The present disclosure generally relates to broaching press operation, and more particularly to an electric broaching press operating with an electric cylinder, where the electric cylinder is driven by an electric motor. The present disclosure particularly offers highly energy efficient broaching press as compared to conventional hydraulic broaching press machines which requires zero hydraulic oil consumption.
Broaching is a machining process that uses a toothed tool to remove material in a consistent and accurate way. The broaching machining process requires high pressure for pull and push movement of a broaching tool. Traditional broaching presses used for broaching machining are operated by hydraulic system. As it is well known in the art, the joined push stroke of the broaching tool and/ or tool holder, allows performing the operative cycle of internal and/ or external machining of the workpiece, while the separate displacement of the broaching tool permits clearing the access to the horizontal platform for introduction of the workpiece to be machined and removal of the machined workpiece.
Traditionally the vertical/ horizontal pull/ push broaching press of the aforementioned type are utilized for actuating the displacement of the broaching tool and/ or tool holder and a hydraulic actuator which requires a complex and huge hydraulic unit with associated auxiliary accessories, such as hoses, connectors, solenoid valve groups, and the like, are employed.
Hydraulic operation further involves problems connected to the control of the acceleration and deceleration paths as well as of the working speed of the broach or broaches, the constancy of which is also negatively affected by variations of the hydraulic fluid temperature.
Particular drawbacks of the hydraulic systems are as follow: In hydraulic system, electric energy is converted into rotational energy with the help of induction motor, this rotational energy is converted is converted into hydraulic energy and this hydraulic energy is then converted into linear broaching movement. This entire process of energy conversion causes loss of energy which is highly electric power consuming process. The operation of hydraulic system is messy and noisy. This hydraulic system requires heavy maintenance of hydraulic spares. Speed of the hydraulic broaching tool cannot be varied with respect to length of broach. Hydraulic system required additional cooling tower / oil chiller system. Hydraulic oil consumption is maj or issue for higher sizes of machines.
An object of the present disclosure is to provide an alternative broaching press with an electric cylinder to replace a conventional hydraulic system operated using hydraulic fluid, and a method to operate the alternative broaching press with the electric cylinder. The hydraulic fluid is subject to vary its performance based on temperature, contaminants which can cause changes in viscosity of the hydraulic fluid and reduce the hydraulic pressure. Therefore, it is object of the present disclosure to provide an electric broaching press that will not be subjected to temperature and contaminants as it does not include hydraulic oil.
The hydraulic system is high electric power consuming process. Therefore, it is an objective of the present disclosure to provide an electric broaching press that consumes lesser energy as compared to the conventional hydraulic system.
The hydraulic broaching machine is operated by converting electric energy to hydraulic energy. The operation of hydraulic fluid is messy and noisy. Therefore, it is an objective of the present disclosure to provide an electric broaching press that is clean and silent during operation as compared to the conventional hydraulic system.
The conventional hydraulic system requires heavy maintenance of hydraulic spare parts. Therefore, it is an objective of the present disclosure to provide a broaching press that requires minimum maintenance.
In conventional hydraulic system, a speed of hydraulic broaching operation cannot be varied with respect to length of broach. Therefore, it is an objective of the present disclosure to provide an electric broaching press with provision of controlling the speed of the broaching tool / tool holder with respect to length of broach as per the requirement.
The conventional hydraulic system required additional cooling chamber or oil cooldown system which adds up to machine cost and operational and maintenance expenses. Therefore, it is an objective of the present disclosure to provide an electric broaching press without requirement of such cooling chambers.
For conventional hydraulic system, oil consumption is major issue due to higher sizes of machines. Therefore, it is an objective of the present disclosure to provide an electric broaching press that requires no hydraulic oil consumption.
The present disclosure provides an electric broaching press with an electric cylinder having a ball nut assembly with internal linear guide way support, hereinafter referred as to ‘ball nut assembly’. According to one feature of a preferred embodiment, an electric broaching press mainly comprises a C-shaped framework, a cantilever support structure for Broaching tool and/or tool holder guided by external linear guide way support. In one aspect, the C-shaped framework, cantilever supported tool holder having two parallel horizontal platforms connected by a vertical pillar as a single structure. Two parallel horizontal platforms are referred as to a first horizontal platform and a second horizontal platform hereinafter. The first horizontal platform is disposed at upper portion of the C-shaped framework where an electric cylinder can be mounted. The second horizontal platform disposed at bottom portion of the framework for positioning a workpiece to be broached.
According to another feature of the preferred embodiment, the external linear guide way assembly is disposed at the vertical pillar of the framework to externally guide the broaching tool and /or tool holder. The cantilever support structure includes external linear guide way assembly moveably positioned to slide vertically with respect to the first horizontal platform and a second horizontal platform.
According to another feature of the preferred embodiment, the ball nut assembly is provided for precisely controlling vertical displacement of the ball nut. The ball nut assembly is enclosed within a cylindrical casing of an electric cylinder which is mounted on a top of the first horizontal platform of the framework. The electric cylinder is driven by an electric Motor. The electric cylinder comprises an electric motor, and a time drive belt, pullies / gear box assembly connected with ball screw. The electric motor can preferably be a servo / stepper motor, for rotational power generation. The rotational motion is imparted to the ball nut assembly in linear motion.
In accordance with one implementation of the preferred embodiment, the electric cylinder mainly comprises a ball nut assembly, vertically and about centrally secured within the cylindrical casing for converting rotational motion into linear motion to operationally move the cantilever support structure. The ball screw and nut assembly include a ball screw, a ball nut, and a ball nut housing. The ball screw is moveably retained at upper end of a ball nut and guided to cause vertical linear displacement of the ball nut by transmitting the linear energy to the piston rod, and wherein a piston rod end connector of the piston rod is detachably engaged to the cantilever support structure which holds broaching tool and / or tool holder in vertical linear direction to push the broaching tool downwardly towards the second horizontal platform of the framework with adequate force to cut through the workpiece and return to an original position.
The present disclosure discloses a method to operate an electric cylinder having a ball nut assembly, driven by an electric motor, to cause vertical displacement of a piston rod assembled with cantilever support holding broach tool. The method includes embedding a ball screw and nut assembly within the electric cylinder. The ball screw and nut assembly is placed vertically and about centrally secured within a cylindrical casing of the electric cylinder having the internal linear guide way support, for converting rotational motion induced by the electric motor into linear motion of piston rod assembled with cantilever support structure holding a broach tool.
The method further includes moveably retaining the ball screw at upper end of a ball nut and guiding the ball nut to cause vertical linear displacement of the piston rod by transmitting the linear energy to the piston rod. The method further includes pushing the broach tool downwardly towards the second horizontal platform of the framework through the linear displacement of the piston rod.
According to the present disclosure of the preferred embodiment is configured with the electric motor and a time drive assembly that combinedly form prime mover of the electric cylinder. The electric cylinder is configured to actuate the ball nut assembly that converts the rotational motion into linear motion through the ball screw. Use of the ball screw and nut assembly allows smooth and frictionless transmission of the motion. Use of the electric cylinder eliminates the need of hydraulic system, as required in conventional systems, and as a result, all the disadvantages associated with the hydraulic system are eliminated. Thus, the present embodiment offers clean, noise-free, less energy consuming system that does not require cooling chambers around, ultimately resulting in high speed and cost-effective broaching press.
The present disclosure will now be described with the help of accompanying drawing, in which:
All the terms and expressions, which may be technical, scientific, or otherwise, as used in the present disclosure have the same meaning as understood by a person having ordinary skill in the art to which the present disclosure belongs, unless and otherwise explicitly specified.
In the present disclosure, and the claims, the articles “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
The term “comprising” as used in the present disclosure and the claims will be understood to mean that the list following is non-exhaustive and may or may not include any other extra suitable features or elements or steps or constituents as applicable.
The present disclosure relates to an electric broaching press with an electric cylinder having internal linear guide way support, where electric cylinder is driven by electric motor and which overcomes one or more drawbacks associated with the prior art.
According to one implementation of the embodiment, the cylindrical body 6 is provided to encase the ball nut assembly 5. The ball screw and nut assembly 8, vertically and about centrally secured within the cylindrical casing, is provided to act as an electric cylinder 4 that translates rotational motion into linear motion with minimum friction. The ball screw and nut assembly 8 consists of a ball screw 8c and a ball nut 8a housed within a ball nut housing 8b (described in
According to one implementation, the Cantilever support structure 20a is mounted at the vertical pillar 16c of frame. The Cantilever support structure 20a includes a cantilever support end 20aa moveably positioned to slide vertically between the first horizontal platform 16a and a second horizontal platform 16b. The cantilever support structure 20a is a cantilever carrier beam having a first end 20aa moveably attached to the carriage 20ac of external linear guide way moving through linear guide rails 20ad and a second end 20ab attached to a piston rod 12 adapted to be pushed downwardly towards the second horizontal platform 16b cutting through the workpiece 28 to be broached clamped on fixture (not shown in fig.). The cantilever support structure 20a provides vertical alignment to the Piston rod 12 with respect to second horizontal platform 16b.
According to one implementation of the embodiment, the second horizontal platform 16b is mounted with a bolster plate 26 to hold a workpiece 28 and/ or workpiece holding fixture (not shown in fig) to be broached.
According to one implementation of the embodiment, the electric cylinder 4 is mounted on the first horizontal platform 16a. As described earlier, electric cylinder 4 includes ball nut assembly 5 actuated by the electric motor 2 through ball screw by means of time pully set 4a & belt 4b. The rotational motion is transmitted into linear motion through ball screw and nut assembly 8 to piston rod 12.
During operation cycle, the piston rod 12 is pushed and pulled back, causing downward and upward displacement of cantilever support structure 20a holding broach tool/ tool holder (not shown in fig.)
In one implementation of the preferred embodiment, the electric broaching press operation is controlled by CNC or PLC controller (not shown in the figure). CNC or PLC is applied to control speed of the electric cylinder 4 precisely. As a result, the speed of the broach tool / tool holder can be controlled or vary according to the requirement.
A method to operate the preferred embodiment is disclosed herein. The method is provided to operate the electric cylinder 4 having the ball nut assembly with internal linear guide way support 5, driven by an electric motor, to cause vertical displacement of a piston rod 12 assembled with cantilever support holding broach tool. The method includes embedding a ball screw and nut assembly 8 within the electric cylinder 4. The ball screw and nut assembly 8 is placed vertically and about centrally secured within a cylindrical casing of the electric cylinder 4 for converting rotational motion induced by the electric motor 2 into linear motion of piston rod 12 assembled with cantilever support structure holding a broach tool.
The method further includes moveably retaining the ball screw at upper end of a ball nut and guiding the ball nut to cause vertical linear displacement of the piston rod 12 by transmitting the linear energy to the piston rod 12. The method further includes pushing the broach tool downwardly towards the second horizontal platform of the framework through the linear displacement of the piston rod 12.
The embodiments and implementation disclosed herein described the electric cylinder’s applicability in broaching press operation. However, implementation of the electric cylinder with internal linear guide way support is not limited to the broaching press. The electric cylinder with internal linear guide way support can be effective for multiplicity of other applications. The electric Cylinder with internal linear guide support can be used to replace hydraulic cylinder actuator system working at high force with high speeds required in various industrial applications, such as Industrial presses, moulding Machines, Factory automations, Packaging machines, Food processing machines, Pick and Place systems, Material handling equipment, and the like.
The present disclosure, by virtue of the preferred embodiment, presents an electric broaching press 1 operating with electric cylinder 4 having ball nut assembly 5, where electric cylinder 4 is driven by electric motor 2. This particular feature eliminates the requirement of hydraulic system and disadvantages associated with it. The electric cylinder 4 allows high and controllable speed operations that consume much lesser energy compared to conventional hydraulic systems. Use of ball screw and nut assembly 8 offers frictionless and noise free operation. The present disclosure thus results in super energy saving, effective and efficient electric broaching press 1.
The embodiments herein and the various features and advantageous details thereof have been explained with reference to the non-limiting embodiments.
The foregoing description of the specific embodiments have been described herein above that a person having ordinary skill in the art can apply the current knowledge, readily modify, or adapt for various applications such specific embodiments without departing from the generic concept. All such adaptations and modifications are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments.
Further, it is to be understood that the terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, a person having ordinary skill in the art will readily recognize that the embodiments herein can be practiced with modification within the spirit and scope of the embodiments as described herein.
The use of the expression “at least” or “at least one” suggests the use of one or more elements or ingredients or quantities, as the use may be in the embodiment of the disclosure to achieve one or more of the desired objects or results.
Any discussion of documents, acts, materials, devices, articles, or the like that has been included in this specification is solely for the purpose of providing a context for the disclosure. It is not to be taken as an admission that any or all of these matters form a part of the prior art base or were common general knowledge in the field relevant to the disclosure as it existed anywhere before the priority date of this application.
The numerical values mentioned for the various physical parameters, dimensions or quantities are only approximations and it is envisaged that the values higher/lower than the numerical values assigned to the parameters, dimensions or quantities fall within the scope of the disclosure, unless there is a statement in the specification specific to the contrary.
While considerable emphasis has been placed herein on the components and component parts of the preferred embodiments, it will be appreciated that many embodiments can be made and that many changes can be made in the preferred embodiments without departing from the principles of the disclosure. These and other changes in the preferred embodiment as well as other embodiments of the disclosure will be apparent to those skilled in the art from the disclosure herein, whereby it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the disclosure and not as a limitation.
Number | Date | Country | Kind |
---|---|---|---|
202021056087 | Dec 2020 | IN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IN2021/050804 | 8/20/2021 | WO |