body of water is used for the transport of participants between gambling apparatus in the gambling facility. In some embodiments, a body of water is used to transport participants to the gambling facility. In some embodiments, a body of water and a gambling facility are a part of or coupled to a water amusement system (e.g., a floating river system). A gambling facility may be a water ride or a part of a water ride. In some embodiments, a gambling facility is coupled to a water amusement ride so that participants are allowed to gamble while waiting to enter the water amusement ride (e.g., the gambling facility is located in a floating queue line for the water amusement ride).


In some embodiments, entry and exit points of a gambling facility are coupled to a water amusement system. Entry and exit points of the gambling facility may be monitored to restrict or limit access to the gambling facility based on certain criteria that a participant may have to meet. For example, the gambling facility may be age restricted or a participant may have to verify financial status to enter the gambling facility. A participant's status may be identified to the gambling facility or to a monitoring system for the gambling facility using selected identification means (e.g., a participant identifier may identify the participant's age and/or financial status). In some embodiments, access to a gambling apparatus is restricted or limited by the gambling apparatus using identification means for identifying a participant's status (e.g., age or financial status).



FIG. 14 depicts an embodiment of a gambling facility that is part of a water ride. Gambling facility 158 includes body of water 102 coupled to a water amusement system (e.g., a floating river system). Body of water 102 includes one or more gambling apparatus 160 (e.g., gambling apparatus 160A through 160F).


Gambling apparatus 160 may float on body of water 102 or be located on structures coupled to the body of water. Gambling apparatus 160 may allow participants to gamble while in or on the body of water. Gambling apparatus include, but are not limited to, blackjack tables, craps tables, slot machines, sports books, roulette wheels, and other games of chance.


Gambling facility 158 may be part of a gambling casino or part of a water amusement system. In certain embodiments, entry point 104 and exit point 106 are coupled to a water amusement ride or a water amusement system. Thus, participants may be able to participate in gambling facility 158 along with other portions of a water amusement system. In some embodiments, gambling facility and/or one or more gambling apparatus 160 are located at or near an entry to a water amusement ride (e.g., at or near a floating queue line).


Body of water 102 may have a current that flows from entry point 104 to exit point 106, as shown by the arrows in FIG. 14. The current may assist a participant in moving from one gambling apparatus to another gambling apparatus downstream. The current may be generated by body of water 102 flowing downhill or by a flow generating system coupled to the body of water. In some embodiments, an area surrounding a gambling apparatus (e.g., gambling apparatus 160C or 160D) may be surrounded by a substantially stationary body of water (e.g., body of water 162A or body of water 162B).


A participant may move from gambling apparatus to gambling apparatus by swimming, floating (e.g., floating on a flotation device), traveling underwater, walking or jogging in the body of water, or using a conveyor (e.g., standing on an underwater conveyor). In some embodiments, a flotation device used by a participant may include a holder for transporting gambling chips used by the participant The flotation device may also include a drink holder. In some embodiments, gambling chips used by a participant float on the water. Floating gambling chips may reduce the risk of loss of gambling chips by a participant or a gambling facility operator (e.g., a dealer).


In certain embodiments, entry and/or exit of a participant from gambling facility 158 is monitored and/or restricted (e.g., entry to the gambling facility may be age restricted). The entry of a participant may be monitored and/or restricted at entry point 104. The exit of a participant may be monitored and/or restricted at exit point 106. In some embodiments, the entry and/or exit of a participant may be monitored and/or restricted manually. For example, an operator may verify a participant's age at the entry of the gambling facility.


In certain embodiments, the entry and/or exit of a participant may be monitored and/or restricted automatically. At entry point 104 and/or exit point 106, a participant may be identified, for example, by a participant identifier or other automatic identification means described herein. In an embodiment, a participant's age is identified to a monitoring system by the participant's participant identifier. If the participant's age allows entry, the participant enters the gambling facility unencumbered. If the participant's age restricts him/her from entering the gambling facility, a notification means may be activated to alert the participant, an operator, and/or an automatic restriction means (e.g., a gate for entry into the gambling facility) that access to the gambling facility is not allowed.


In certain embodiments, a status of a participant in gambling facility 158 may be monitored and/or assessed while the participant is in the gambling facility. A participant's status in a gambling facility may be monitored and/or assessed using surveillance and monitoring techniques known in the art. Examples of surveillance and monitoring techniques for gambling facilities are found in U.S. Pat. Nos. 6,712,696 and 6,758,751, which are incorporated by reference as if fully set forth herein. Specific gambling surveillance and monitoring systems are available from, for example, IGT Systems (Reno, Nev.) and Aristocrat Technologies (Australia).


In certain embodiments, a participant identifier may be coupled to a participant in gambling facility 158. The participant identifier may be used to monitor and/or assess a status of the participant in gambling facility 158. In certain embodiments, a participant identifier is a device that is easily attached to the participant or a floatation device used by the participant. A participant identifier may be waterproof and/or flexible (e.g., a flexible wristband worn by the participant). A participant identifier may be tamperproof and/or non-transferable. A participant identifier may be issued by gambling facility 158 and/or facilities associated with the gambling facility (e.g., a bank, hotel, motel, or water amusement park or system). Participant identifiers for gambling facility 158 may be issued to a participant upon verification of their identity, credit status, age, and/or other selection criteria used by the gambling facility.


One or more sensors in gambling facility 158 may detect a participant identifier. Sensors may include, for example, cameras, electronic gaming sensors, or other sensors typically used in gambling casinos. Sensors in gambling facility 158 may be coupled to a control or monitoring system (e.g., a video surveillance system). The monitoring system may be used to assess a status of a participant in gambling facility 158. A participant's status may include, but not be limited to, age, identity (e.g., name), photograph, location in the gambling facility, monetary or financial status, debt/credit status with the gambling facility, credit limit, gambling credit available, betting limits, gaming progress (winning and losings of the participant), status in a gambling tracking system (e.g., points accummulated towards rewards, VIP status, etc. in the gambling facility and/or associated gambling facilities), or ranking in a progressive game. Information of the status of a participant may be stored in the participant identifier (e.g., in a read/writable computer chip on the participant identifier) or in a database that may be accessed by gambling apparatus or a monitoring system (e.g., a surveillance system) in the gambling facility.


In an embodiment, a participant identifier is used to identify a participant to gambling apparatus 160. The participant identifier may communicate the status of the participant to gambling apparatus 160. Gambling apparatus 160 may provide a visual presentation (e.g., on a monitor at the gambling apparatus) of the status of the participant. In certain embodiments, the participant may be able to interactively access his/her status from gambling apparatus 160. For example, the participant may access selected portions of his/her status using a keypad or touchpad on the gambling apparatus. Thus, the participant may be able to view his/her gaming progress, credit limit, etc.


In certain embodiments, a participant identifier in combination with a monitoring system (e.g., a video surveillance system or other monitoring system) is used to identify a participant to gambling apparatus 160. For example, a participant identifier may indicate to a gambling apparatus the participant's identification information. The participant's identity may be verified by a monitoring system (e.g., a video surveillance system). The participant's identity may be verified, for example, by comparing a photograph in a database accessed by the monitoring system to a photograph of the participant at the gambling apparatus.


In some embodiments, a participant identifier in combination with a personal access code (e.g., an ATM code) is used for a participant to identify themselves. In some embodiments, participants are identified using biometric identification systems (e.g., fingerprint or eyescan systems). Examples of biometric identification systems are found in U.S. Pat. No. 6,898,299, which is incorporated by reference as if fully set forth herein. Biometric information for a participant may be included on a participant identifier. In some embodiments, a participant identifier may identify a participant to an apparatus, which accesses a monitoring system to obtain biometric information of the participant. The biometric information may be used to confirm the identity of the participant along with the participant identifier.


In certain embodiments, a participant identifier is used to identify a monetary status of the participant to gambling apparatus 160. For example, the participant identifier may be used to identify how much money is available for the participant to gamble (e.g., the participant's credit limit) at gambling apparatus 160. The participant identifier may be used so that the participant does not need to carry gambling chips from gambling apparatus to gambling apparatus. The winnings or losings of a participant at gambling apparatus 160 may be assessed at the gambling apparatus using the participant identifier. As the participant moves from gambling apparatus to gambling apparatus, the participant identifier may be used to update the monetary status of the participant between gambling apparatus.


In certain embodiments, gambling facility 158 includes a cashless gaming system known in the art. Examples of cashless gaming systems may be found in U.S. Pat. Nos. 6,896,619, 6,547,664, and 6,558,256, which are incorporated by reference as if fully set forth herein. In some embodiments, a cashless gaming system may utilize a participant identifier as a means for identifying participants in the cashless gaming system.


In certain embodiments, gambling facility 158 and/or portions of a water amusement system coupled to the gambling facility includes apparatus at selected locations where a participant can obtain credit or add credit to his/her account accessed by a participant identifier. For example, apparatus such as ATMs or credit card machines may be used to add credit to a participant's account identified by the participant identifier. In some embodiments, participant's are able to add credit at gambling apparatus 160. Participants may also be able to add credit to their account outside of gambling facility 158 and/or a water amusement system. For example, participants may be able to add credit to their account at a bank, hotel, or motel associated with the gambling facility or the water amusement system.


A monitoring system may track the progress of a participant in gambling facility 158 during a single use of the gambling facility and/or multiple uses of the gambling facility over a period of time or a number of uses. In some embodiments, the monitoring system may be used to track the participant's usage of gambling facility 158 so that a participant's gambling records are assessed or monitored. A participant's gambling records may be used, for example, to provide incentives (e.g., facility complimentaries or gambling points) for the participant or limit the participant's participation in the gambling facility if needed.


In some embodiments, a gambling apparatus is operated using water. In some embodiments, water for operating a gambling apparatus comes from a water amusement ride. FIG. 15 depicts a roulette wheel 170 that may be operated using water. Roulette wheel 170 may include axle 172, hub 174, and paddles 176. Water may strike paddles 176 to rotate roulette wheel 170 on axle 172. In one embodiment, roulette wheel 170 is operated using water 178. As shown in FIG. 15, water 178 may in one embodiment be falling water. In other embodiments, roulette wheel 170 is operated using water jets that are arranged so that the water from the jets impinges on paddles 176. In one embodiment, bubbles rising to a surface of a body of water impinge upon paddles 176 to spin roulette wheel 170. In one embodiment, a participant may control the flow of water, air, or other propulsion medium for a roulette wheel. In certain embodiments, the control of a propulsion medium may be automated.


In some embodiments, a gambling apparatus is coupled to a body of water. FIG. 16 depicts a craps table 180 in water channel 182. Craps table 180 may include container 184 and trays 186. In some embodiments, container 184 may float on water channel 182. In some embodiments, container 184 may be attached to a structure (e.g., the side or bottom of a sluice or pool enclosure). In certain embodiments, the playing area of the craps table may contain water. In one embodiment, the craps table is completely or partially submerged under water. Craps table 180 may include dice 188. Dice 188 may be thrown by a participant, such as a water park guest or a water park employee. In certain embodiments, dice 188 may be thrown by a machine. Dice 188 may float or sink to the bottom of water contained in craps table 180.


Trays 186 on craps table 180 may hold gambling chips, drinks, or various other items. In certain embodiments, seats may be provided for participants near craps table 184. In certain embodiments, docking devices may be provided on craps table 180. A docking device on a gambling apparatus may allow a participant to secure a flotation device to a gambling apparatus while participating in a gambling activity.


In some embodiments, gambling may be provided to participants of a water amusement ride with an automated system. In one embodiment, an automated gambling system is a personal computer. An automated gambling system may provide a gambling experience to participants at one or more gambling stations on a water amusement ride. FIG. 17 depicts a block diagram of gambling facility 200 including gambling stations 202 and gambling system 204. Gambling stations 202 may be located on water channel 206. Gambling system 204 may include processing unit 208, display 210, sensors 212, participant control devices 214, and control unit 216. Processing unit 208 may be coupled to display 210, sensors 212, participant control devices (PCDs) 214, and control unit 216. Participant control devices 214 and/or one or more displays 210 may be located at gambling stations 202. In some embodiments, participant control devices 214 and/or displays 210 are handheld wireless devices carried by participants. Participant control devices 214 and/or displays 210 may be integrated with participant identifiers 218 (e.g., in a common case or on a common wrist band).


Gambling stations 202 may include gambling apparatus 220 (e.g., slot machines). Participants, or processing unit 208, or a combination of both, may control and/or monitor gambling apparatus 220. In some embodiments, gambling system 204 is used with gambling apparatus 220. Control unit 216 may receive instructions from processing unit 208 to operate gambling apparatus 220 (e.g., to spin a roulette wheel on a gambling apparatus). In certain embodiments, an automated gambling system may take the place of separate gambling apparatus (e.g., with all gambling operations being performed using participant control devices and displays.


In some embodiments, a participant may move between gambling stations 202 using flotation devices 222. Flotation devices 222 may be stationed in water channel 206. In certain embodiments, participants may use other ways of moving between gambling stations (e.g., swimming, wading, or walking). In certain embodiments, participants remain in flotation devices while they gamble (e.g., remaining in a flotation device while the flotation device is docked at each successive gambling station). In one embodiment, participants remain in motion (e.g., by continuous flow of current down water channel 206) as they gamble.


In some embodiments, an automated gambling system coupled to a water ride is used to coordinate gambling among participants at a single gambling station or at different gambling stations. In one embodiment, an automated gambling system is used to handle pari-mutuel betting on various events. For example, participants may bet on which flotation device rider on a water ride will reach a designated finish line first. In one embodiment, gambling system 204 is coupled to object identifiers and objective identifiers that determine when an objective has been reached (e.g., a flotation device has crossed a finish line). The automated system may post contest results on displays at the gambling stations and/at other locations in the water park. In certain embodiments, participants may place bets on their own water activities. For example, two participants may place a bet on which one of them will shoot a ball through a hoop first. As another example, two participants may place a bet on which of two teams' flotation devices will cross a finish line first. In some embodiments, an automated system may determine the results and display the results of a competition. In one embodiment, the automated system uses data collected from sensors about participant identifiers, object identifiers, vehicles identifiers to determine a winner.


In an embodiment, an automated system is used to administer a lottery among participants in a water amusement park. In some embodiments, a monitoring system is used to monitor the location of participants in the amusement park or gambling facility. In one embodiment, an automated system selects a winning participant based on the participant having a randomly selected code (e.g., identifier number).


In certain embodiments, a lottery winner is a participant selected based on the participant's presence at a randomly selected location. For example, a participant may be selected if the participant's participant identifier is sensed on a particular water slide at a particular time. A monitoring system may sense participant identifiers throughout various locations in a park or facility to determine which participant is in the winning location. In one embodiment, a winning participant or group of participants is selected based on an object identifier (e.g., the participant holding a certain card) or vehicle identifier (e.g., a participant or participants in a selected flotation device).


In one embodiment, a winning participant is announced using a public address system or a display. In another embodiment a winning participant is notified when the automated system activates an indicator (e.g., LEDs) on a participant identifier. The winning participant may be awarded with cash, non-cash prizes (e.g., trinkets, coupons), or a combination thereof.


In some embodiments, participants of a water park may participate in games of physical skill. Games of physical skill may include, but are not limited to, athletic games (e.g., running, shooting hoops, swimming, games of strength), arcade games (e.g., shooting ducks, throwing rings on bottles), and shooting games (e.g., laser gun shooting, water pistols, random target shooting). In certain embodiments, players participate in a game that involves a combination of physical skill and random chance. For example, a participant may attempt to shoot a ball into a hoop having a lid that is intermittently opened and closed by an automated system. The automated system may randomly control the timing of the opening and closing of the lid. As another example, a participant may shoot a laser gun at targets that pop up and down at random times.


In one embodiment, a system for providing games of physical skill is coupled to a monitoring system. The monitoring system may assess a status of participants participating in a game of skill during the competition. In one embodiment, the monitoring system is a gambling system such as the one depicted and described with respect to FIG. 17. In certain embodiments, a system may include an award system. The award system may provide awards to participants that accomplish objectives (e.g., score more points than any of their opponents). In some embodiments, a participant may be a part of a team that competes against other teams.


In some embodiments, a gambling facility is coupled to other attractions or elements of a water park. In one embodiment, a body of water with a gambling facility connects two water slides. In another embodiment, a body of water with a gambling facility is coupled to an elevation system. In some embodiments, an interactive game may include or be coupled to a gambling facility. In one embodiment, a gambling facility may be coupled to an exercise facility.


In some embodiments, a body of water with a gambling facility is coupled to a living area. In other embodiments, a body of water for a gambling facility is coupled to a dining area. For example, a participant may order food and beverages at a first location on a water channel, proceed through a gambling facility at a second location on the water channel downstream from the first location, and pick up the participant's order at a third location on the water channel downstream from the second location. In one embodiment, a participant remains in or uses a flotation device during ordering, gambling, and dining. U.S. patent application Ser. Nos. 09/952,036 and 10/693,654 (Publication No. US-2005-0090318-A1), which are incorporated by reference as if fully set forth herein, describe various other water rides, attractions, and water park elements that may be coupled to a gambling facility.


In some embodiments, a participant may use a control device to take actions or enter information relating to a gambling activity. A control device may be operated to perform various actions, including but not limited to, starting a game, suspending a game, restarting a game, choosing a number (e.g, “lucky seven”). In some embodiments, a control device may be an electronic device. Examples of electronic devices include input/output devices such as keypads, keyboards, joysticks, monitor screens. In one embodiment, a participant may use a touch screen. A participant may enter commands by touching the screen.


Control devices may be suitable for use in a water park environment. Electronic components within a device may be sealed from moisture and contamination. In some embodiments, electronic components of a device are contained in a waterproof or water resistant case or enclosure. In certain embodiments, an electronic device may include a water resistant outer film, cover, or sleeve. For example, a device with a keypad may include a protective polymer panel over the keypad. In certain embodiments, a control device may include gaskets, caulk, or o-rings to seal gaps, crevices, or apertures in the device (e.g., between a touch screen and its casing). Packaging elements of control devices and identifiers may be made of various water resistant, corrosion resistant, and/or chemically resistant materials. Suitable materials may include, but are not limited to, polyurethane, polyethylene, polypropylene, titanium, or stainless steel. In certain embodiments, a control device may be integrated with a participant identifier (e.g., together on a single wristband), an objective identifier, or an object identifier.


In this patent, certain U.S. patents, U.S. patent applications, and other materials (e.g., articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.


Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.

Claims
  • 1. A water amusement park system, comprising: a body of water;two or more gambling apparatus located on or adjacent the body of water, wherein the gambling apparatus allows, during use, one or more participants to gamble while in or on the body of water;one or more participant identifiers coupled to one or more of the participants, wherein the participant identifiers assess, during use, a status of the participants in the water amusement park system, and wherein one or more of the participant identifiers authenticates, during use, the identity of the participants to the gambling apparatus; anda monitoring system which verifies, during use, the identity of the participants by accessing data regarding the identity of the participants in a database to compare to the participant identifiers authentication of the identity of the participants to the gambling apparatus.
  • 2. The water amusement park system of claim 1, wherein the body of water comprises a current configured to assist a participant to move between gambling apparatus.
  • 3. The water amusement park system of claim 1, wherein one or more of the participants swims between gambling apparatus.
  • 4. The water amusement park system of claim 1, wherein at least one of the participants is supported by a flotation device when moving between gambling apparatus.
  • 5. The water amusement park system of claim 4, wherein the flotation device comprises a holder for one or more gambling chips used by the participant.
  • 6. The water amusement park system of claim 1, wherein one or more of the participants travel underwater between gambling apparatus.
  • 7. The water amusement park system of claim 1, wherein the system comprises a conveyor to assist in movement of the participants between gambling apparatus.
  • 8. The water amusement park system of claim 1, wherein an area surrounding at least one of the gambling apparatus comprises a substantially stationary body of water.
  • 9. The water amusement park system of claim 1, wherein the body of water is coupled to one or more additional water amusement systems.
  • 10. The water amusement park system of claim 1, wherein the body of water comprises a channel of water which runs in a continuous loop.
  • 11. The water amusement park system of claim 1, wherein at least one of the gambling apparatus comprises a sports book.
  • 12. The water amusement park system of claim 1, wherein at least one of the gambling apparatus comprises a game of chance.
  • 13. The water amusement park system of claim 1, wherein at least one of the gambling apparatus is configured to float on the body of water.
  • 14. The water amusement park system of claim 1, wherein two or more of the gambling apparatus comprise a gambling casino.
  • 15. The water amusement park system of claim 1, further comprising a monitoring system for assessing at least one of the participant's status in the system.
  • 16. The water amusement park system of claim 1, wherein one or more of the participant identifiers are configured to assess monetary status of the participants.
  • 17. The water amusement park system of claim 1, wherein one or more of the participant identifiers are configured to identify the participants to the gambling apparatus.
  • 18. The water amusement park system of claim 1, wherein at least one participant is configured to activate at least one of the gambling apparatus using at least one participant identifier.
  • 19. The water amusement park system of claim 1, further comprising a processing unit configured to process information relating to gambling activities of a participant using at least one of the participant identifiers.
  • 20. The water amusement park system of claim 19, wherein the processing unit is configured to direct a competition between at least two participants.
  • 21. The water amusement park system of claim 19, wherein the processing unit is configured to compete against one or more of the participants.
PRIORITY CLAIM

This patent application claims priority to U.S. Provisional Patent Application Ser. No. 60/717,364 entitled “AMUSEMENT WATER RIDES INVOLVING GAMES OF CHANCE” filed on Sep. 15, 2005, the disclosure of which is hereby incorporated by reference.

US Referenced Citations (495)
Number Name Date Kind
193516 Johns Jul 1877 A
419860 Libbey Jan 1890 A
435227 Inglis Aug 1890 A
485624 Gardner Nov 1892 A
536441 Morris Mar 1895 A
540715 Butler Jun 1895 A
548256 Idler Oct 1895 A
552713 Lenox Jan 1896 A
555049 Ogilbe Feb 1896 A
566182 Jackman Aug 1896 A
570016 Harman Oct 1896 A
572426 Idler Dec 1896 A
576704 Urch Feb 1897 A
583121 Pattee May 1897 A
604164 Wilde et al. May 1898 A
610548 Manny Sep 1898 A
640439 Boyton Feb 1900 A
654980 Howard Jun 1900 A
664179 Schofield Dec 1900 A
665765 Thompson Jan 1901 A
689114 Pape Dec 1901 A
691353 Carpenter et al. Jan 1902 A
697202 Donne Apr 1902 A
697891 Schrader Apr 1902 A
714717 LaPorte Dec 1902 A
720014 Folks Feb 1903 A
724040 Pusterla Mar 1903 A
724757 Symonds Apr 1903 A
728303 Roltair May 1903 A
728894 Folks May 1903 A
741964 Harlan Oct 1903 A
743968 Wilson Nov 1903 A
744880 Smith Nov 1903 A
753311 Pusterla Mar 1904 A
753449 Thompson Mar 1904 A
754698 Reed Mar 1904 A
757286 Du Clos Apr 1904 A
760503 Welsh May 1904 A
762566 Webster et al. Jun 1904 A
764675 Pfeiffer Jul 1904 A
774209 Stubbs Nov 1904 A
774274 Pusterla Nov 1904 A
774917 Maguire Nov 1904 A
776936 Pusterla Dec 1904 A
779464 Bruce Jan 1905 A
783425 Folks Feb 1905 A
792422 Kelly Jun 1905 A
801945 Welsh Oct 1905 A
808487 Stahl Dec 1905 A
824436 Pester Jun 1906 A
828689 Thompson Aug 1906 A
831149 Faller Sep 1906 A
849970 Boyton Apr 1907 A
868736 Washington Oct 1907 A
869432 Gin Oct 1907 A
879283 Mayberry et al. Feb 1908 A
883441 Andrews Mar 1908 A
891388 Visser et al. Jun 1908 A
896940 Rosen Aug 1908 A
904848 DeVore Nov 1908 A
929972 M'Giehan Aug 1909 A
931863 Haight Aug 1909 A
952673 Karr Mar 1910 A
1004174 Kavakos Sep 1911 A
1056929 Navarro Mar 1913 A
1062838 Miller May 1913 A
1063949 Bedient Jun 1913 A
1095965 Glazier May 1914 A
1124950 Reagen et al. Jan 1915 A
1158295 Rodriguez Oct 1915 A
1159519 Menier Nov 1915 A
1167993 Guzendorfer Jan 1916 A
1195707 Miller Aug 1916 A
1198749 Myers Sep 1916 A
1230559 Burke Jun 1917 A
1249455 Myers Dec 1917 A
1320124 Chrul Oct 1919 A
1378635 Unger May 1921 A
1399469 Cucullu Dec 1921 A
1417570 Ridgway May 1922 A
1440661 Dickinson Jan 1923 A
1441126 Sherman et al. Jan 1923 A
1448306 Lezert Mar 1923 A
1497754 Howard Jun 1924 A
1520217 Auperl Dec 1924 A
1540635 Kohl Jun 1925 A
1551249 Held Aug 1925 A
1563855 Held Dec 1925 A
1591566 Schmidt et al. Jul 1926 A
1601483 Vaszin Sep 1926 A
1606024 Gorhum et al. Nov 1926 A
1606854 Vaszin Nov 1926 A
1607771 Miller Nov 1926 A
1609922 Wiig Dec 1926 A
1648196 Rohmer Nov 1927 A
1763976 Lippincott Jun 1930 A
1783268 Traver Dec 1930 A
1849226 Erban Mar 1932 A
1859267 Kurz May 1932 A
1893167 Glagolin Jan 1933 A
1926780 Lippincott Sep 1933 A
2064035 Rynearson Dec 1936 A
2146631 Kish Feb 1939 A
2484466 Rumler Mar 1946 A
2705144 Ridgway Mar 1955 A
2738885 Demaline Mar 1956 A
2888205 Trucco May 1959 A
D190127 Fowler Apr 1961 S
2991726 Miller Jun 1961 A
3000017 Skovira Sep 1961 A
3003430 Hamel Oct 1961 A
3030895 Hamel Apr 1962 A
3113528 Morgan et al Dec 1963 A
3114333 Fowler et al. Dec 1963 A
3116925 Welch Jan 1964 A
D204282 Morgan Apr 1966 S
3302413 Burnett Feb 1967 A
3340635 McIntosh Sep 1967 A
3390640 Couttet et al. Jul 1968 A
3404635 Bacon et al. Oct 1968 A
3456943 Brown Jul 1969 A
3473334 Dexter Oct 1969 A
3508405 Koch Apr 1970 A
3534413 Plasseraud Oct 1970 A
3598402 Frenzl Aug 1971 A
3690265 Horibata Sep 1972 A
3730520 Willis May 1973 A
D229354 Morgan Nov 1973 S
3827387 Morgan Aug 1974 A
3830161 Bacon Aug 1974 A
3838648 Dahlberg et al. Oct 1974 A
3853067 Bacon Dec 1974 A
3861514 Ling Jan 1975 A
3865041 Bacon Feb 1975 A
3890655 Mathis Jun 1975 A
3913332 Forsman Oct 1975 A
3923301 Myers Dec 1975 A
3930450 Symons Jan 1976 A
3956779 Jewett May 1976 A
4001899 Mathis Jan 1977 A
4063517 Nardozzi, Jr. Dec 1977 A
4073722 Grutsch Feb 1978 A
4149469 Bigler Apr 1979 A
4149710 Rouchard Apr 1979 A
4175361 Kumode Nov 1979 A
4194733 Whitehouse, Jr. Mar 1980 A
4196900 Becker et al. Apr 1980 A
4198043 Timbes et al. Apr 1980 A
4205785 Stanley Jun 1980 A
4221170 Koudelka Sep 1980 A
4225953 Simon et al. Sep 1980 A
4278247 Joppe et al. Jul 1981 A
4299171 Larson Nov 1981 A
4305117 Evans Dec 1981 A
4337704 Becker et al. Jul 1982 A
4376404 Haddad Mar 1983 A
D269082 Spieldiener May 1983 S
4391201 Bailey Jul 1983 A
4392434 Dürwald et al. Jul 1983 A
4423864 Wiik Jan 1984 A
4429867 Barber Feb 1984 A
4484739 Kreinbihl et al. Nov 1984 A
4484836 Bailard Nov 1984 A
4501434 Dupuis Feb 1985 A
4516943 Spieldiener et al. May 1985 A
4543886 Spieldiener et al. Oct 1985 A
4545574 Sassak Oct 1985 A
4545583 Pearman et al. Oct 1985 A
4558474 Bastenhof Dec 1985 A
4564190 Frenzl Jan 1986 A
4576512 Combes et al. Mar 1986 A
4683686 Ozdemir Aug 1987 A
4695058 Carter, III et al. Sep 1987 A
4696251 Spieldiener et al. Sep 1987 A
4741388 Kuriowa May 1988 A
4759545 Grable Jul 1988 A
4778430 Goldfarb et al. Oct 1988 A
4783861 Leurent Nov 1988 A
4792260 Sauerbier Dec 1988 A
4797027 Combes et al. Jan 1989 A
4797605 Palanisamy Jan 1989 A
4805896 Moody Feb 1989 A
4805897 Dubeta Feb 1989 A
4817312 Fuller et al. Apr 1989 A
4836521 Barber Jun 1989 A
4850896 Smith et al. Jul 1989 A
4854256 Hayashi Aug 1989 A
4905987 Frenzi Mar 1990 A
4910814 Weiner Mar 1990 A
4939358 Herman et al. Jul 1990 A
4954014 Sauerbier et al. Sep 1990 A
4960275 Magon Oct 1990 A
4963057 Fournier Oct 1990 A
4979679 Downs Dec 1990 A
4984783 Fujimaki Jan 1991 A
4986784 French Jan 1991 A
5011134 Langford Apr 1991 A
5011161 Galphin Apr 1991 A
5020465 Langford Jun 1991 A
5022588 Haase Jun 1991 A
5033392 Schemitsch Jul 1991 A
5069387 Alba Dec 1991 A
5069443 Shiratori Dec 1991 A
5073082 Radlik Dec 1991 A
5092268 Taylor Mar 1992 A
5115908 Williams May 1992 A
5137497 Dubeta Aug 1992 A
5143107 Kelley Sep 1992 A
D330579 Briggs Oct 1992 S
5152210 Chen Oct 1992 A
5167321 Brodrick, Sr. Dec 1992 A
5171101 Sauerbier et al. Dec 1992 A
5183437 Millay et al. Feb 1993 A
5194048 Briggs Mar 1993 A
5213547 Lochtefeld May 1993 A
5219315 Fuller et al. Jun 1993 A
5224652 Kessler Jul 1993 A
5230662 Langford Jul 1993 A
5236280 Lochtefeld Aug 1993 A
RE34407 Frenzl Oct 1993 E
5253864 Heege et al. Oct 1993 A
5265373 Vollebregt Nov 1993 A
5265802 Hobbs et al. Nov 1993 A
5271692 Lochtefeld Dec 1993 A
5299964 Hopkins Apr 1994 A
5320362 Bear et al. Jun 1994 A
5323307 Wolf et al. Jun 1994 A
5378197 Briggs Jan 1995 A
5387158 Bertrand Feb 1995 A
5393170 Lochtefeld Feb 1995 A
5401117 Lochtefeld Mar 1995 A
5403238 Baxter et al. Apr 1995 A
5405294 Briggs Apr 1995 A
5421451 Easton Jun 1995 A
5421782 Lochtefeld Jun 1995 A
5426899 Jones Jun 1995 A
5427574 Donnelly-Weide Jun 1995 A
5433671 Davis Jul 1995 A
5437463 Fromm Aug 1995 A
5439170 Dach Aug 1995 A
5452678 Simpkins Sep 1995 A
5453054 Langford Sep 1995 A
5461876 Dressler Oct 1995 A
5473233 Stull et al. Dec 1995 A
5478281 Forton Dec 1995 A
5480148 Bartosik Jan 1996 A
5482510 Ishii et al. Jan 1996 A
5494729 Henry et al. Feb 1996 A
5499821 Rycroft Mar 1996 A
5503597 Lochtefeld et al. Apr 1996 A
5513470 Vollebregt May 1996 A
5536210 Barber Jul 1996 A
5540622 Gold et al. Jul 1996 A
5564859 Lochtefeld Oct 1996 A
5564984 Mirabella et al. Oct 1996 A
5581954 Vollebregt Dec 1996 A
5613443 Ariga et al. Mar 1997 A
5615887 Park Apr 1997 A
5623986 Wiggs Apr 1997 A
5628584 Lochtefeld May 1997 A
5649867 Briggs Jul 1997 A
5662525 Briggs Sep 1997 A
5664910 Lochtefeld et al. Sep 1997 A
5667445 Lochtefeld Sep 1997 A
5678956 Freelain Oct 1997 A
5685778 Sheldon et al. Nov 1997 A
5690582 Ulrich et al. Nov 1997 A
5698839 Jagielinski et al. Dec 1997 A
5704294 Van Winkle et al. Jan 1998 A
5716282 Ring et al. Feb 1998 A
5732635 McKoy Mar 1998 A
5735742 French Apr 1998 A
5735748 Meyers et al. Apr 1998 A
5738590 Lochtefeld Apr 1998 A
5741189 Briggs Apr 1998 A
5761776 Vollebregt Jun 1998 A
5765314 Giglio et al. Jun 1998 A
5766082 Lochtefeld et al. Jun 1998 A
5779553 Langford Jul 1998 A
5785592 Jacobsen Jul 1998 A
5791254 Mares et al. Aug 1998 A
5809701 Vollebregt Sep 1998 A
5813952 Lochbaum Sep 1998 A
5816314 Wiggs et al. Oct 1998 A
5820471 Briggs Oct 1998 A
5820472 Briggs Oct 1998 A
D403392 Briggs et al. Dec 1998 S
5853332 Briggs Dec 1998 A
5860364 McKoy Jan 1999 A
5860766 Lochtefeld et al. Jan 1999 A
5864623 Messina et al. Jan 1999 A
5865680 Briggs Feb 1999 A
5872594 Thompson Feb 1999 A
D406871 Briggs Mar 1999 S
D407133 Briggs Mar 1999 S
5899633 Lochtefeld May 1999 A
5899634 Lochtefeld May 1999 A
5902983 Crevelt et al. May 1999 A
5911190 Lochtefeld et al. Jun 1999 A
5923364 Rhodes et al. Jul 1999 A
5927478 Archer Jul 1999 A
D413957 Briggs Sep 1999 S
5949044 Walker et al. Sep 1999 A
5950253 Last Sep 1999 A
5967901 Briggs Oct 1999 A
D416066 Briggs Nov 1999 S
5978593 Sexton Nov 1999 A
5989126 Kilbert et al. Nov 1999 A
6006672 Newfarmer et al. Dec 1999 A
6012832 Saunders et al. Jan 2000 A
D421283 Briggs et al. Feb 2000 S
6019374 Breeding Feb 2000 A
6036603 Mason et al. Mar 2000 A
6045449 Aragona et al. Apr 2000 A
6075442 Welch Jun 2000 A
6089987 Briggs Jul 2000 A
6105527 Lochtefeld et al. Aug 2000 A
6113506 Nielsen Sep 2000 A
6115974 Milanian Sep 2000 A
6132317 Lochtefeld Oct 2000 A
6132318 Briggs Oct 2000 A
6139382 Eschbacher et al. Oct 2000 A
6146282 McCready et al. Nov 2000 A
6161771 Henry Dec 2000 A
6162127 Ochi Dec 2000 A
6174242 Briggs et al. Jan 2001 B1
6178692 Graven Jan 2001 B1
6183362 Boushy Feb 2001 B1
6186902 Briggs Feb 2001 B1
6195851 Vollebregt et al. Mar 2001 B1
6206782 Walker et al. Mar 2001 B1
6210287 Briggs Apr 2001 B1
6231451 Briggs May 2001 B1
6234900 Cumbers May 2001 B1
6237499 McKoy May 2001 B1
6261186 Henry Jul 2001 B1
6264202 Briggs Jul 2001 B1
6265977 Vega et al. Jul 2001 B1
6272695 Brandner Aug 2001 B1
6276353 Briggs et al. Aug 2001 B1
6280326 Saunders Aug 2001 B1
6280328 Holch et al. Aug 2001 B1
6280342 Tod Aug 2001 B1
6283871 Briggs Sep 2001 B1
6302793 Fertitta, III et al. Oct 2001 B1
6319137 Lochtefeld Nov 2001 B1
6320495 Sporgis Nov 2001 B1
6336771 Hill Jan 2002 B1
6340331 Saunders et al. Jan 2002 B1
6347738 Crevelt et al. Feb 2002 B1
6354955 Stuart et al. Mar 2002 B1
6362778 Neher Mar 2002 B2
6371717 Grams et al. Apr 2002 B1
6375578 Briggs Apr 2002 B1
6384409 Libbey, III et al. May 2002 B1
6409595 Uihlein et al. Jun 2002 B1
6413191 Harris et al. Jul 2002 B1
6424264 Giraldin et al. Jul 2002 B1
6443849 Byrd Sep 2002 B1
6460201 Lochtefeld Oct 2002 B1
6460852 Tallian Oct 2002 B1
6463416 Messina Oct 2002 B1
6471590 Saunders Oct 2002 B2
6474557 Mullins et al. Nov 2002 B2
6475088 Jones et al. Nov 2002 B1
6475095 Henry Nov 2002 B1
6485368 Jones et al. Nov 2002 B2
6488590 Katayama Dec 2002 B2
6491589 Lochtefeld Dec 2002 B1
6503146 Walker et al. Jan 2003 B2
6508710 Paravia et al. Jan 2003 B1
6511377 Weiss Jan 2003 B1
6513284 Sandlin Feb 2003 B1
6520853 Suzuki Feb 2003 B2
6526158 Goldberg Feb 2003 B1
6527646 Briggs Mar 2003 B1
6533191 Berger et al. Mar 2003 B1
6539101 Black Mar 2003 B1
6540609 Paige Apr 2003 B1
6547131 Foodman et al. Apr 2003 B1
6547664 Saunders Apr 2003 B2
6553336 Johnson et al. Apr 2003 B1
6554705 Cumbers Apr 2003 B1
6558256 Saunders May 2003 B1
6561914 Henry May 2003 B2
6569023 Briggs May 2003 B1
6579175 Suzuki Jun 2003 B2
6595857 Soltys et al. Jul 2003 B2
6601771 Charrin Aug 2003 B2
6604327 Reville Aug 2003 B1
6608563 Weston et al. Aug 2003 B2
6629019 Legge et al. Sep 2003 B2
6634942 Walker et al. Oct 2003 B2
6634949 Briggs et al. Oct 2003 B1
6651268 Briggs Nov 2003 B1
6663006 Mullins et al. Dec 2003 B2
6663490 Soltys et al. Dec 2003 B2
6676530 Lochtefeld Jan 2004 B2
6678401 Jones et al. Jan 2004 B2
6699124 Suchocki Mar 2004 B2
6702687 Henry Mar 2004 B1
6708706 Robinson Mar 2004 B1
6712696 Soltys et al. Mar 2004 B2
6716107 Lochtefeld Apr 2004 B2
6722985 Criss-Puszkiewicz et al. Apr 2004 B2
6729956 Wolf et al. May 2004 B2
6729959 Moore et al. May 2004 B1
6738992 Lochtefeld May 2004 B2
6743098 Urie et al. Jun 2004 B2
6747562 Giraldin et al. Jun 2004 B2
6755741 Rafaeli Jun 2004 B1
6758231 Lochtefeld et al. Jul 2004 B1
6758751 Soltys et al. Jul 2004 B2
6761637 Weston et al. Jul 2004 B2
6773355 Lekhtman Aug 2004 B1
6776715 Price Aug 2004 B2
6786824 Cannon Sep 2004 B2
6786830 Briggs et al. Sep 2004 B2
6789608 Wiggs Sep 2004 B1
6796492 Gatto Sep 2004 B1
6796908 Weston Sep 2004 B2
6811486 Luciano, Jr. Nov 2004 B1
6811488 Paravia et al. Nov 2004 B2
6814667 Jeffway, Jr. et al. Nov 2004 B2
6830146 Scully et al. Dec 2004 B1
6832958 Acres et al. Dec 2004 B2
6843412 Sanford Jan 2005 B1
6848994 Knust et al. Feb 2005 B1
6851607 Orus et al. Feb 2005 B2
6890260 Ollins May 2005 B2
6892182 Rowe et al. May 2005 B1
6896616 Weiss May 2005 B2
6896619 Baltz et al. May 2005 B2
6898299 Brooks May 2005 B1
6928670 Lochtefeld et al. Aug 2005 B2
6957662 Lochtefeld et al. Oct 2005 B2
6976434 Roig et al. Dec 2005 B2
7004847 Henry Feb 2006 B2
7029400 Briggs Apr 2006 B2
7040994 Lochtefeld et al. May 2006 B2
RE39171 Lochtefeld Jul 2006 E
7179173 Henry et al. Feb 2007 B2
7229359 Henry et al. Jun 2007 B2
7263805 Chapus Sep 2007 B2
7278028 Hingoranee Oct 2007 B1
7285053 Henry et al. Oct 2007 B2
7371182 Henry et al. May 2008 B2
7371183 Henry et al. May 2008 B2
7401786 Lochtefeld Jul 2008 B2
7445550 Barney et al. Nov 2008 B2
7491128 Henry et al. Feb 2009 B2
7497784 Henry Mar 2009 B2
7597630 Henry Oct 2009 B2
7727077 Henry et al. Jun 2010 B2
7740542 Henry et al. Jun 2010 B2
7758435 Henry et al. Jul 2010 B2
7762899 Henry et al. Jul 2010 B2
7762900 Henry et al. Jul 2010 B2
7766753 Henry et al. Aug 2010 B2
20020072317 Livingston et al. Jun 2002 A1
20020082097 Henry et al. Jun 2002 A1
20020180155 Lochtefeld Dec 2002 A1
20030203760 Henry et al. Oct 2003 A1
20040033833 Briggs et al. Feb 2004 A1
20040077423 Weston et al. Apr 2004 A1
20050034768 Lochtefeld et al. Feb 2005 A1
20050047869 Lochtefeld Mar 2005 A1
20050085306 Henry et al. Apr 2005 A1
20050090318 Henry et al. Apr 2005 A1
20050090319 Henry et al. Apr 2005 A1
20050090320 Henry et al. Apr 2005 A1
20050090321 Henry et al. Apr 2005 A1
20050090322 Henry et al. Apr 2005 A1
20050143173 Barney et al. Jun 2005 A1
20050148398 Lochtefeld Jul 2005 A1
20050286976 Lochtefeld et al. Dec 2005 A1
20050288111 Cowan et al. Dec 2005 A1
20060052171 Henry et al. Mar 2006 A1
20060111195 Henry May 2006 A1
20060111196 Henry May 2006 A1
20060135274 Henry Jun 2006 A1
20060142090 Henry Jun 2006 A1
20060154726 Weston et al. Jul 2006 A1
20060178222 Henry et al. Aug 2006 A1
20060214805 Boujon Sep 2006 A1
20060229134 Briggs et al. Oct 2006 A1
20060258471 Briggs et al. Nov 2006 A1
20060260697 Lochtefeld et al. Nov 2006 A1
20060287030 Briggs et al. Dec 2006 A1
20070066396 Weston et al. Mar 2007 A1
20070249425 Weston et al. Oct 2007 A1
20080014835 Weston et al. Jan 2008 A1
20080021776 Lochtefeld Jan 2008 A1
20080216427 Lochtefeld Sep 2008 A1
20100160054 Henry Jun 2010 A1
Foreign Referenced Citations (23)
Number Date Country
543055 Dec 1955 BE
893778 Oct 1953 DE
4243812 Jun 1994 DE
129145 Jan 2007 DE
1318864 Nov 2005 EP
1604712 Dec 2005 EP
9203201 Mar 1992 WO
9204087 Mar 1992 WO
9733668 Sep 1997 WO
9845006 Oct 1998 WO
0110184 Feb 2001 WO
0222226 Mar 2002 WO
0222227 Mar 2002 WO
05042124 May 2005 WO
20061057970 Jun 2006 WO
2006113936 Oct 2006 WO
20071019278 Feb 2007 WO
20071027841 Mar 2007 WO
20071028040 Mar 2007 WO
20071028042 Mar 2007 WO
20071028043 Mar 2007 WO
20071035524 Mar 2007 WO
20071106717 Sep 2007 WO
Related Publications (1)
Number Date Country
20070078016 A1 Apr 2007 US
Provisional Applications (1)
Number Date Country
60717364 Sep 2005 US