The present invention relates to a seawater suction system particularly, although not exclusively, suited for use with a Floating Production Storage and Offloading (FPSO) vessel.
Conventional seawater suction systems used by FPSO vessels typically comprise a plurality of hoses and caissons. Each hose typically comprises a plurality of flexible hose sections interconnected to form a continuous hose. The continuous hose combines with a caisson on the FPSO to pass seawater into the FPSO. The free end of the hose is fitted with a suction strainer for straining sea water which is drawn into the hose. The suction strainer is fitted with a hypochlorite dispersion ring, which is used to disperse hypochlorite around the suction strainer as seawater is drawn through the hose, thereby preventing marine growth in the suction system and the associated pipework of the FPSO. An example of such an arrangement can be seen in WO2008/017937 to the same applicant.
Each of the hose sections of such conventional suction systems is typically manufactured from number of layers of material, starting with a flexible rubber liner in which a plurality of steel or wire reinforcement rings are embedded at intervals along the length of the liner. Wrapped around the reinforced liner are a number of layers of a suitable textile ply, and a marine/weather resistant rubber outer layer is placed over the textile ply layers. Steel nipples and flanges are provided at either end of each hose section so that the sections can be attached to one another.
An example of a flexible hose section used in a conventional suction system has a nominal bore, or internal diameter, of 20 inches (508 mm) and a length of 11500 mm. A hose section having these dimensions and being manufactured in the manner described above would weigh approximately 1900 kg, predominantly due to the layers of material needed and the reinforcement rings. The weight of each section of hose presents handling difficulties on the deck of the vessel during installation of the system at sea. Furthermore, the weight of a system comprising a number of these heavy hose sections, along with drag and other hydrodynamic factors, imparts large loadings on the surface vessel.
Additionally, marine growth can occur in conventional flexible rubber hose sections, which necessitates the provision of a Hypochlorite distribution line to counter the marine growth. Providing a Hypochlorite line increases the complexity, cost and time of installing the system.
It is an object of the present invention to obviate or mitigate one or more of the aforementioned disadvantages.
According to a first aspect of the present invention there is provided a seawater suction system comprising first and second conduits connected to one another so as to form an internal fluid passage allowing fluid communication between the two conduits, wherein the first conduit is formed from at least two layers of a first material and the second conduit is formed from a single layer of a second material which is different from the first material.
The internal fluid passage of the second conduit has an internal diameter that is substantially identical to an internal diameter of the internal fluid passage of the first conduit, and the second conduit has an external diameter that may be less than an external diameter of the first conduit. The internal and external diameters of the first and second conduits may be substantially constant. The first material may be rubber.
The second material may be a plastics material. The second material may be high-density polyethylene (HDPE). The second conduit may comprise at least one flange member having an outer surface of which at least a portion has a parabolic cross-sectional profile. The at least one flange member may further comprise at least one load ring arranged circumferentially around the outer surface at a predetermined distance from an end portion of the flange member.
The system may further comprise a strainer formed in the second conduit. The strainer may comprise a plurality of fluid apertures formed in the second conduit to allow fluid flow into the second conduit. Alternatively, the strainer may be connected to a free end of the second conduit.
The strainer may comprise at least a first strainer member, having a first fluid inlet, a first fluid passage and a first fluid outlet, and a second strainer member, having a second fluid inlet, a second fluid passage and a second fluid outlet, first and second strainer members are fluidly separate, and wherein the first strainer member is adapted to be coupled to the second fluid member so as to form at least a two-stage strainer arrangement with the first and second fluid inlets arranged adjoiningly along a longitudinal axis of the second conduit, and the first and second fluid outlets forming a combined outlet interface fluidly coupleable to the second conduit.
Additionally, the strainer may further comprise at least a third strainer member, having a third fluid inlet, a third fluid passage and a third fluid outlet, fluidly separate from the first and second strainer member, and wherein the third strainer member is adapted to be coupled to the second fluid member so as to form three-stage strainer arrangement with the first, second and third fluid inlets arranged adjoiningly along the longitudinal axis of the second conduit, and the first, second and third fluid outlets forming a combined outlet interface fluidly coupleable to the second conduit.
Advantageously, the first strainer member may be adapted to matingly engage with the second strainer arrangement so as to form a stack along the longitudinal axis, and the second strainer member may be adapted to matingly engage with the third strainer arrangement so as to form a stack along the longitudinal axis.
Preferably, the strainer may be formed from the second material.
The system may further comprise a weight member suspended from a free end of the second conduit. Advantageously, the weight member may be at least a third conduit fluidly coupleable to the second conduit and made of a non-buoyant material when in-situ. Preferably, the non-buoyant material is a metal.
The system may comprise a plurality of successive first conduits connected to a plurality of successive second conduits. In other words, a number of first conduits may be connected together in series and then connected to a number of second conduits, which are also connected together in series.
The system may further comprise a suction head connected to a free end of the first conduit.
The system may further comprise at least one caisson adapted to receive and hold the suction head of the first conduit. The caisson may be located within the hull of Floating Production Storage and Offloading (FPSO) vessel.
Advantageously, the caisson may comprise a suspension apparatus, adapted to selectively secure the first and second conduits during assembly. Preferably, the suspension apparatus may be removably coupleable to a top end of the caisson when in situ. Advantageously, the suspension apparatus may comprise a spring operated mechanism adapted to lockingly engage with the first and second conduit. Advantageously, the suspension apparatus may further comprise a conduit adapter, configured to compensate for any difference between the external diameters of the first and second conduit.
The second material may alternatively be a carbon-based steel or reinforced fibreglass. The system may further comprise at least one auxiliary fluid line located within the internal fluid passage of the first and second conduits and adapted to supply a predetermined fluid to the free end of the second conduit. Advantageously, the system may further comprise at least one second auxiliary fluid line arranged parallel to the first auxiliary fluid line and located within the internal fluid passage of the first and second conduits, and adapted to supply the predetermined fluid to the free end of the second conduit. Preferably, the first and second auxiliary fluid line may be fluidly coupled to a dispersion member operably coupled between the second conduit and the strainer, so as to allow the predetermined fluid to flow into the internal fluid passage during use.
According to a second aspect of the present invention there is provided a method of assembling a seawater suction system comprising the steps of: providing at least one first conduit and at least one second conduit, wherein the first conduit is formed from at least two layers of a first material and the second conduit is formed from a single layer of a second material which is different from the first material, and the first and second conduits are connectable together so as to allow fluid communication between the two conduits; connecting the two conduits together; and connecting a suction head to a free end of the first conduit.
The method may also include the further step of connecting a strainer to a free end of the second conduit.
The method may also comprise the further step of connecting a weight member to a free end of the strainer or second conduit.
The method may also comprise the further steps of providing a caisson adapted to receive and hold the suction head, and mounting the suction head and first and second conduits within the caisson.
The method may also comprise the further step of attaching at least one auxiliary fluid line within the internal fluid passage of the first and second conduits such that the auxiliary fluid line supplies a fluid to the free end of the second conduit.
An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
The second conduits 14 are each formed from a single piece or layer of a second material different from the first material. As the second conduits 14 only have a single layer of material and no reinforcing rings, each of the second conduits 14 weighs less than the first conduit 12 despite each conduit 12,14 having substantially the same dimensions. Additionally, each of the first and second conduits 12, 14 has a substantially identical internal diameter. However, because the second conduit 14 has only a single layer of material the second conduits 14 have an external diameter that is less than the external diameter of the first conduit 12. The second conduits 14 are therefore thinner than the first conduit 12. The internal and external diameters of the first and second conduits 12, 14 are preferably constant along their respective lengths.
In the preferred embodiment illustrated, the second material from which the second conduits 14 are formed is high-density polyethylene (HDPE).
The connecting means of the first conduit 12 are preferably formed from steel and encapsulated in a protective coating of the first material to prevent corrosion. The connecting means of the second conduits 14 are preferably formed from the second material and provided with steel backing rings, which have been treated with a corrosion-inhibiting coating. The lower of the two second conduits 14 (when viewed in
The system 10 may also comprise a weight member 20 connected to the free end of the lower second conduit 14 for added ballast. The weight member may be a third conduit (not shown) connected to the second conduit 14 or the strainer 18, 118. The weight member 20 is made from a non-buoyant material, preferably from metal, and even more preferably from steel.
Referring now to
Referring to
In addition,
The deployment/retrieval tool 46 deploys and retrieves the assembled system 10 to and from the caisson 24. The deployment/retrieval tool 46 is remotely operated for releasing the system once it is in the correct position.
The assembly of the seawater suction system 10 is carried out in a conventional manner, i.e. by suspending each conduit 12, 14 at the top of the caisson 24 whilst each subsequent conduit 12,14 hose section 10 is attached thereto by their respective flanges 16. Preferably, the second conduits (HDPE) 14 may be connected by particularly designed flanges 200 that are configured to provide improved strength and fatigue properties compared to conventional flanges, especially when subjected to the expected forces during assembly of the conduits 14. As shown in
In addition, when connecting the second conduits 14 (e.g. HDPE), it is necessary to suspend the lower section in the vertical position while the upper section is lowered onto it and connected. The lower section must be able to support the loads applied during assembly and, at the same time, enable the sections 14 to be connected. Accordingly, flange 200 may comprise a load ring 204 configured to have sufficient strength to accommodate for the loads induced during assembly whilst enabling the sections 14 to be connected. The load ring 204 is a circumferential ring integral with the flange 200 so as to allow the dedicated hang-off tool (not shown) to support the hose string while respective flanges 200 can be bolted together without any obstruction.
The suction system 10 is also disassembled in a conventional manner, i.e. by lifting the system 10 toward the top of the caisson 24 and reversing the assembly steps described above.
The seawater suction system of the present invention provides a number of advantages over previous proposals. By comprising the system of a first conduit formed in a conventional manner from layers of rubber or a similarly flexible first material, and one or more second conduits formed from a single layer of a second material, the system has a reduced weight compared to conventional suction systems. However, retaining at least one first conduit of the type described above ensures that the system retains strength and load-bearing capabilities in spite of the weight reduction. Reducing the weight of certain components of the system makes for easier handling of the components during installation and retrieval, with a consequent reduction in the time and cost of carrying out these tasks. Forming the second conduits in a single layer reduces weight and also reduces hydrodynamic loadings on the associated vessel whilst the system is deployed under the water. This reduces vessel draft and improves vessel stability.
If the second conduits are formed from HDPE, the invention has the additional benefit that marine growth cannot form within the second conduits. Marine growth in the system can increase the overall weight of the system, the loadings on the vessel and the drag created by the system. These problems are removed in the present invention without having to resort to the use of a Hypochlorite treatment line in the system. This again speeds up assembly/disassembly of the system and additionally has environmental benefits to the sub-sea ecosystem. HDPE also has an exceptionally smooth surface finish, thereby providing a smoother internal bore in the second conduits. The smoother bore improves flow characteristics in the system whilst at the same time reducing pressure drop across the system.
The illustrated embodiment of the system comprises one first conduit and a pair of second conduits. However, it should be recognised that the number of first and second conduits in the system is not limited to this arrangement and may be varied according to requirements. The minimum requirement for the system is one first conduit and one second conduit. The number of second conduits in the system need only be limited by practical considerations. However, it is preferred that a maximum of three first conduits are used in the system to avoid negating the benefits associated with the system. Where respective pluralities of first and second conduits are used, they are preferably arranged in successive groups instead of alternating the first and second conduits with one another.
Whilst the preferred embodiment of the system shows a strainer formed at one end of one of the second conduits, the strainer may alternatively be a separate component formed from the second material and connected to the free end of the lower second conduit 14.
Whilst preferred, the invention is not limited to the use of second conduits formed from HDPE. Examples of other suitable second materials are carbon-based steel and reinforced fibreglass. A single piece or layer of either of these alternative materials may also be used to form the second conduit(s), with the same benefits in terms of reduction of weight, hydrodynamic forces and drag. Where the second conduits are formed from either of these alternative materials, an auxiliary fluid line is included in the system for the supply of Hypochlorite to the free end of the system.
It will be appreciated by persons skilled in the art that the above embodiment has been described by way of example only and not in any limitative sense, and that various alterations and modifications are possible without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1420915.9 | Nov 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/077479 | 11/24/2015 | WO | 00 |