In a number of situations, fluids may be stored in a reservoir. Some example devices may allow determination of fluid characteristics, such as to enable estimation of fluid depth in the reservoir, by way of non-limiting example.
Various examples will be described below by referring to the following figures.
Reference is made in the following detailed description to accompanying drawings, which form a part hereof, wherein like numerals may designate like parts throughout that are corresponding and/or analogous. It will be appreciated that the figures have not necessarily been drawn to scale, such as for simplicity and/or clarity of illustration.
At times, there may be a desire to measure characteristics of a fluid. In different examples, a fluid for which characteristics are to be measured may comprise liquids, such as a print fluid or a 3D print agent, by way of non-limiting example. Example fluid characteristic sense devices may be arranged in printing fluid cartridges such as 2D or 3D print cartridges. Fluid volumes in example print fluid cartridges may range from approximately 1 ml to multiple liters, such as 25 L, by way of illustration. In one example, a fluid characteristic sense device may be associated with a comparatively small or medium-sized print cartridge, such as less than approximately 0.5 L, less than approximately 100 ml, or more than approximately 10 ml, by way of non-limiting example.
A number of methods and devices exist to sense fluid characteristics. In the following description, fluid characteristic sensing mechanisms, which may be capable of enabling fluid depth estimations, are discussed. By way of example, digital and analog fluid characteristic sensing devices may enable fluid depth estimation. In one case, while digital devices may be capable of providing depth estimates with greater accuracy than analog devices, they may also be more expensive. In contrast, analog devices may be less expensive than digital counterparts, but may be less accurate, by way of non-limiting example. There may be a desire, therefore, for analog devices capable of achieving accuracy levels that may approach those of digital fluid level sensing devices. The following description refers to fluid depth estimation as an example use of a fluid characteristic sensing device. However, it is to be understood that this is done without limitation or waiver as to claimed subject matter.
In one case, it may be possible to improve accuracy of an analog-type fluid characteristic sensing device by using additive or cumulative measurements of sensing mechanism and/or fluid characteristics. For example, additive fluid characteristic sensing measurements may measure multiple characteristics of portions of a sensing device immersed in fluid. The multiple characteristic measurements may be used in concert to provide greater accuracy as to fluid depth estimations than may be achieved by use of a single characteristic (e.g., resistance of a sensing device). By way of example, in one case, resistance and temperature measurements may be used in combination to yield a potentially more accurate fluid depth estimation.
In one example, a fluid depth estimate may be derived using resistance measurements of a probe of a sensing device. One example analog device, for example, may have one or more probes of a conducting material to be immersed in a fluid for which a depth estimate may be desired. Resistance of the probes may be measured, for example. The fluid in which the probes are immersed may be capable of conducting electricity. As such, a relationship may exist between levels to which probes are immersed in a fluid and probe resistance. Thus, if the probes have a known resistance in air, resistance measurements that deviate from the known value may be attributed to a volume of fluid into which the probes are immersed. Probe resistance measurements may therefore enable determinations of fluid conductivity and may be correlated with fluid depth levels.
In one example, a fluid depth estimate may be derived using temperature measurements of a probe of a sensing device. For instance, temperature measurements of a probe of a sensing device may be used to determine a rate of change of temperature of the probe. The rate of change of probe temperature may be used to estimate a fluid depth, which may be used in conjunction with a second fluid depth estimate based on measures of resistance of the probes to provide a potentially more accurate estimate of depth of a fluid. For instance, for a given probe of a sensing device (e.g., having a given material), a thermal response to a current pulse may be known (e.g., experimentally). In one case, for example, the probe may have a steady state temperature xst. The probe may reach a temperature xi (from steady state) in a time t1 in air, in response to a current pulse. In air, a temperature of the probe may return to a steady state value, xst, from temperature x1 in a time t2. A time for a temperature to change may vary based on a fluid volume in which a probe is immersed. For instance, in response to the current pulse, the probe may reach a temperature x2 in a time t3 while the probe is completely immersed in a particular fluid. And the probe may return to the steady state value xst in a time t4 while the probe is completely immersed in the particular fluid. Depending on particular characteristics of the fluid in which the sensing device is immersed, a rate of change of temperature may be higher (e.g., the sensing device may heat and/or cool more quickly) or lower (e.g., the sensing device may heat and/or cool more slowly) while immersed. Through experimentation, for example, empirical values may be determined to correlate a rate of change of temperature on the one hand and fluid depth on the other (similarly, resistance values of a fluid characteristic sensing device may be empirically correlated with fluid depth). In one case, this may be done by taking temperature and/or rate of change of temperature measurements at a variety of fluid levels and using the measurements to provide reference values, such as in a lookup table, to estimate fluid depth. Thus, a measure of a rate of change of temperature of the probe may be used to estimate a fluid level. For instance, in one case, a time to heat or cool down a probe may be used to yield a fluid depth estimation.
Thus, in one example case, fluid depth in a reservoir may be estimated using rate of change of temperature. Fluid depth may also be estimated using resistance-based measurements. The temperature-based fluid depth estimation and the resistance-based fluid depth estimation may thus be used together to yield a potentially more accurate fluid depth estimation. In one case, for example, the temperature-based fluid depth estimation and the resistance-based fluid depth estimation may be averaged. An example fluid characteristic sensing device capable of providing multiple measures of fluid characteristics is presented in the following paragraphs referring to
An example fluid characteristic sensing device 100 is illustrated in
In one example, fluid characteristic sensing device 100 may comprise a circuit board 102 to which a fluid characteristic sensing projection 108 may be connected. An I/O port 112 represents a portion of fluid characteristic sensing device 100 capable of directing signals away from fluid characteristic sensing device 100 and receiving signals, such as from a processor or a controller of a system (e.g., a printer) to which fluid characteristic sensing device 100 may be communicably connected. For example, I/O port 112 may comprise an array of electrical interconnects. Conductive traces may provide paths through which signals may be directed between I/O port 112 and connectors 104 and 106 (which may be referred to herein as signal connectors in the context of providing a communicable connection between elements of a device through which signals may travel), to which fluid characteristic sensing projection 108 may be connected (and through which signals may be transmitted and received).
Circuit board 102 may comprise a connection mechanism between processing and signal driving mechanisms of a larger system (e.g., a printer) to which fluid characteristic sensing device 100 might belong, and fluid characteristic sensing structures, such as fluid characteristic sensing projection 108. In one implementation, circuit board 102 may comprise a printed circuit board (PCB) on a silicon (Si) wafer, onto which circuit structures may be deposited and into which circuit structures may be formed, by way of non-limiting illustration. For example, conductive pads, such as connectors 104 and 106, may be formed on a Si die and may be used to provide an electrical connection between circuit board 102 and fluid characteristic sensing projection 108. I/O port 112 may also comprise conductive structures, such as electrical interconnects, that may allow fluid characteristic sensing device 100 to connect to a reception mechanism or receptacle, such as a part of a reservoir or container structure. For instance, in a case in which fluid characteristic sensing device 100 is used to estimate fluid depth in a reservoir for printing fluid, circuit board 102 may connect to a connection reception mechanism of a printer, which may be in communication with a processer of the printer. Signals may be transmitted via the connection reception mechanism and I/O port 112 of circuit board 102 in order to enable estimation of printing fluid depth in the reservoir of the printer, by way of example.
Fluid characteristic sensing projection 108 comprises a mechanism that may be used in a chamber (e.g., a fluid reservoir) and which may enable measurement of fluid characteristics capable of being used to yield fluid depth-related estimates, by way of non-limiting example. Fluid characteristic sensing projection 108 may comprise conductive components 110a and 110b. Fluid characteristic sensing projection 108 and conductive components 110a and 110b may comprise a material, such as a metal or metalloid, capable of conducting electricity. One factor to consider in selecting a material for fluid characteristic sensing projection 108 may be a material temperature versus resistance characteristic for the material and for which changes in temperature yield changes in resistance according to a substantially linear relationship. While the particular range of interest may vary based on an application (e.g., industrial, automotive, etc.) and fluid types (e.g., print fluid), in the case of an example operational temperature range for print fluids (e.g., approximately 15 degrees C. to approximately 35 degrees C.), Si has a substantially linear relationship of temperature versus resistance and a comparatively steep slope. Thus, for example, Si may comprise a sample material that may exhibit desirable characteristics. As such, in one case, fluid characteristic sensing projection 108 may comprise silicon strips (e.g., comprising polysilicon). One example material may be silicon-based, such as polysilicon. For example, thin strips of photovoltaic-grade polysilicon may be formed and used as conductive components 110a and 110b. In another example case, fluid characteristic sensing projection 108 may comprise steel wires having a polysilicon coating. Of course, these examples are merely provided to illustrate possible structures and are not to be understood in a limiting sense. Indeed, in one example, a number of metals and metalloids may operate suitably for desired functionality within desired temperate range. Of course, those of skill in the art will appreciate that it may also be desirable to confirm chemical compatibility of fluids to be measured and materials to use for fluid characteristic sensing projection 108. In the context of printing fluid reservoirs, other suitable materials for fluid characteristic sensing projection 108 may include NiChrome resistance wire, nickel, platinum, Constantan, tungsten, and copper, without limitation.
In one implementation of fluid characteristic sensing projection 108, resistance and rate of change of temperature measurements may be made based on measurements from fluid characteristic sensing projection 108 (e.g., signals may be yielded that may enable fluid depth level estimation). To illustrate, fluid characteristic sensing projection 108 may comprise first and second conductive components 110a and 110b (also referred to herein as probes). Current pulses may be received via I/O port 112, connector 104, and may be directed through first conductive component 110a. The current pulses may travel through first conductive component 110a and second conductive component 110b. The current pulses may travel via connector 106 and back out I/O port 112. The current pulses may be used to determine a resistance of fluid characteristic sensing projection 108 (e.g., such as by measuring a voltage differential across connectors 104 and 106 and solving for a resistance, where R=V/I). As noted, resistance of fluid characteristic sensing projection 108 may change based on fluid levels, such as based on a conductivity of a fluid. For instance, a different resistance may be measured at fluid characteristic sensing projection 108 for a same current pulse (e.g., a same pulse amperage and duration) depending on whether fluid characteristic sensing projection 108 is entirely immersed in a fluid versus partially immersed in the fluid.
As should be apparent, then, in response to signals transmitted to fluid characteristic sensing projection 108, signals may be received back at circuit board 102 that may be indicative of resistance of fluid characteristic sensing projection 108 (e.g., to enable resistance measurements). In addition, signals to enable a determination of a rate of change of temperature of fluid characteristic sensing projection 108 may also be received. In one example, a temperature of fluid characteristic sensing projection 108 may be measured to enable a determination of a rate of change of temperature. The determined rate of change may be compared with an expected rate of change of temperature for the applied current, such as expressed in time. In one case, the difference between the expected rate of change of temperature for the applied current and the measured rate of change of temperature may be used to estimate a fluid level. In one example, the relationship between fluid depth and rate of change of temperature may be determined experimentally for a particular fluid and a particular reservoir. Empirical results may be represented in a lookup table, for example. Together, fluid depth estimations derived based on resistance and a rate of change of temperature may provide increased accuracy as compared to an example case in which one measure (e.g., resistance alone) is used to estimate fluid depth.
The following discussion refers to portions of
In one example, fluid characteristic sensing device 300 may be relatively flat, such as to assist placement thereof in a compact space. For example, conductive components 310a and 310b and conductive component connector 314 may be relatively flat. In one example, fluid characteristic sensing projection 308 may be relatively thin, such as to yield a relatively flat fluid characteristic sensing device 300. For example, a thickness of fluid characteristic sensing projection 308 may be less than approximately 2 mm or less than approximately 1 mm, wherein the thickness may be measured perpendicular to a plane (e.g., square used to indicate fluid characteristic sensing device 308 of
In one implementation, fluid characteristic sensing device 300 may enable fluid depth estimations for a fluid into which fluid characteristic sensing projection 308 is immersed. A process similar to example method 200 of
Current pulses received at interconnects 318 may travel through traces 324 and on to fluid characteristic sensing projection 308, similar to as was discussed above in relation to block 210 of example method 200. In one implementation, first conductive component 310a may be communicably connected to a conductive pad of interconnects 318 corresponding to a path to a ground. Similarly, second conductive component 310b may be communicably connected to a conductive pad of interconnects 318 corresponding to a path over which current pulses may be directed. As such, in a case in which current pulses are received at interconnects 318 from an external source (e.g., a processor), they may travel through a conductive pad (e.g., conductive pad 320 or 322) of interconnects 318, through a corresponding trace of traces 324, and connector 306 and on to second conductive component 310b. The received current pulses may travel through second conductive component 310b, conductive component connector 314, and first conductive component 310a. In one example, current pulses may leave first conductive component 310a, traverse connector 304 and traces 324. The current pulses may traverse a conductive pad (e.g., conductive pad 320 or 322) of interconnects 318 and exit fluid characteristic sensing device 300, such as discussed above in relation to block 215 of example method 200. In one case, the current pulses may travel towards a ground arranged externally to fluid characteristic sensing device 300. The conductivity of first and second conductive components 310a and 310b and a fluid in which fluid characteristic sensing projection 308 is arranged may influence a flow of the received current pulses. And based on the characteristics of the fluid and fluid characteristic sensing projection 308, it may be possible to measure a resistance, such as based on the current pulses and the conductivity of the projection and fluid.
To illustrate how such signals indicative of resistance and temperature might be used to estimate a fluid depth in a reservoir, a non-limiting illustrative example is provided. For example, a processor of a device or a system may execute instructions to enable fluid depth estimation for a fluid in a reservoir. Responsive to execution of the instructions, a current pulse may be transmitted to a reservoir in which fluid characteristic sensing device 300 is arranged. The current pulse may be received by fluid characteristic sensing device 300, traverse fluid characteristic sensing projection 308, as described above, and current may leave fluid characteristic sensing device 300, such as towards a ground. The processor may be capable of measuring a voltage at fluid characteristic sensing device 300 and using the voltage and the current pulse value, determine a resistance value. As noted above, the resistance value may be determined based on signals indicative of a resistance of a fluid characteristic sensing projection 308 of fluid characteristic sensing device 300.
The processor in this example may enable transmission of a current pulse capable of heating first and second conductive components 310a and 310b (and likewise heating fluids in proximity to first and second conductive components 310a and 310b within the reservoir). In one implementation, a same current pulse used to measure resistance may be used to heat first and second components 310a and 310b, for example. Using one or more components of the system (e.g., a printer in one example), a temperature reading may be taken subsequent to transmission of the heating current pulse and may be influenced by the current pulse transmitted from the processor. A fluid level in the reservoir may influence a temperature generated in response to the current pulse. The temperature reading may thus correlate with fluid depth.
The processor in this example may also enable a determination of a time taken for the temperature to return to a steady state value. For instance, a temperature xst may correspond to a temperature of fluid characteristic sensing projection 308 (and surrounding printing fluid) at a steady state in which no heating current is applied. And a temperature xi may correspond to a temperature of fluid characteristic sensing projection 308 (and surrounding printing fluid) responsive to a heating current pulse. Subsequently, a time may be measured for temperature xi to return to the steady state temperature of xst. The resulting time and x1-xst values may be used to determine a rate of change of temperature, which may be used to estimate a fluid depth, by way of example. The fluid depth estimation based on a rate of change of temperature may be used with the fluid depth estimation based on resistance to yield an updated fluid depth estimation.
In light of the foregoing description, an example fluid characteristic sensing device may comprise a circuit board (e.g., circuit board 302 in
Consistent with the foregoing description, an example fluid characteristic sensing device (e.g., fluid characteristic sensing device 300 in
Consistent with the above description, in one example, a device capable of enabling estimation of a fluid depth may comprise a first polysilicon probe and a second polysilicon probe (e.g., first and second conductive components 310a and 310b in
In one case, the current pulse may be used to determine a resistance of fluid characteristic sensing projection 508. The current pulse may be used to heat fluid characteristic sensing projection 508 and determine a temperature of fluid characteristic sensing projection 508. A time for the temperature of fluid characteristic sensing projection 508 to return to a steady state temperature may also be determined. The to be determined resistance and rate of change of temperature values enabled by fluid characteristic sensing device 500 may be used in order to estimate a fluid depth in one example case. For instance, a first resistance and a first rate of change of temperature may correspond to a fluid level illustrated by fluid level 555 in
It may be that arriving at similar fluid level determinations may confirm an accuracy of the fluid level estimation. However, at times, the fluid level estimations may differ. By way of non-limiting example, a fluid depth estimation based on resistance may suggest fluid depth corresponding to fluid level 555, while a fluid depth estimation based on a rate of change of temperature may suggest fluid depth corresponding to fluid level 557. In such a case, it may be possible to use one determination (e.g., rate of change of temperature) to reconcile another determination (e.g., resistance), and vice versa. By way of further example, fluid level estimations based on different characteristics of fluid characteristic sensing projection 508 may be averaged.
It is noted that while the foregoing examples described processing occurring external to a fluid characteristic sensing device, in at least some cases, an example fluid characteristic sensing device may comprise a processor to, for example, estimate fluid depth based on resistance and temperature.
As should be apparent based on the foregoing examples and discussion, a fluid characteristic sensing device may comprise a fluid characteristic sensing projection comprising two portions. The two portions may comprise a Si-based material. For example, in one case, the two portions of the fluid characteristic sensing projection may comprise polysilicon. In another example, fluid characteristic sensing projection portions may comprise a metal wire covered with polysilicon. The two portions of the fluid characteristic sensing projection may be connected to be in electrical communication. Signals may be received and directed through the two portions of the fluid characteristic sensing projection. The received and directed signals are to be used to determine a resistance of the fluid characteristic sensing projection. The received and directed signals are also be used to determine a rate of change of temperature of the fluid characteristic sensing projection. For example, the signals may be used in order to determine a temperature of the fluid characteristic sensing projection subsequent to a heating current pulse. A time for the temperature of the fluid characteristic sensing projection to return to a steady state temperature may also be determined. As noted above, among other things, fluid characteristic estimations, such as to resistance and temperature, may enable fluid depth, by way of non-limiting example. Estimations of fluid depth based on fluid characteristic sensing projection resistance may be used in conjunction with estimations of fluid depth based on a rate of change of temperature.
In the preceding description, various aspects of claimed subject matter have been described. For purposes of explanation, specifics, such as amounts, systems and/or configurations, as examples, were set forth. In other instances, well-known features were omitted and/or simplified so as not to obscure claimed subject matter. While certain features have been illustrated and/or described herein, many modifications, substitutions, changes and/or equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all modifications and/or changes as fall within claimed subject matter.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/027568 | 4/14/2017 | WO | 00 |