This disclosure relates generally to computing devices, and, more particularly, to methods and apparatus to facilitate an edge-to-datacenter approach to workload migration.
The figures are not to scale. In general, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts.
Descriptors “first,” “second,” “third,” etc. are used herein when identifying multiple elements or components which may be referred to separately. Unless otherwise specified or understood based on their context of use, such descriptors are not intended to impute any meaning of priority or ordering in time but merely as labels for referring to multiple elements or components separately for ease of understanding the disclosed examples. In some examples, the descriptor “first” may be used to refer to an element in the detailed description, while the same element may be referred to in a claim with a different descriptor such as “second” or “third.” In such instances, it should be understood that such descriptors are used merely for ease of referencing multiple elements or components DETAILED DESCRIPTION
Workloads (e.g., application programming running on a computing device) continue to move off the classic personal computer (PC) to the cloud. For example, Word Processing and Spreadsheets by companies like MICROSOFT™ (‘teams’) and GOOGLE™ (‘docs’) have been pushed from PCs to the cloud. Many independent software vendors (ISVs) are cloud-native, and are not writing client side windows applications to take advantage of richer client capabilities. This leaves the client platform capabilities underutilized, leading to a sub-par experience for the user.
While cloud architectures enable ISVs to easily deploy and manage software, the move away from a client-based architecture also has disadvantages. For example, a cloud architecture presents an ISV with re-occurring expenses to support their customers. As the demand for a cloud-based product increases, more cloud-based compute, input/output (I/O) usage, and/or storage is used. This presents ISVs with the challenge of trying to find how to increase their margin by mitigating these reoccurring costs.
A portion of the compute that is migrated to the cloud in a thin client architecture is better suited for the client for many reasons. For example, computation on high bandwidth streams could reduce I/O usage, cost, and latency, if performed at the edge and/or at an end user device. Performing computation on private data on the platform(s) of a client may reduce customer concern or even be required by governmental regulation. For example, consider background blurring of a video stream. Blurring a video stream in the cloud is less private, requires the ISV to pay for compute-intensive operations, and requires additional bandwidth to share the blurred stream back to the user. This function could instead be performed on an client platforms with hardware accelerated video processing.
Examples disclosed herein transparently move the workloads already developed by the ISV for the cloud/edge, to the client edge/end user device. Requiring very little, if any, additional development for the ISV, mitigating the OpEx costs of running that workload in the cloud and reducing the edge/end user device/OS specific software that needs to be developed and maintained, while regaining advantages of client executed software. Accordingly, examples disclosed herein facilitate works that are written once, but can be run on any device (e.g., on the Edge, on the fog, at a PC, at a Gateway, etc.).
Compute, memory, and storage are scarce resources, and generally decrease depending on the edge location (e.g., fewer processing resources being available at consumer endpoint devices, than at a base station, than at a central office). However, the closer that the edge location is to the endpoint (e.g., user equipment (UE)), the more that space and power is often constrained. Thus, edge computing attempts to reduce the amount of resources needed for network services, through the distribution of more resources which are located closer both geographically and in network access time. In this manner, edge computing attempts to bring the compute resources to the workload data where appropriate, or bring the workload data to the compute resources.
The following describes aspects of an edge cloud architecture that covers multiple potential deployments and addresses restrictions that some network operators or service providers may have in their own infrastructures. These include, variation of configurations based on the edge location (because edges at a base station level, for instance, may have more constrained performance and capabilities in a multi-tenant scenario); configurations based on the type of compute, memory, storage, fabric, acceleration, or like resources available to edge locations, tiers of locations, or groups of locations; the service, security, and management and orchestration capabilities; and related objectives to achieve usability and performance of end services. These deployments may accomplish processing in network layers that may be considered as “device edge,” “near edge”, “close edge”, “local edge”, “middle edge”, “user device edge,” or “far edge” layers, depending on latency, distance, and timing characteristics.
Edge computing is a developing paradigm where computing is performed at or closer to the “edge” of a network, typically through the use of a compute platform (e.g., x86 or ARM compute hardware architecture) implemented at base stations, gateways, network routers, or other devices which are much closer to endpoint devices producing and consuming the data. For example, edge gateway servers may be equipped with pools of memory and storage resources to perform computation in real-time for low latency use-cases (e.g., autonomous driving or video surveillance) for connected client devices. Or as an example, base stations may be augmented with compute and acceleration resources to directly process service workloads for connected user equipment, without further communicating data via backhaul networks. Or as another example, central office network management hardware may be replaced with standardized compute hardware that performs virtualized network functions and offers compute resources for the execution of services and consumer functions for connected devices. Within edge computing networks, there may be scenarios in services which the compute resource will be “moved” to the data, as well as scenarios in which the data will be “moved” to the compute resource. Or as an example, base station compute, acceleration and network resources can provide services in order to scale to workload demands on an as needed basis by activating dormant capacity (subscription, capacity on demand) in order to manage corner cases, emergencies or to provide longevity for deployed resources over a significantly longer implemented lifecycle.
Examples of latency, resulting from network communication distance and processing time constraints, may range from less than a millisecond (ms) when among the endpoint layer 200, under 5 ms at the edge devices layer 210, to even between 10 to 40 ms when communicating with nodes at the network access layer 220. Beyond the edge cloud 110 are core network 230 and cloud data center 240 layers, each with increasing latency (e.g., between 50-60 ms at the core network layer 230, to 100 or more ms at the cloud data center layer). As a result, operations at a core network data center 235 or a cloud data center 245, with latencies of at least 50 to 100 ms or more, will not be able to accomplish many time-critical functions of the use cases 205. Each of these latency values are provided for purposes of illustration and contrast; it will be understood that the use of other access network mediums and technologies may further reduce the latencies. In some examples, respective portions of the network may be categorized as “device edge”, “close edge”, “local edge”, “near edge”, “middle edge”, or “far edge” layers, relative to a network source and destination. For instance, from the perspective of the core network data center Error! Reference source not found.35 or a cloud data center Error! Reference source not found.45, a central office or content data network may be considered as being located within a “near edge” layer (“near” to the cloud, having high latency values when communicating with the devices and endpoints of the use cases Error! Reference source not found.05), whereas an access point, base station, on-premise server, or network gateway may be considered as located within a “far edge” layer (“far” from the cloud, having low latency values when communicating with the devices and endpoints of the use cases Error! Reference source not found.05). It will be understood that other categorizations of a particular network layer as constituting a “close”, “local”, “near”, “middle”, or “far” edge may be based on latency, distance, number of network hops, or other measurable characteristics, as measured from a source in any of the network layers 200-240.
The various use cases 205 may access resources under usage pressure from incoming streams, due to multiple services utilizing the edge cloud. To achieve results with low latency, the services executed within the edge cloud 110 balance varying requirements in terms of: (a) Priority (throughput or latency) and Quality of Service (QoS) (e.g., traffic for an autonomous car may have higher priority than a temperature sensor in terms of response time requirement; or, a performance sensitivity/bottleneck may exist at a compute/accelerator, memory, storage, or network resource, depending on the application); (b) Reliability and Resiliency (e.g., some input streams need to be acted upon and the traffic routed with mission-critical reliability, where as some other input streams may be tolerate an occasional failure, depending on the application); and (c) Physical constraints (e.g., power, cooling and form-factor).
The end-to-end service view for these use cases involves the concept of a service-flow and is associated with a transaction. The transaction details the overall service requirement for the entity consuming the service, as well as the associated services for the resources, workloads, workflows, and business functional and business level requirements. The services executed with the “terms” described may be managed at each layer in a way to assure real time, and runtime contractual compliance for the transaction during the lifecycle of the service. When a component in the transaction is missing its agreed to SLA, the system as a whole (components in the transaction) may provide the ability to (1) understand the impact of the SLA violation, and (2) augment other components in the system to resume overall transaction SLA, and (3) implement steps to remediate.
Thus, with these variations and service features in mind, edge computing within the edge cloud 110 may provide the ability to serve and respond to multiple applications of the use cases 205 (e.g., object tracking, video surveillance, connected cars, etc.) in real-time or near real-time, and meet ultra-low latency requirements for these multiple applications. These advantages enable a whole new class of applications (Virtual Network Functions (VNFs), Function as a Service (FaaS), Edge as a Service (EaaS), standard processes, etc.), which cannot leverage conventional cloud computing due to latency or other limitations.
However, with the advantages of edge computing comes the following caveats. The devices located at the edge are often resource constrained and therefore there is pressure on usage of edge resources. Typically, this is addressed through the pooling of memory and storage resources for use by multiple users (tenants) and devices. The edge may be power and cooling constrained and therefore the power usage needs to be accounted for by the applications that are consuming the most power. There may be inherent power-performance tradeoffs in these pooled memory resources, as many of them are likely to use emerging memory technologies, where more power requires greater memory bandwidth. Likewise, improved security of hardware and root of trust trusted functions are also required because edge locations may be unmanned and may even need permissioned access (e.g., when housed in a third-party location). Such issues are magnified in the edge cloud 110 in a multi-tenant, multi-owner, or multi-access setting, where services and applications are requested by many users, especially as network usage dynamically fluctuates and the composition of the multiple stakeholders, use cases, and services changes.
At a more generic level, an edge computing system may be described to encompass any number of deployments at the previously discussed layers operating in the edge cloud 110 (network layers 200-240), which provide coordination from client and distributed computing devices. One or more edge gateway nodes, one or more edge aggregation nodes, and one or more core data centers may be distributed across layers of the network to provide an implementation of the edge computing system by or on behalf of a telecommunication service provider (“telco”, or “TSP”), internet-of-things service provider, cloud service provider (CSP), enterprise entity, or any other number of entities. Various implementations and configurations of the edge computing system may be provided dynamically, such as when orchestrated to meet service objectives.
Consistent with the examples provided herein, a client compute node may be embodied as any type of endpoint component, device, appliance, or other thing capable of communicating as a producer or consumer of data. Further, the label “node” or “device” as used in the edge computing system does not necessarily mean that such node or device operates in a client or agent/minion/follower role; rather, any of the nodes or devices in the edge computing system refer to individual entities, nodes, or subsystems which include discrete or connected hardware or software configurations to facilitate or use the edge cloud 110.
As such, the edge cloud 110 is formed from network components and functional features operated by and within edge gateway nodes, edge aggregation nodes, or other edge compute nodes among network layers 210-230. The edge cloud 110 thus may be embodied as any type of network that provides edge computing and/or storage resources which are proximately located to radio access network (RAN) capable endpoint devices (e.g., mobile computing devices, IoT devices, smart devices, etc.), which are discussed herein. Additionally or alternatively, the edge cloud 110 may be a home network that is connected to the edge could via a FIOS link or a cable network. In other words, the edge cloud 110 may be envisioned as an “edge” which connects the endpoint devices and traditional network access points that serve as an ingress point into service provider core networks, including mobile carrier networks (e.g., Global System for Mobile Communications (GSM) networks, Long-Term Evolution (LTE) networks, 4G/5G networks, etc.), while also providing storage and/or compute capabilities. Other types and forms of network access (e.g., Wi-Fi, long-range wireless, wired networks including optical networks) may also be utilized in place of or in combination with such 3GPP carrier networks.
The network components of the edge cloud 110 may be servers, multi-tenant servers, appliance computing devices, set up, home gateway, client work station, client mobile personal computer (PC), smart phone, and/or any other type of computing devices. For example, the edge cloud 110 may be an appliance computing device that is a self-contained processing system including a housing, case, or shell. In some cases, edge devices are devices presented in the network for a specific purpose (e.g., a traffic light), but that have processing or other capacities that may be harnessed for other purposes. Such edge devices may be independent from other networked devices and provided with a housing having a form factor suitable for its primary purpose; yet be available for other compute tasks that do not interfere with its primary task. Edge devices include Internet of Things devices. The appliance computing device may include hardware and software components to manage local issues such as device temperature, vibration, resource utilization, updates, power issues, physical and network security, etc. Example hardware for implementing an appliance computing device is described in conjunction with
In the example of
It should be understood that some of the devices 410 are multi-tenant devices where Tenant 1 may function within a tenant1 ‘slice’ while a Tenant 2 may function within a tenant2 ‘slice’ (and, in further examples, additional or sub-tenants may exist; and each tenant may even be specifically entitled and transactionally tied to a specific set of features all the way day to specific hardware features). A trusted multi-tenant device may further contain a tenant-specific cryptographic key such that the combination of key and slice may be considered a “root of trust” (RoT) or tenant specific RoT. A RoT may further be computed dynamically composed using a DICE (Device Identity Composition Engine) architecture such that a single DICE hardware building block may be used to construct layered trusted computing base contexts for layering of device capabilities (such as a Field Programmable Gate Array (FPGA)). The RoT may further be used for a trusted computing context to enable a “fan-out” that is useful for supporting multi-tenancy. Within a multi-tenant environment, the respective edge nodes 422, 424 may operate as security feature enforcement points for local resources allocated to multiple tenants per node. Additionally, tenant runtime and application execution (e.g., in instances 432, 434) may serve as an enforcement point for a security feature that creates a virtual edge abstraction of resources spanning potentially multiple physical hosting platforms. Finally, the orchestration functions 460 at an orchestration entity may operate as a security feature enforcement point for marshalling resources along tenant boundaries.
Edge computing nodes may partition resources (memory, central processing unit (CPU), graphics processing unit (GPU), interrupt controller, input/output (I/O) controller, memory controller, bus controller, etc.) where respective partitionings may contain a RoT capability and where fan-out and layering according to a DICE model may further be applied to Edge Nodes. Cloud computing nodes consisting of containers, FaaS engines, Servlets, servers, or other computation abstraction may be partitioned according to a DICE layering and fan-out structure to support a RoT context for each. Accordingly, the respective devices 410, 422, and 440 spanning RoTs may coordinate the establishment of a distributed trusted computing base (DTCB) such that a tenant-specific virtual trusted secure channel linking all elements end to end can be established.
Further, it will be understood that a container may have data or workload specific keys protecting its content from a previous edge node. As part of migration of a container, a pod controller at a source edge node may obtain a migration key from a target edge node pod controller where the migration key is used to wrap the container-specific keys. When the container/pod is migrated to the target edge node, the unwrapping key is exposed to the pod controller that then decrypts the wrapped keys. The keys may now be used to perform operations on container specific data. The migration functions may be gated by properly attested edge nodes and pod managers (as described above).
In further examples, an edge computing system is extended to provide for orchestration of multiple applications through the use of containers (a contained, deployable unit of software that provides code and needed dependencies) in a multi-owner, multi-tenant environment. A multi-tenant orchestrator may be used to perform key management, trust anchor management, and other security functions related to the provisioning and lifecycle of the trusted ‘slice’ concept in
For instance, each of the edge nodes 422, 424 may implement the use of containers, such as with the use of a container “pod” 426, 428 providing a group of one or more containers. In a setting that uses one or more container pods, a pod controller or orchestrator is responsible for local control and orchestration of the containers in the pod. Various edge node resources (e.g., storage, compute, services, depicted with hexagons) provided for the respective edge slices 432, 434 are partitioned according to the needs of each container.
With the use of container pods, a pod controller oversees the partitioning and allocation of containers and resources. The pod controller receives instructions from an orchestrator (e.g., the orchestrator 460) that instructs the controller on how best to partition physical resources and for what duration, such as by receiving key performance indicator (KPI) targets based on SLA contracts. The pod controller determines which container requires which resources and for how long in order to complete the workload and satisfy the SLA. The pod controller also manages container lifecycle operations such as: creating the container, provisioning it with resources and applications, coordinating intermediate results between multiple containers working on a distributed application together, dismantling containers when workload completes, and the like. Additionally, a pod controller may serve a security role that prevents assignment of resources until the right tenant authenticates or prevents provisioning of data or a workload to a container until an attestation result is satisfied.
Also, with the use of container pods, tenant boundaries can still exist but in the context of each pod of containers. If each tenant specific pod has a tenant specific pod controller, there will be a shared pod controller that consolidates resource allocation requests to avoid typical resource starvation situations. Further controls may be provided to ensure attestation and trustworthiness of the pod and pod controller. For instance, the orchestrator 460 may provision an attestation verification policy to local pod controllers that perform attestation verification. If an attestation satisfies a policy for a first tenant pod controller but not a second tenant pod controller, then the second pod could be migrated to a different edge node that does satisfy it. Alternatively, the first pod may be allowed to execute and a different shared pod controller is installed and invoked prior to the second pod executing.
The system arrangements of depicted in
In the context of
In further examples, aspects of software-defined or controlled silicon hardware, and other configurable hardware, may integrate with the applications, functions, and services an edge computing system. Software defined silicon may be used to ensure the ability for some resource or hardware ingredient to fulfill a contract or service level agreement, based on the ingredient's ability to remediate a portion of itself or the workload (e.g., by an upgrade, reconfiguration, or provision of new features within the hardware configuration itself).
It should be appreciated that the edge computing systems and arrangements discussed herein may be applicable in various solutions, services, and/or use cases involving mobility. As an example,
The edge gateway nodes 620 may communicate with one or more edge resource nodes 640, which are illustratively embodied as compute servers, appliances or components located at or in a communication base station 642 (e.g., a based station of a cellular network). As discussed above, the respective edge resource node(s) 640 include an amount of processing and storage capabilities and, as such, some processing and/or storage of data for the client compute nodes 610 may be performed on the edge resource node(s) 640. For example, the processing of data that is less urgent or important may be performed by the edge resource node(s) 640, while the processing of data that is of a higher urgency or importance may be performed by the edge gateway devices 620 (depending on, for example, the capabilities of each component, or information in the request indicating urgency or importance). Based on data access, data location or latency, work may continue on edge resource nodes when the processing priorities change during the processing activity. Likewise, configurable systems or hardware resources themselves can be activated (e.g., through a local orchestrator) to provide additional resources to meet the new demand (e.g., adapt the compute resources to the workload data).
The edge resource node(s) 640 also communicate with the core data center 650, which may include compute servers, appliances, and/or other components located in a central location (e.g., a central office of a cellular communication network). The example core data center 650 may provide a gateway to the global network cloud 660 (e.g., the Internet) for the edge cloud 110 operations formed by the edge resource node(s) 640 and the edge gateway devices 620. Additionally, in some examples, the core data center 650 may include an amount of processing and storage capabilities and, as such, some processing and/or storage of data for the client compute devices may be performed on the core data center 650 (e.g., processing of low urgency or importance, or high complexity).
The edge gateway nodes 620 or the edge resource node(s) 640 may offer the use of stateful applications 632 and a geographic distributed database 634. Although the applications 632 and database 634 are illustrated as being horizontally distributed at a layer of the edge cloud 110, it will be understood that resources, services, or other components of the application may be vertically distributed throughout the edge cloud (including, part of the application executed at the client compute node 610, other parts at the edge gateway nodes 620 or the edge resource node(s) 640, etc.). Additionally, as stated previously, there can be peer relationships at any level to meet service objectives and obligations. Further, the data for a specific client or application can move from edge to edge based on changing conditions (e.g., based on acceleration resource availability, following the car movement, etc.). For instance, based on the “rate of decay” of access, prediction can be made to identify the next owner to continue, or when the data or computational access will no longer be viable. These and other services may be utilized to complete the work that is needed to keep the transaction compliant and lossless.
In further scenarios, a container 636 (or pod of containers) may be flexibly migrated from one of the edge nodes 620 to other edge nodes (e.g., another one of edge nodes 620, one of the edge resource node(s) 640, etc.) such that the container with an application and workload does not need to be reconstituted, re-compiled, re-interpreted in order for migration to work. However, in such settings, there may be some remedial or “swizzling” translation operations applied. For example, the physical hardware at the edge resource node(s) 640 may differ from the hardware at the edge gateway nodes 620 and therefore, the hardware abstraction layer (HAL) that makes up the bottom edge of the container will be re-mapped to the physical layer of the target edge node. This may involve some form of late-binding technique, such as binary translation of the HAL from the container native format to the physical hardware format, or may involve mapping interfaces and operations. A pod controller may be used to drive the interface mapping as part of the container lifecycle, which includes migration to/from different hardware environments.
The scenarios encompassed by
In further configurations, the edge computing system may implement FaaS computing capabilities through the use of respective executable applications and functions. In an example, a developer writes function code (e.g., “computer code” herein) representing one or more computer functions, and the function code is uploaded to a FaaS platform provided by, for example, an edge node or data center. A trigger such as, for example, a service use case or an edge processing event, initiates the execution of the function code with the FaaS platform.
In an example of FaaS, a container is used to provide an environment in which function code (e.g., an application which may be provided by a third party) is executed. The container may be any isolated-execution entity such as a process, a Docker or Kubernetes container, a virtual machine, etc. Within the edge computing system, various datacenter, edge, and endpoint (including mobile) devices are used to “spin up” functions (e.g., activate and/or allocate function actions) that are scaled on demand. The function code gets executed on the physical infrastructure (e.g., edge computing node) device and underlying virtualized containers. Finally, container is “spun down” (e.g., deactivated and/or deallocated) on the infrastructure in response to the execution being completed.
Further aspects of FaaS may enable deployment of edge functions in a service fashion, including a support of respective functions that support edge computing as a service (Edge-as-a-Service or “EaaS”). Additional features of FaaS may include: a granular billing component that enables customers (e.g., computer code developers) to pay only when their code gets executed; common data storage to store data for reuse by one or more functions; orchestration and management among individual functions; function execution management, parallelism, and consolidation; management of container and function memory spaces; coordination of acceleration resources available for functions; and distribution of functions between containers (including “warm” containers, already deployed or operating, versus “cold” which require initialization, deployment, or configuration).
The edge computing system 600 can include or be in communication with an edge provisioning node 644. The edge provisioning node 644 can distribute software such as the example computer readable instructions 1382 of
In an example, edge provisioning node 644 includes one or more servers and one or more storage devices. The storage devices host computer readable instructions such as the example computer readable instructions 1382 of
In some examples, the processor platform(s) that execute the computer readable instructions 1382 can be physically located in different geographic locations, legal jurisdictions, etc. In some examples, one or more servers of the edge provisioning node 644 periodically offer, transmit, and/or force updates to the software instructions (e.g., the example computer readable instructions 1382 of
In further examples, any of the compute nodes or devices discussed with reference to the present edge computing systems and environment may be fulfilled based on the components depicted in
The example cloud backend 701 of
The example network 702 of
The exampled edge cloud 110 of
The example edge/client-side orchestrator circuitry 708 of
In some examples, during the discovery, the edge/client-side orchestrator circuitry 708 of
The example backend gatekeeper circuitry 710 of
Although the example of
The example interception circuitry 800 of
The example domain adjustment circuitry 802 of
The example interface 804 of
The example workload execution circuitry 806 of
The example resource determination circuitry 808 of
The example interface 810 of the backend gatekeeper circuitry of
The example workload distribution circuitry 812 of
The example resource determination circuitry 814 of
While an example manner of implementing the example edge/client-side orchestrator circuitry 708 and/or the example backend gatekeeper circuitry 710 of
Flowcharts representative of example hardware logic, machine readable instructions, hardware implemented state machines, and/or any combination thereof for implementing the example edge/client-side orchestrator circuitry 708 and/or the example backend gatekeeper circuitry 710 of
The machine readable instructions described herein may be stored in one or more of a compressed format, an encrypted format, a fragmented format, a compiled format, an executable format, a packaged format, etc. Machine readable instructions as described herein may be stored as data (e.g., portions of instructions, code, representations of code, etc.) that may be utilized to create, manufacture, and/or produce machine executable instructions. For example, the machine readable instructions may be fragmented and stored on one or more storage devices and/or computing devices (e.g., servers). The machine readable instructions may require one or more of installation, modification, adaptation, updating, combining, supplementing, configuring, decryption, decompression, unpacking, distribution, reassignment, compilation, etc. in order to make them directly readable, interpretable, and/or executable by a computing device and/or other machine. For example, the machine readable instructions may be stored in multiple parts, which are individually compressed, encrypted, and stored on separate computing devices, wherein the parts when decrypted, decompressed, and combined form a set of executable instructions that implement a program such as that described herein.
In another example, the machine readable instructions may be stored in a state in which they may be read by a computer, but require addition of a library (e.g., a dynamic link library (DLL), Windows, a shared object (SO), Linux), a software development kit (SDK), an application programming interface (API), etc. in order to execute the instructions on a particular computing device or other device. In another example, the machine readable instructions may need to be configured (e.g., settings stored, data input, network addresses recorded, etc.) before the machine readable instructions and/or the corresponding program(s) can be executed in whole or in part. Thus, the disclosed machine readable instructions and/or corresponding program(s) are intended to encompass such machine readable instructions and/or program(s) regardless of the particular format or state of the machine readable instructions and/or program(s) when stored or otherwise at rest or in transit.
The machine readable instructions described herein can be represented by any past, present, or future instruction language, scripting language, programming language, etc. For example, the machine readable instructions may be represented using any of the following languages: C, C++, Java, C#, Perl, Python, JavaScript, HyperText Markup Language (HTML), Structured Query Language (SQL), Swift, etc.
As mentioned above, the example programs of
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc. may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, (6) B with C, and (7) A with B and with C. As used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. Similarly, as used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. As used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. Similarly, as used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B.
As used herein, singular references (e.g., “a”, “an”, “first”, “second”, etc.) do not exclude a plurality. The term “a” or “an” entity, as used herein, refers to one or more of that entity. The terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein. Furthermore, although individually listed, a plurality of means, elements or method actions may be implemented by, e.g., a single unit or processor. Additionally, although individual features may be included in different examples or claims, these may possibly be combined, and the inclusion in different examples or claims does not imply that a combination of features is not feasible and/or advantageous.
At block 902, the example interception circuitry 800 of the client/edge computing device 704 determines if the client/edge computing device 704 (e.g., a web application rendered in a browser in the client/edge computing device 704) initiated a call to the cloud. For example, when the client/edge computing device 704 is in communication with the cloud backend 701 (e.g., to functions be executed by the cloud backend 701), the client/edge computing device 704 may transmit a call to the applications cloud backend in the form of a REST API call, a DNS call, a client side proxy call, and/or calling an HTTP request to the cloud backend 701. If the example interception circuitry 800 determines that the client/edge computing device 704 (e.g., a web application of the client/edge computing device 704) did not initiated a call to the cloud backend 701 (block 902: NO), control returns to block 902 until the call to the cloud is initiated.
If the example interception circuitry 800 determines that the client/edge computing device 704 (e.g., a web application of the client/edge computing device 704) initiated a call to the cloud backend 701 (block 902: YES), the example interception circuitry 800 intercepts the call and processes the call to identify the requested domain location (e.g., microSvc.foo.com) (block 904). At block 906, the example domain adjustment circuitry 802 adjusts the requested domain. For example, the example domain adjustment circuitry 802 may prepend the domain with a known prefix (e.g., ‘cfc’) to generate the adjusted requested domain (e.g., cfc.microSvc1.foo.com). The workload execution circuitry 806 can determine whether the adjusted domain resolves to determine whether the cloud backend 701 is not participating in client side orchestration.
At block 907, the example workload execution circuitry 806 determines if the adjusted domain resolves. For example, the workload execution circuitry 806 does a real DNS lookup for the adjusted domain to determine whether the adjusted domain resolves. If the workload execution circuitry 806 determines that the adjusted domain does not resolve (block 907: NO), the workload execution circuitry 806 determines that the cloud backend 701 is not participating in client side orchestration and the instructions end. If the workload execution circuitry 806 determines that the adjusted domain resolves (block 907: YES), the example workload execution circuitry 806 determines that the cloud backend 701 is participating in client side orchestration and the example interface 804 sends (e.g., transmits via a wireless communication and/or causes an interface to transmit via a wireless communication) a discovery request at the adjusted request domain to the cloud backend 701 (e.g., via the network 702) (block 908). In some examples, the request includes a list of requested services and a list of resources available at the client/edge computing device 704 for execution of workloads. At block 910, the example workload distribution circuitry 812 of the example cloud backend 701 determines whether to accept the request. If the example workload distribution circuitry 812 does not accept the request (block 910: NO), the example interface 810 transmits (e.g., sends or causes an interface to send) a failure response that informs the example edge/client-side orchestrator circuitry 708 (block 912).
Workloads require resources (e.g., processor bandwidth, memory bandwidth, etc.) to implement. Accordingly, if the example workload distribution circuitry 812 accepts the request (block 910: YES), the example resource determination circuitry 814 evaluates ability and/or availability of resources of the client/edge computing device 704 (block 914). The example resource determination circuitry 814 evaluates the ability and/or availability of the resources of the client/edge computing device 704 (e.g., with respect to the amount of resources needed to execute one or more workloads) to determine whether the client/edge computing device 704 is able and/or capable of executing the one or more workloads (e.g., all or part of the workloads 720 of
At block 916, the example resource determination circuitry 808 determines if the client/edge computing device 704 is capable of executing the workload(s) locally at the client/edge computing device 704 (e.g., by comparing the resource requirements for the workload(s) to the capability of the client/edge computing device 704). If the example resource determination circuitry 808 determines that the client/edge computing device 704 can execute a subset of the workloads that could be deployed to the client/edge computing device 704 if the client/edge computing device 704 had more resource capability, the backend gatekeeper circuitry 710 may rank the workloads based on privacy and/or end user concerns to ensure that if the backend gatekeeper circuitry 710 is going to select one or more workloads from a list of workloads, the backend gatekeeper circuitry 710 can select based on the privacy and/or other concerns of the end user.
If the example resource determination circuitry 814 determines that the client/edge computing device 704 is not capable of executing a workload locally (block 916: NO), the example interface 810 response to the discovery call (e.g., sends or causes an interface to send) with a no local execution response (block 918). The no local execution response identifies that the cloud backend 701 has determined that the client/edge computing device 704 is not capable of handling a workload locally. If the example resource determination circuitry 814 determines that the client/edge computing device 704 is capable of executing one or more workloads locally (block 916: YES), the example interface 810 responses to the discovery call (e.g., sends or causes an interface to send) with a file that corresponds to a location of a container that corresponds to the workload 720 (block 920). For example, the backend gatekeeper circuitry 710 may transmit a file including the location of one or more containers corresponding to the one or more workloads in the cloud backend 701. The backend gatekeeper circuitry 710 may also transmit additional requirements that the edge/client-side orchestrator circuitry 708 can use to determine whether and how to deploy the workloads. In this manner, the client/edge computing device 704 can download and/or otherwise obtain the one or more containers to execute locally at the client/edge computing device 704. In some examples, the interface 810 deploys and/or instructs components of the cloud backend 701 to deploy the containers corresponding to the one or more workloads directly to the client/edge computing device 704.
At block 922, the example workload execution circuitry 806 of the example edge computing device 704 determines if instructions to execute workloads locally has been obtained (e.g., via the interface 804). If the example workload execution circuitry 806 determines that instructions to execute workloads locally has not been obtained (block 922: NO), the instructions end. If the example workload execution circuitry 806 determines that instructions to execute workloads locally has been obtained (block 922: YES), the example workload execution circuitry 806 loads (e.g., accesses, downloads, requests, etc.) one or more container(s) from the cloud backend 701 corresponding to one or more workload(s) based on the instructions (block 924). At block 926, the example workload execution circuitry 806 routes the target IP address and/or port to the locally running container (e.g., the IP address and/or port corresponding to the container now implemented in client/edge computing device 704). Because system routing and/or firewall rules may be used to re-route requests, the local IP routing is transparent to the calling application resulting in no changes to the application and possibly no, or minor, deployment access control list (ACL) modifications to the ISV's infrastructure. After the target IP address and/or port is routed or rerouted, the client/edge computing device 704 begins execution of the workload(s).
At block 928, the example workload execution circuitry 806 determines whether to terminate local execution of the workload(s). The example workload execution circuitry 806 may terminate a workload when the workload is complete, based on the health of a component of the client/edge computing device 704, based on user instructions, based on an amount of time, based on a change in the availability and/or capability of the resources of the client/edge computing device 704, etc. If the example workload execution circuitry 806 determines that the local execution of the workload should not be terminated (block 928: NO), the client/edge computing device 704 continues to execute the workload(s) locally. If the example workload execution circuitry 806 determines that the local execution of the workload should be terminated (block 928: YES), the example workload execution circuitry 806 terminates local execution of the workload by terminating the routing of the workload from the locally running container (block 930). The termination of the routing automatically re-routes calls to the workload back to the cloud backend 701.
At block 1002, the example interception circuitry 800 of the client/edge computing device 704 determines if the client/edge computing device 704 (e.g., a web application rendered in a browser in the client/edge computing device 704) initiated a call to the cloud. For example, when the client/edge computing device 704 is in communication with the cloud backend 701 (e.g., to functions be executed by the cloud backend 701), the client/edge computing device 704 may transmit a call to the applications cloud backend in the form of a REST API call, a DNS call, a client side proxy call, and/or calling an HTTP request to the cloud backend 701. If the example interception circuitry 800 determines that the client/edge computing device 704 (e.g., a web application of the client/edge computing device 704) did not initiate a call to the cloud backend 701 (block 1002: NO), control returns to block 1002 until the call to the cloud is initiated.
If the example interception circuitry 800 determines that the client/edge computing device 704 (e.g., a web application of the client/edge computing device 704) initiated a call to the cloud backend 701 (block 1002: YES), the example interception circuitry 800 intercepts the call and processes the call to identify the requested domain location (e.g., microSvc.foo.com) (block 1004). At block 1006, the example domain adjustment circuitry 802 adjusts the requested domain. For example, the example domain adjustment circuitry 802 may prepend the domain with a known prefix (e.g., ‘cfc’) to generate the workload execution circuitry 806 can determine whether the adjusted domain resolves to determine whether the cloud backend 701 is not participating in client side orchestration.
At block 1007, the example workload execution circuitry 806 determines if the adjusted domain resolves. For example, the workload execution circuitry 806 does a real DNS lookup for the adjusted domain to determine whether the adjusted domain resolves. If the workload execution circuitry 806 determines that the adjusted domain does not resolve (block 1007: NO), the workload execution circuitry 806 determines that the cloud backend 701 is not participating in client side orchestration and the instructions end. If the example workload execution circuitry 806 determines that the adjusted domain resolves (block 1007: YES), the workload execution circuitry 806 determines that the cloud backend 701 is participating in client side orchestration and the example workload orchestrator circuitry 708 sends (e.g., transmits via a wireless communication using the example interface 804) a discovery request at the adjusted request domain to the cloud backend 701 (e.g., via the network 702) (block 1008). At block 1010, the example workload distribution circuitry 812 of the example cloud backend 701 determines whether to accept the request. If the example workload distribution circuitry 812 does not accept the request (block 1010: NO), the example interface 810 responds with a failure response to informs the example edge/client-side orchestrator circuitry 708 (block 1012).
If the example workload distribution circuitry 812 accepts the request (block 1010: YES), the example interface 810 responds with rules, configurations and/or location information corresponding to the local execution of one or more workloads (block 1014). For example, the workload distribution circuitry 812 can response (e.g., via the interface 810) with a file that includes the location of one or more containers that correspond to the one or more workloads and/or the amount of resources necessary to execute the one or more workloads. The workload distribution circuitry 812 can also transmit (e.g., via the interface 810) additional requirements that the edge/client-side orchestrator circuitry 708 can use to determine whether and how to deploy the workloads. In this manner, the example client/edge computing device 704 can make a determination as to whether it has the necessary resources to execute one or more of the workloads.
At block 1016, the example workload execution circuitry 806 of the example edge computing device 704 determines if instructions to execute workloads locally has been obtained (e.g., via the interface 804) (block 1016). If the example workload execution circuitry 806 determines that instructions to execute workloads locally has not been obtained (block 1016: NO), the instructions end. If the example workload execution circuitry 806 determines that instructions to execute workloads locally has been obtained (block 1016: YES), the example resource determination circuitry 808 determines if the resources of the client/edge computing device 704 are capable of executing (e.g., both sufficient to execute and available to execute) one or more of the workload(s) locally based on the obtained rules and/or configuration information (e.g., from the cloud backend 701) (block 1018). If the resource determination circuitry 808 determines that the client/edge computing device 704 can execute a subset of the workloads, the workload execution circuitry 806 may rank the workloads based on privacy and/or end user concerns to ensure that the privacy and/or other concerns of the end user are prioritized when selecting which workloads to implement locally.
If the example resource determination circuitry 808 determines that the resources of the client/edge computing device 704 are not capable of executing one or more of the workload(s) (block 1018: NO), the instructions end. If the example resource determination circuitry 808 determines that the resources of the client/edge computing device 704 are capable of executing one or more of the workload(s) (block 1018: YES), the example workload execution circuitry 806 loads (e.g., accesses, downloads, requests, etc.) one or more container(s) from the cloud backend 701 corresponding to one or more workload(s) based on the location instructions (block 1020). At block 1022, the example workload execution circuitry 806 routes the target IP address and/or port to the locally running container (e.g., the IP address and/or port corresponding to the container now implemented in client/edge computing device 704). Because system routing and/or firewall rules may be used to re-route requests, the local IP routing is transparent to the calling application resulting in no changes to the application and possibly no, or minor, deployment ACL modifications to the ISV's infrastructure. After the target IP address and/or port is routed or rerouted, the example workload execution circuitry 806 begins execution of the workload(s).
At block 1024, the example workload execution circuitry 806 determines whether to terminate local execution of the workload(s). The example workload execution circuitry 806 may terminate a workload when the workload is complete, based on the health of a component of the client/edge computing device 704, based on user instructions, based on an amount of time, based on a change in the availability and/or capability of the resources of the client/edge computing device 704, etc. If the example workload execution circuitry 806 determines that the local execution of the workload should not be terminated (block 1024: NO), the client/edge computing device 704 continues to execute the workload(s) locally.
If the example workload execution circuitry 806 determines that the local execution of the workload should be terminated (block 1024: YES), the example workload execution circuitry 806 terminates local execution of the workload by terminating the routing of the workload from the locally running container (block 1026). The termination of the routing automatically re-routes calls to the workload back to the cloud backend 701. If the resource determination circuitry 808 determines that the client/edge computing device 704 can execute a subset of the workloads that could be deployed to the client/edge computing device 704 if the client/edge computing device 704 had more resource capability, the workload execution circuitry 806 may rank the workloads based on privacy and/or end user concerns to ensure that if the backend gatekeeper circuitry 710 is going to select one or more workloads from a list of workloads, the backend gatekeeper circuitry 710 can select based on the privacy and/or other concerns of the end user.
The rendering portion of the client (e.g., the web application 1202 of
In some examples, the edge/client-side orchestrator circuitry 708 traps the DNS lookup that the client application makes when talking to its cloud services, and the example edge/client-side orchestrator circuitry 708 pre-pends a subdomain to the requested domain. For example, if an HTTP request (e.g., communication F1101) was made to http://microSvc1.foo.com, the example edge/client-side orchestrator circuitry 708 can prepend a known prefix (in this case ‘cfc’) as a subdomain and look up the name space in DNS using the example communication F1102. If cfc.microSvc1.foo.com resolves (e.g., based on a response corresponding to the communication F1103), the example edge/client-side orchestrator circuitry 708 determines that the ISV supporting http://microSvc1.foo.com is participating in the client side orchestration process.
After receiving the example communication F1102, the example backend gatekeeper circuitry 710 enables the ability to evaluate if the edge device is capable of running the edge container (e.g., using the example rules evaluator 1210), and if so, the example backend gatekeeper circuitry 710 replies with the proper information to find, load, run and monitor the container (using the example communication F1106).
In some examples, a full set of client configuration and performance, performance history, device make, device type, processor speed, memory size (including free, allocated and possibly history), co-processors, hardware accelerators, etc. is supplied in the call F1102 to the application service 105. The application service 1205 makes a decision about which components, if any, to run on the client, and will send back instructions about what components to run, any configuration information, and any credentials using the communication F1106. The container corresponding to the example microservice 106 that is deployed (e.g., based on instructions from the example orchestrator 1206) from the cloud to the client may be the same as the container corresponding to microservice 104 that is running in a horizontally scaled backend for the ISV, but it does not have to be.
In some examples, the decision about the components to deploy can be done on the client (corresponding to communication F1103). In such examples, the cloud will send its rules information, container repository information, configuration information to the client, and the client will make the decision to download and execute the containers.
After information is passed back to the client side (e.g., based on communication F1104), the returned information is used to load, run, and monitor the container locally at the client. Additionally, the client routes the target IP address and/or port resolved by the name pace (e.g., http://microSvc1.foo.com) to the locally running container (IP address and port are used to route locally). For example, a docker based container deployment for the local IP address would be 172.17.0.X. Communication F1105 represents a call to execute the workload after rerouting.
Because system routing and/or firewall rules can be used to re-route requests (using communication 1209), the local IP routing is transparent to the calling application resulting in no changes to the application and possibly no or minor deployment ACL modifications to the ISV's infrastructure. To terminate the local execution of the workload, the client removes the routing (corresponding to communication 1209) to the client container and terminate the execution of that container locally. This action re-routes call back to the ISV's cloud. The termination can also be based on monitoring the health of the container 1208, and the rerouting to the ISV's cloud is automatic.
The example compute node 1300 may be embodied as any type of engine, device, or collection of devices capable of performing various compute functions. In some examples, the compute node 1300 may be embodied as a single device such as an integrated circuit, an embedded system, a field-programmable gate array (FPGA), a system-on-a-chip (SOC), or other integrated system or device. In the illustrative example, the compute node 1300 includes or is embodied as a processor 1304 and a memory 1306. The example processor 1304 may be embodied as any type of processor capable of performing the functions described herein (e.g., executing an application). For example, the processor 1304 may be embodied as a multi-core processor(s), a microcontroller, a processing unit, a specialized or special purpose processing unit, or other processor or processing/controlling circuit.
In some examples, the processor 1304 may be embodied as, include, or be coupled to an FPGA, an application specific integrated circuit (ASIC), reconfigurable hardware or hardware circuitry, or other specialized hardware to facilitate performance of the functions described herein. Also in some examples, the processor 1304 may be embodied as a specialized x-processing unit (xPU) also known as a data processing unit (DPU), infrastructure processing unit (IPU), or network processing unit (NPU). Such an xPU may be embodied as a standalone circuit or circuit package, integrated within an SOC, or integrated with networking circuitry (e.g., in a SmartNIC), acceleration circuitry, storage devices, or AI hardware (e.g., GPUs or programmed FPGAs). Such an xPU may be designed to receive programming to process one or more data streams and perform specific tasks and actions for the data streams (such as hosting microservices, performing service management or orchestration, organizing or managing server or data center hardware, managing service meshes, or collecting and distributing telemetry), outside of the CPU or general purpose processing hardware. However, it will be understood that a xPU, a SOC, a CPU, and other variations of the processor 1304 may work in coordination with each other to execute many types of operations and instructions within and on behalf of the compute node 1300.
The example memory 1306 may be embodied as any type of volatile (e.g., dynamic random access memory (DRAM), etc.) or non-volatile memory or data storage capable of performing the functions described herein. Volatile memory may be a storage medium that requires power to maintain the state of data stored by the medium. Non-limiting examples of volatile memory may include various types of random access memory (RAM), such as DRAM or static random access memory (SRAM). One particular type of DRAM that may be used in a memory module is synchronous dynamic random access memory (SDRAM).
In an example, the memory device 1306 is a block addressable memory device, such as those based on NAND or NOR technologies. A memory device 1306 may also include a three dimensional crosspoint memory device (e.g., Intel® 3D XPoint™ memory), or other byte addressable write-in-place nonvolatile memory devices. The memory device 1306 may refer to the die itself and/or to a packaged memory product. In some examples, 3D crosspoint memory (e.g., Intel® 3D XPoint™ memory) may comprise a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance. In some examples, all or a portion of the memory 1306 may be integrated into the processor 1304. The memory 1306 may store various software and data used during operation such as one or more applications, data operated on by the application(s), libraries, and drivers.
The example compute circuitry 1302 is communicatively coupled to other components of the compute node 1300 via the I/O subsystem 1308, which may be embodied as circuitry and/or components to facilitate input/output operations with the compute circuitry 1302 (e.g., with the processor 1304 and/or the main memory 1306) and other components of the compute circuitry 1302. For example, the I/O subsystem 1308 may be embodied as, or otherwise include, memory controller hubs, input/output control hubs, integrated sensor hubs, firmware devices, communication links (e.g., point-to-point links, bus links, wires, cables, light guides, printed circuit board traces, etc.), and/or other components and subsystems to facilitate the input/output operations. In some examples, the I/O subsystem 1308 may form a portion of a system-on-a-chip (SoC) and be incorporated, along with one or more of the processor 1304, the memory 1306, and other components of the compute circuitry 1302, into the compute circuitry 1302.
The one or more illustrative data storage devices 1310 may be embodied as any type of devices configured for short-term or long-term storage of data such as, for example, memory devices and circuits, memory cards, hard disk drives, solid-state drives, or other data storage devices. Individual data storage devices 1310 may include a system partition that stores data and firmware code for the data storage device 1310. Individual data storage devices 1310 may also include one or more operating system partitions that store data files and executables for operating systems depending on, for example, the type of compute node 1300.
The example communication circuitry 1312 may be embodied as any communication circuit, device, or collection thereof, capable of enabling communications over a network between the compute circuitry 1302 and another compute device (e.g., an edge gateway of an implementing edge computing system). The example communication circuitry 1312 may be configured to use any one or more communication technology (e.g., wired or wireless communications) and associated protocols (e.g., a cellular networking protocol such a 3GPP 4G or 5G standard, a wireless local area network protocol such as IEEE 802.11/Wi-Fi®, a wireless wide area network protocol, Ethernet, Bluetooth®, Bluetooth Low Energy, a IoT protocol such as IEEE 802.15.4 or ZigBee®, low-power wide-area network (LPWAN) or low-power wide-area (LPWA) protocols, etc.) to effect such communication.
The illustrative communication circuitry 1312 includes a network interface controller (NIC) 1320, which may also be referred to as a host fabric interface (HFI). The example NIC 1320 may be embodied as one or more add-in-boards, daughter cards, network interface cards, controller chips, chipsets, or other devices that may be used by the compute node 1300 to connect with another compute device (e.g., an edge gateway node). In some examples, the NIC 1320 may be embodied as part of a system-on-a-chip (SoC) that includes one or more processors, or included on a multichip package that also contains one or more processors. In some examples, the NIC 1320 may include a local processor (not shown) and/or a local memory (not shown) that are both local to the NIC 1320. In such examples, the local processor of the NIC 1320 may be capable of performing one or more of the functions of the compute circuitry 1302 described herein. Additionally, or alternatively, in such examples, the local memory of the NIC 1320 may be integrated into one or more components of the client compute node at the board level, socket level, chip level, and/or other levels.
Additionally, in some examples, a respective compute node 1300 may include one or more peripheral devices 1314. Such peripheral devices 1314 may include any type of peripheral device found in a compute device or server such as audio input devices, a display, other input/output devices, interface devices, and/or other peripheral devices, depending on the particular type of the compute node 1300. In further examples, the compute node 1300 may be embodied by a respective edge compute node (whether a client, gateway, or aggregation node) in an edge computing system or like forms of appliances, computers, subsystems, circuitry, or other components.
In a more detailed example,
The computing device 1350 may include processing circuitry in the form of a processor 1352, which may be a microprocessor, a multi-core processor, a multithreaded processor, an ultra-low voltage processor, an embedded processor, an xPU/DPU/IPU/NPU, special purpose processing unit, specialized processing unit, or other known processing elements. The processor 1352 may be a part of a system on a chip (SoC) in which the processor 1352 and other components are formed into a single integrated circuit, or a single package, such as the Edison™ or Galileo™ SoC boards from Intel Corporation, Santa Clara, California. As an example, the processor 1352 may include an Intel® Architecture Core™ based CPU processor, such as a Quark™, an Atom™, an i3, an i5, an i14, an i9, or an MCU-class processor, or another such processor available from Intel®. However, any number other processors may be used, such as available from Advanced Micro Devices, Inc. (AMD®) of Sunnyvale, California, a MIPS®-based design from MIPS Technologies, Inc. of Sunnyvale, California, an ARM®-based design licensed from ARM Holdings, Ltd. or a customer thereof, or their licensees or adopters. The processors may include units such as an A5-A13 processor from Apple® Inc., a Snapdragon™ processor from Qualcomm® Technologies, Inc., or an OMAP™ processor from Texas Instruments, Inc. The processor 1352 and accompanying circuitry may be provided in a single socket form factor, multiple socket form factor, or a variety of other formats, including in limited hardware configurations or configurations that include fewer than all elements shown in
The processor 1352 may communicate with a system memory 1354 over an interconnect 1356 (e.g., a bus). Any number of memory devices may be used to provide for a given amount of system memory. As examples, the memory 1354 may be random access memory (RAM) in accordance with a Joint Electron Devices Engineering Council (JEDEC) design such as the DDR or mobile DDR standards (e.g., LPDDR, LPDDR2, LPDDR3, or LPDDR4). In particular examples, a memory component may comply with a DRAM standard promulgated by JEDEC, such as JESD149F for DDR SDRAM, JESD149-2F for DDR2 SDRAM, JESD149-3F for DDR3 SDRAM, JESD149-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR), JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4. Such standards (and similar standards) may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces. In various implementations, the individual memory devices may be of any number of different package types such as single die package (SDP), dual die package (DDP) or quad die package (Q114P). These devices, in some examples, may be directly soldered onto a motherboard to provide a lower profile solution, while in other examples the devices are configured as one or more memory modules that in turn couple to the motherboard by a given connector. Any number of other memory implementations may be used, such as other types of memory modules, e.g., dual inline memory modules (DIMMs) of different varieties including but not limited to microDIMMs or MiniDIMMs.
To provide for persistent storage of information such as data, applications, operating systems and so forth, a storage 1358 may also couple to the processor 1352 via the interconnect 1356. In an example, the storage 1358 may be implemented via a solid-state disk drive (SSDD). Other devices that may be used for the storage 1358 include flash memory cards, such as Secure Digital (SD) cards, microSD cards, eXtreme Digital (XD) picture cards, and the like, and Universal Serial Bus (USB) flash drives. In an example, the memory device may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory.
In low power implementations, the storage 1358 may be on-die memory or registers associated with the processor 1352. However, in some examples, the storage 1358 may be implemented using a micro hard disk drive (HDD). Further, any number of new technologies may be used for the storage 1358 in addition to, or instead of, the technologies described, such resistance change memories, phase change memories, holographic memories, or chemical memories, among others.
The components may communicate over the interconnect 1356. The interconnect 1356 may include any number of technologies, including industry standard architecture (ISA), extended ISA (EISA), peripheral component interconnect (PCI), peripheral component interconnect extended (PCIx), PCI express (PCIe), or any number of other technologies. The interconnect 1356 may be a proprietary bus, for example, used in an SoC based system. Other bus systems may be included, such as an Inter-Integrated Circuit (I2C) interface, a Serial Peripheral Interface (SPI) interface, point to point interfaces, and a power bus, among others.
The interconnect 1356 may couple the processor 1352 to a transceiver 1366, for communications with the connected edge devices 1362. The transceiver 1366 may use any number of frequencies and protocols, such as 2.4 Gigahertz (GHz) transmissions under the IEEE 802.15.4 standard, using the Bluetooth® low energy (BLE) standard, as defined by the Bluetooth® Special Interest Group, or the ZigBee® standard, among others. Any number of radios, configured for a particular wireless communication protocol, may be used for the connections to the connected edge devices 1362. For example, a wireless local area network (WLAN) unit may be used to implement Wi-Fi® communications in accordance with the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. In addition, wireless wide area communications, e.g., according to a cellular or other wireless wide area protocol, may occur via a wireless wide area network (WWAN) unit.
The wireless network transceiver 1366 (or multiple transceivers) may communicate using multiple standards or radios for communications at a different range. For example, the computing device 1350 may communicate with close devices, e.g., within about 10 meters, using a local transceiver based on Bluetooth Low Energy (BLE), or another low power radio, to save power. More distant connected edge devices 1362, e.g., within about 50 meters, may be reached over ZigBee® or other intermediate power radios. Both communications techniques may take place over a single radio at different power levels or may take place over separate transceivers, for example, a local transceiver using BLE and a separate mesh transceiver using ZigBee®.
A wireless network transceiver 1366 (e.g., a radio transceiver) may be included to communicate with devices or services in the edge cloud 1395 via local or wide area network protocols. The wireless network transceiver 1366 may be a low-power wide-area (LPWA) transceiver that follows the IEEE 802.15.4, or IEEE 802.15.4g standards, among others. The computing device 1350 may communicate over a wide area using LoRaWAN™ (Long Range Wide Area Network) developed by Semtech and the LoRa Alliance. The techniques described herein are not limited to these technologies but may be used with any number of other cloud transceivers that implement long range, low bandwidth communications, such as Sigfox, and other technologies. Further, other communications techniques, such as time-slotted channel hopping, described in the IEEE 802.15.4e specification may be used.
Any number of other radio communications and protocols may be used in addition to the systems mentioned for the wireless network transceiver 1366, as described herein. For example, the transceiver 1366 may include a cellular transceiver that uses spread spectrum (SPA/SAS) communications for implementing high-speed communications. Further, any number of other protocols may be used, such as Wi-Fi® networks for medium speed communications and provision of network communications. The transceiver 1366 may include radios that are compatible with any number of 3GPP (Third Generation Partnership Project) specifications, such as Long Term Evolution (LTE) and 5th Generation (5G) communication systems, discussed in further detail at the end of the present disclosure. A network interface controller (NIC) 1368 may be included to provide a wired communication to nodes of the edge cloud 1395 or to other devices, such as the connected edge devices 1362 (e.g., operating in a mesh). The wired communication may provide an Ethernet connection or may be based on other types of networks, such as Controller Area Network (CAN), Local Interconnect Network (LIN), DeviceNet, ControlNet, Data Highway+, PROFIBUS, or PROFINET, among many others. An additional NIC 1368 may be included to enable connecting to a second network, for example, a first NIC 1368 providing communications to the cloud over Ethernet, and a second NIC 1368 providing communications to other devices over another type of network.
Given the variety of types of applicable communications from the device to another component or network, applicable communications circuitry used by the device may include or be embodied by any one or more of components 1364, 1366, 1368, or 1370. Accordingly, in various examples, applicable means for communicating (e.g., receiving, transmitting, etc.) may be embodied by such communications circuitry.
The computing device 1350 may include or be coupled to acceleration circuitry 1364, which may be embodied by one or more artificial intelligence (AI) accelerators, a neural compute stick, neuromorphic hardware, an FPGA, an arrangement of GPUs, an arrangement of xPUs/DPUs/IPU/NPUs, one or more SoCs, one or more CPUs, one or more digital signal processors, dedicated ASICs, or other forms of specialized processors or circuitry designed to accomplish one or more specialized tasks. These tasks may include AI processing (including machine learning, training, inferencing, and classification operations), visual data processing, network data processing, object detection, rule analysis, or the like. These tasks also may include the specific edge computing tasks for service management and service operations discussed elsewhere in this document.
The interconnect 1356 may couple the processor 1352 to a sensor hub or external interface 1370 that is used to connect additional devices or subsystems. The devices may include sensors 1372, such as accelerometers, level sensors, flow sensors, optical light sensors, camera sensors, temperature sensors, global navigation system (e.g., GPS) sensors, pressure sensors, barometric pressure sensors, and the like. The hub or interface 1370 further may be used to connect the computing device 1350 to actuators 1374, such as power switches, valve actuators, an audible sound generator, a visual warning device, and the like.
In some optional examples, various input/output (I/O) devices may be present within or connected to, the computing device 1350. For example, a display or other output device 1384 may be included to show information, such as sensor readings or actuator position. An input device 1386, such as a touch screen or keypad may be included to accept input. An output device 1384 may include any number of forms of audio or visual display, including simple visual outputs such as binary status indicators (e.g., light-emitting diodes (LEDs)) and multi-character visual outputs, or more complex outputs such as display screens (e.g., liquid crystal display (LCD) screens), with the output of characters, graphics, multimedia objects, and the like being generated or produced from the operation of the computing device 1350. A display or console hardware, in the context of the present system, may be used to provide output and receive input of an edge computing system; to manage components or services of an edge computing system; identify a state of an edge computing component or service; or to conduct any other number of management or administration functions or service use cases.
A battery 1376 may power the computing device 1350, although, in examples in which the computing device 1350 is mounted in a fixed location, it may have a power supply coupled to an electrical grid, or the battery may be used as a backup or for temporary capabilities. The battery 1376 may be a lithium ion battery, or a metal-air battery, such as a zinc-air battery, an aluminum-air battery, a lithium-air battery, and the like.
A battery monitor/charger 1378 may be included in the computing device 1350 to track the state of charge (SoCh) of the battery 1376, if included. The battery monitor/charger 1378 may be used to monitor other parameters of the battery 1376 to provide failure predictions, such as the state of health (SoH) and the state of function (SoF) of the battery 1376. The battery monitor/charger 1378 may include a battery monitoring integrated circuit, such as an LTC4020 or an LTC2990 from Linear Technologies, an ADT7488A from ON Semiconductor of Phoenix Arizona, or an IC from the UCD90xxx family from Texas Instruments of Dallas, TX. The battery monitor/charger 1378 may communicate the information on the battery 1376 to the processor 1352 over the interconnect 1356. The battery monitor/charger 1378 may also include an analog-to-digital (ADC) converter that enables the processor 1352 to directly monitor the voltage of the battery 1376 or the current flow from the battery 1376. The battery parameters may be used to determine actions that the computing device 1350 may perform, such as transmission frequency, mesh network operation, sensing frequency, and the like.
A power block 1380, or other power supply coupled to a grid, may be coupled with the battery monitor/charger 1378 to charge the battery 1376. In some examples, the power block 1380 may be replaced with a wireless power receiver to obtain the power wirelessly, for example, through a loop antenna in the computing device 1350. A wireless battery charging circuit, such as an LTC4020 chip from Linear Technologies of Milpitas, California, among others, may be included in the battery monitor/charger 1378. The specific charging circuits may be selected based on the size of the battery 1376, and thus, the current required. The charging may be performed using the Airfuel standard promulgated by the Airfuel Alliance, the Qi wireless charging standard promulgated by the Wireless Power Consortium, or the Rezence charging standard, promulgated by the Alliance for Wireless Power, among others.
The storage 1358 may include instructions 1382 in the form of software, firmware, or hardware commands to implement the techniques described herein. Although such instructions 1382 are shown as code blocks included in the memory 1354 and the storage 1358, it may be understood that any of the code blocks may be replaced with hardwired circuits, for example, built into an application specific integrated circuit (ASIC).
In an example, the instructions 1382 provided via the memory 1354, the storage 1358, or the processor 1352 may be embodied as a non-transitory, machine-readable medium 1360 including code to direct the processor 1352 to perform electronic operations in the computing device 1350. The processor 1352 may access the non-transitory, machine-readable medium 1360 over the interconnect 1356. For instance, the non-transitory, machine-readable medium 1360 may be embodied by devices described for the storage 1358 or may include specific storage units such as optical disks, flash drives, or any number of other hardware devices. The non-transitory, machine-readable medium 1360 may include instructions to direct the processor 1352 to perform a specific sequence or flow of actions, for example, as described with respect to the flowchart(s) and block diagram(s) of operations and functionality depicted above. As used herein, the terms “machine-readable medium” and “computer-readable medium” are interchangeable.
Also in a specific example, the instructions 1382 on the processor 1352 (separately, or in combination with the instructions 1382 of the machine readable medium 1360) may configure execution or operation of a trusted execution environment (TEE) 1390. In an example, the TEE 1390 operates as a protected area accessible to the processor 1352 for secure execution of instructions and secure access to data. Various implementations of the TEE 1390, and an accompanying secure area in the processor 1352 or the memory 1354 may be provided, for instance, through use of Intel® Software Guard Extensions (SGX) or ARM® TrustZone® hardware security extensions, Intel® Management Engine (ME), or Intel® Converged Security Manageability Engine (CSME). Other aspects of security hardening, hardware roots-of-trust, and trusted or protected operations may be implemented in the device 1350 through the TEE 1390 and the processor 1352. As described above, the TEE 1390 may process privacy sensitive telemetry data (e.g., AI inference over telemetry data). In such examples, the TEE 1390 may ensure that the various interests (e.g., conditions) are met as a condition of acceptance and/or disclosure of the telemetry data.
In further examples, a machine-readable medium also includes any tangible medium that is capable of storing, encoding or carrying instructions for execution by a machine and that cause the machine to perform any one or more of the methodologies of the present disclosure or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions. A “machine-readable medium” thus may include but is not limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include non-volatile memory, including but not limited to, by way of example, semiconductor memory devices (e.g., electrically programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM)) and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The instructions embodied by a machine-readable medium may further be transmitted or received over a communications network using a transmission medium via a network interface device utilizing any one of a number of transfer protocols (e.g., Hypertext Transfer Protocol (HTTP)).
A machine-readable medium may be provided by a storage device or other apparatus which is capable of hosting data in a non-transitory format. In an example, information stored or otherwise provided on a machine-readable medium may be representative of instructions, such as instructions themselves or a format from which the instructions may be derived. This format from which the instructions may be derived may include source code, encoded instructions (e.g., in compressed or encrypted form), packaged instructions (e.g., split into multiple packages), or the like. The information representative of the instructions in the machine-readable medium may be processed by processing circuitry into the instructions to implement any of the operations discussed herein. For example, deriving the instructions from the information (e.g., processing by the processing circuitry) may include: compiling (e.g., from source code, object code, etc.), interpreting, loading, organizing (e.g., dynamically or statically linking), encoding, decoding, encrypting, unencrypting, packaging, unpackaging, or otherwise manipulating the information into the instructions.
In an example, the derivation of the instructions may include assembly, compilation, or interpretation of the information (e.g., by the processing circuitry) to create the instructions from some intermediate or preprocessed format provided by the machine-readable medium. The information, when provided in multiple parts, may be combined, unpacked, and modified to create the instructions. For example, the information may be in multiple compressed source code packages (or object code, or binary executable code, etc.) on one or several remote servers. The source code packages may be encrypted when in transit over a network and decrypted, uncompressed, assembled (e.g., linked) if necessary, and compiled or interpreted (e.g., into a library, stand-alone executable, etc.) at a local machine, and executed by the local machine.
The machine executable instructions 900 and 1000 of
The cores 1402 may communicate by an example bus 1404. In some examples, the bus 1404 may implement a communication bus to effectuate communication associated with one(s) of the cores 1402. For example, the bus 1404 may implement at least one of an Inter-Integrated Circuit (I2C) bus, a Serial Peripheral Interface (SPI) bus, a PCI bus, or a PCIe bus. Additionally or alternatively, the bus 1404 may implement any other type of computing or electrical bus. The cores 1402 may obtain data, instructions, and/or signals from one or more external devices by example interface circuitry 1406. The cores 1402 may output data, instructions, and/or signals to the one or more external devices by the interface circuitry 1406. Although the cores 1402 of this example include example local memory 1420 (e.g., Level 1 (L1) cache that may be split into an L1 data cache and an L1 instruction cache), the microprocessor 1400 also includes example shared memory 1410 that may be shared by the cores (e.g., Level 2 (L2_cache)) for high-speed access to data and/or instructions. Data and/or instructions may be transferred (e.g., shared) by writing to and/or reading from the shared memory 1410. The local memory 1420 of each of the cores 1402 and the shared memory 1410 may be part of a hierarchy of storage devices including multiple levels of cache memory and the main memory (e.g., the main memory 1354, 1358 of
Each core 1402 may be referred to as a CPU, DSP, GPU, etc., or any other type of hardware circuitry. Each core 1402 includes control unit circuitry 1414, arithmetic and logic (AL) circuitry (sometimes referred to as an ALU) 1416, a plurality of registers 1418, the L1 cache 1420, and an example bus 1422. Other structures may be present. For example, each core 1402 may include vector unit circuitry, single instruction multiple data (SIMD) unit circuitry, load/store unit (LSU) circuitry, branch/jump unit circuitry, floating-point unit (FPU) circuitry, etc. The control unit circuitry 1414 includes semiconductor-based circuits structured to control (e.g., coordinate) data movement within the corresponding core 1402. The AL circuitry 1416 includes semiconductor-based circuits structured to perform one or more mathematic and/or logic operations on the data within the corresponding core 1402. The AL circuitry 1416 of some examples performs integer based operations. In other examples, the AL circuitry 16 also performs floating point operations. In yet other examples, the AL circuitry 1416 may include first AL circuitry that performs integer based operations and second AL circuitry that performs floating point operations. In some examples, the AL circuitry 1416 may be referred to as an Arithmetic Logic Unit (ALU). The registers 1418 are semiconductor-based structures to store data and/or instructions such as results of one or more of the operations performed by the AL circuitry 1416 of the corresponding core 1402. For example, the registers 1418 may include vector register(s), SIMD register(s), general purpose register(s), flag register(s), segment register(s), machine specific register(s), instruction pointer register(s), control register(s), debug register(s), memory management register(s), machine check register(s), etc. The registers 1418 may be arranged in a bank as shown in
Each core 1402 and/or, more generally, the microprocessor 1400 may include additional and/or alternate structures to those shown and described above. For example, one or more clock circuits, one or more power supplies, one or more power gates, one or more cache home agents (CHAs), one or more converged/common mesh stops (CMSs), one or more shifters (e.g., barrel shifter(s)) and/or other circuitry may be present. The microprocessor 1400 is a semiconductor device fabricated to include many transistors interconnected to implement the structures described above in one or more integrated circuits (ICs) contained in one or more packages. The processor circuitry may include and/or cooperate with one or more accelerators. In some examples, accelerators are implemented by logic circuitry to perform certain tasks more quickly and/or efficiently than can be done by a general purpose processor. Examples of accelerators include ASICs and FPGAs such as those discussed herein. A GPU or other programmable device can also be an accelerator. Accelerators may be on-board the processor circuitry, in the same chip package as the processor circuitry and/or in one or more separate packages from the processor circuitry.
More specifically, in contrast to the microprocessor 1400 of
In the example of
The interconnections 1510 of the illustrated example are conductive pathways, traces, vias, or the like that may include electrically controllable switches (e.g., transistors) whose state can be changed by programming (e.g., using an HDL instruction language) to activate or deactivate one or more connections between one or more of the logic gate circuitry 1508 to program desired logic circuits.
The storage circuitry 1512 of the illustrated example is structured to store result(s) of the one or more of the operations performed by corresponding logic gates. The storage circuitry 1512 may be implemented by registers or the like. In the illustrated example, the storage circuitry 1512 is distributed amongst the logic gate circuitry 1508 to facilitate access and increase execution speed.
The example FPGA circuitry 1500 of
Although
In some examples, the processor circuitry 1352 of
A block diagram illustrating an example software distribution platform 1605 to distribute software such as the example machine readable instructions 1382 of
Example methods, apparatus, systems, and articles of manufacture to migrate cloud-based workloads are disclosed herein. Further examples and combinations thereof include the following: Example 1 includes a non-transitory computer readable storage medium comprising instructions which, when executed, cause one or more processors to at least intercept a call to identify a requested domain to a server, adjust the domain, in response to the adjusted domain resolving, load a container corresponding to the workload based on a response from the server, and route a target internet protocol (IP) address resolved by the request domain to the locally loaded container.
Example 2 includes the computer readable storage medium of example 1, wherein the request is a first request and the response is a first response, the processor circuitry to determine that the adjusted domain resolves by transmitting a second request using the adjusted domain and obtaining a second response from the server.
Example 3 includes the computer readable storage medium of example 1, wherein the instructions cause the one or more processors to adjust the domain by prepending a subdomain of the requested domain.
Example 4 includes the computer readable storage medium of example 1, wherein the instructions cause the one or more processors to determine whether resources of the apparatus are sufficient to execute the workload locally, and route the target IP address in response to determining that the resources of the apparatus are sufficient to execute the workload locally.
Example 5 includes the computer readable storage medium of example 1, wherein the instructions cause the one or more processors to determine that a subset of workloads scheduled to be executed at the server, the subset of workloads including the workload, and rank the workloads of the subset of workloads based on at least one of privacy or end user concerns.
Example 6 includes the computer readable storage medium of example 5, wherein the instructions cause the one or more processors to select the workload based on the rank.
Example 7 includes the computer readable storage medium of example 1, wherein the workload is a cloud-based workload. the computer readable storage medium of example 1, wherein the one or more processors are included an end user computing device.
Example 8 includes an apparatus to migrate cloud-based workloads, the apparatus comprising at least one memory, and processor circuitry including one or more of at least one of a central processing unit, a graphic processing unit or a digital signal processor, the at least one of the central processing unit, the graphic processing unit or the digital signal processor having control circuitry to control data movement within the processor circuitry, arithmetic and logic circuitry to perform one or more first operations corresponding to instructions, and one or more registers to store a result of the one or more first operations, the instructions in the apparatus, a Field Programmable Gate Array (FPGA), the FPGA including logic gate circuitry, a plurality of configurable interconnections, and storage circuitry, the logic gate circuitry and interconnections to perform one or more second operations, the storage circuitry to store a result of the one or more second operations, or Application Specific Integrate Circuitry including logic gate circuitry to perform one or more third operations, the processor circuitry to at least one of perform at least one of the first operations, the second operations or the third operations to intercept a call to identify a requested domain to a server, adjust the domain, in response to the adjusted domain resolving, load a container corresponding to the workload based on a response from the server, and route a target internet protocol (IP) address resolved by the request domain to the locally loaded container.
Example 9 includes the apparatus of example 9, wherein the request is a first request and the response is a first response, the processor circuitry to determine that the adjusted domain resolves by transmitting a second request using the adjusted domain and obtaining a second response from the server.
Example 10 includes the apparatus of example 9, wherein the processor circuitry is to adjust the domain by prepending a subdomain of the requested domain.
Example 11 includes the apparatus of example 9, wherein the processor circuitry is to determine whether resources of the apparatus are sufficient to execute the workload locally, and route the target IP address in response to determining that the resources of the apparatus are sufficient to execute the workload locally.
Example 12 includes the apparatus of example 9, wherein the processor circuitry is to determine that a subset of workloads scheduled to be executed at the server, the subset of workloads including the workload, and rank the workloads of the subset of workloads based on at least one of privacy or end user concerns.
Example 13 includes the apparatus of example 13, wherein the processor circuitry is to select the workload based on the rank.
Example 14 includes the apparatus of example 9, wherein the workload is a cloud-based workload. the apparatus of example 9, wherein the apparatus is an end user computing device.
Example 15 includes an apparatus to migrate cloud-based workloads, the apparatus comprising interception circuitry to intercept a call to identify a requested domain to a server, domain adjustment circuitry to adjust the domain, and workload execution circuitry to, in response to the adjusted domaining resolving load a container corresponding to the workload based on a response from the server, and route a target internet protocol (IP) address resolved by the request domain to the locally loaded container.
Example 16 includes the apparatus of example 17, wherein the request is a first request and the response is a first response, the workload execution circuitry to determine that the adjusted domain resolves by transmitting a second request using the adjusted domain and obtaining a second response from the server.
Example 17 includes the apparatus of example 17, wherein the domain adjustment circuitry is to adjust the domain by prepending a subdomain of the requested domain.
Example 18 includes the apparatus of example 17, further including resource determination circuitry to determine whether resources of the apparatus are sufficient to execute the workload locally, the workload execution circuitry to route the target IP address in response to the resources of the apparatus being sufficient to execute the workload locally.
Example 19 includes the apparatus of example 17, further including resource determination circuitry to determine that a subset of workloads scheduled to be executed at the server, the subset of workloads including the workload, and rank the workloads of the subset of workloads based on at least one of privacy or end user concerns.
Example 20 includes the apparatus of example 21, wherein the resource determination circuitry is to select the workload based on the rank.
Example 21 includes the apparatus of example 17, wherein the workload is a cloud-based workload.
Example 22 includes the apparatus of example 17, wherein the apparatus is an end user computing device.
From the foregoing, it will be appreciated that example methods, apparatus and articles of manufacture have been disclosed herein to migrate cloud-based workloads. Using examples disclosed herein, a portion of the compute that is migrated to the cloud in a thin client architecture is better suited for the client for many reasons. For example, computation on high bandwidth streams could reduce I/O usage, cost, and latency, if performed at the edge and/or at an end user device. Performing computation on private data on the platform(s) of a client may reduce customer concern or even be required by governmental regulation. For example, consider background blurring of a video stream. Blurring a video stream in the cloud is less private, requires the ISV to pay for compute-intensive operations, and requires additional bandwidth to share the blurred stream back to the user. This function could instead be performed on client platforms with hardware accelerated video processing. Accordingly, disclosed methods, apparatus and articles of manufacture are directed to one or more improvement(s) in the functioning of a computer.
Although certain example methods, apparatus and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the claims of this patent.
This patent claims priority to U.S. Provisional Patent Application Ser. No. 63/077,456, which was filed on Sep. 11, 2020. U.S. Provisional Patent Application No. 63/077,456 is hereby incorporated herein by reference in its entirety. Priority to U.S. Provisional Patent Application No. 63/077,456 is hereby claimed.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/049915 | 9/10/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63077456 | Sep 2020 | US |