TECHNICAL FIELD
Aspects of the invention generally relate to analog-to-digital converter apparatuses and methods for converting analog signals to digital signals. More specifically, aspects of the invention relate to CMOS A/D converter apparatuses with arbel channel and methods.
BACKGROUND OF THE INVENTION
In many high-performance applications, two exemplary competing design parameters of A/D converters are speed and resolution. Many designs for A/D converters have been proposed which include deterministic A/D converters and sequential A/D converters. Each of the proposed designs has its own merits and disadvantages. Deterministic A/D converters receive an analog input and produce an output after a delay. Sequential A/D converters use feedback, RC charging, or other such methods and require several internal steps to generate the digital output. Further details regarding deterministic and sequential A/D converters can be found in Sedra and Smith, Microelectronic Circuits (4th Edition), Oxford University Press, pages 864-870, the details of which are incorporated herein by reference in their entirety.
Sequential A/D converters can generate high precision conversions and can allow for high resolutions. Examples of such topologies include feedback-type, delta-sigma type, dual-slope and charge redistribution. Such topologies generally trade speed for precision.
Deterministic A/D converters are generally high speed devices, and lack the precision of the sequential devices. For example, the highest deterministic A/D resolutions are generally found to be of 8-bits. Such A/D converters are considered deterministic since other than for control of track/hold functionality, there is no control logic, clocking, or iterative, series comparisons. Such A/D converters simply produce the digital output from the received input. Two principle topologies of these devices are, for example, folding and flash type designs. Both are high speed implementations and are further discussed below.
Accordingly, there is a need to overcome the above-identified problems.
SUMMARY OF THE INVENTION
In one aspect, an analog to digital converter includes a resistor-divider network including a plurality of resistors, an arbel channel circuit configured to generate a voltage sawtooth signal as an output, a dc-offset disposed to couple a node of the resistor-divider network and the arbel-channel circuit. The converter further includes a voltage reference circuit configured to generate a reference voltage, and a differential comparator configured to compare the voltage sawtooth signal with the reference voltage to produce a digital output signal corresponding to the voltage sawtooth signal.
In another aspect, an apparatus for converting an analog signal to a digital signal includes a resistor-divider network, an arbel channel circuit configured to generate a voltage sawtooth signal as an output, the arbel channel circuit including 2N-n arbel cells for each bit of the arbel channel, wherein N is the total number of bits and n is the current bit and each of the arbel cells include at least first, second, and third sections. The apparatus further includes a dc-offset disposed to couple a node of the resistor-divider network and the arbel-channel circuit, a voltage reference circuit configured to generate a reference voltage, and a differential comparator configured to compare the voltage sawtooth signal with the reference voltage to produce a digital output signal corresponding to the voltage sawtooth signal.
In yet another aspect, a method of converting an analog signal to a digital signal includes generating a voltage sawtooth signal using an arbel channel circuit, generating a reference voltage, and comparing the voltage sawtooth signal with the reference voltage to produce a digital output signal corresponding to the voltage sawtooth signal.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIG. 1 is a schematic of a flash A/D converter.
FIG. 2 is a block diagram schematic of an exemplary 4-bit analog-to-digital (A/D) converter in accordance with an embodiment of the invention.
FIG. 3 is an exemplary schematic of the Arbel channel shown in FIG. 2.
FIG. 4 is circuit schematic of an Arbel cell shown in FIG. 3.
FIG. 4A is a high level schematic of the Arbel cell shown in FIGS. 3 and 4.
FIG. 5 is the sawtooth output of each of the four Arbel channels, each Arbel channel having 1, 2, 4, and 8 cells.
FIG. 6 shows the input-output characteristic (e.g., voltage transfer characteristic) of the A/D converter shown in FIG. 2, the input-output characteristic being measured using PSPICE simulation.
FIG. 7 is a graph of the static power consumption of the A/D converter shown in FIG. 2, the static power consumption was found to be on average less than 200 mV.
FIG. 8 shows the pulse response of the A/D converter shown in FIG. 2 and tested in PSPICE with the application of a signal with a low level just below threshold for generating a “0000” output, a high level just above threshold for generating a “1111” output, and a one nanosecond rise and fall time.
FIG. 9 is a graph showing the dynamic power of the A/D converter shown in FIG. 2.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
FIG. 1 shows a schematic of a flash A/D converter 100. The A/D converter 100 includes a resistive ladder 102, a plurality of comparators 104, and an encoder 106. Flash A/D conversion using the circuit as shown in FIG. 1 uses 2N-1 comparators 104 and a 2N-1 to N encoder 106 to generate a digital output of N bits. Parallel flash conversion is a common design which includes 2N resistors and the differential comparators and encoder, such as, for example, comparators 104 and encoder 106. In such parallel flash conversion, the resistors (e.g., resistors 102) are configured in a series chain and divide a precision reference voltage into a set of regularly spaced voltages which are in turn connected to one of the inputs of the differential comparators (e.g., comparators 104). The input voltage to be converted to a digital signal is connected to the other 2N-1 comparator inputs of the comparators 104. The differential comparators 104 compare the two inputs and produce a logic 0 or 1 based on which is larger as a result of the comparison. The output of this comparator ladder (e.g., output of the plurality of comparators 104) is a series of 0's followed by 1's called thermometer code. The thermometer code is then connected to the encoder 106 which converts the code to binary format.
FIG. 2 is a block diagram schematic of an exemplary 4-bit analog-to-digital (A/D) converter 200 in accordance with an embodiment of the invention. The A/D converter 200 includes a resistor-divider network 202, a plurality of DC offsets 204, a plurality of Arbel channels 206, a plurality of comparators 208, and a plurality of voltage reference networks 210. The resistor-divider network 202 is configured to divide the input voltage into regularly spaced voltages at nodes 203, 205, 207, and 209, respectively, the respective nodes being connected to one end of the respective ones of the DC offsets 204. The other end of the respective DC offsets 204 is connected to a corresponding Arbel channel 206 and the output of such Arbel channel 206 is connected to a non-inverting input of the corresponding comparator 208. The inverting input of the comparators 208 is connected to a corresponding voltage reference network 210. The 4-bit A/D converter as shown in FIG. 2 is for purposes of illustration. The A/D converter 200 includes a self-encoding design using reduced number of differential comparators. The illustrated 4-bit A/D converter 200 includes four DC offsets 204, Arbel channels 1, 2, 4, and 8, and four comparators 208. It will be appreciated that A/D converters of other resolutions are possible.
FIG. 3 is an exemplary schematic of the Arbel channel 206 shown in FIG. 2. The Arbel channel 206 includes a plurality of Arbel cells 3021-3028. The schematic of the Arbel channel 206 shown in FIG. 3 is an exemplary schematic of the Arbel channel configured with respect to the Least Significant Bit (LSB) of the A/D converter 200 (FIG. 2). It will be appreciated that the number of cells present in the Arbel channel may be higher or lower depending on the bit resolution with which the Arbel channel is associated with. For example, in the exemplary 4-bit A/D converter 200 (FIG. 2), Arbel channel 206 associated with the LSB is shown to have eight Arbel cells, and the Arbel channel 206 associated with the MSB can have one Arbel cell, and so on and so forth.
The Arbel channel 206 includes stacked cells (e.g., Arbel cells 3021-3028) the outputs of which are connected to resistor 304 (e.g., load resistor). The resistor 304 can be connected to the comparator (e.g., differential comparator) 208 (FIG. 2). In the embodiment shown in FIG. 3, the resistor 304 is designed for a single rail. Other designs are possible. Although the comparator 208 (FIG. 2) can be designed in several ways, each of such designs is preferred to work in the hundreds of millivolts range. For each bit of the Arbel channel 206, 2N-n cells may be necessary, where “N” is the total number of bits and “n” is the current bit. In the exemplary embodiment shown in FIG. 2, the LSB of the 4-bit converter requires 8 Arbel cells.
FIG. 4 is circuit schematic of an Arbel cell 302 shown in FIG. 3. The Arbel cell 302 includes three sections (e.g., section 1, section 2, and section 3) as illustrated in FIG. 4. For example, transistors M1, M2, and resistor R1 make up section 1 (e.g., voltage dropping section). Transistor M1 and the resistor R1 form a common-drain amplifier which acts to create a voltage drop. M2 is a shunt transistor and is configured to ensure that the created voltage drop stays constant. Such creates a standard voltage drop that is then connected to the input of the next Arbel cell. The resistor R1 can be used as a biasing current source. The shunt transistor M2 is preferred to be “slow” having a low constant Kp in order to minimize the current drawn from the input and to maintain high input impedance.
Section 2 as illustrated in FIG. 4 includes resistor R2, transistors M3 and M4. Section 2 makes up the buffer to Section 3 (e.g., a sawtooth generating section). Transistor M3 and resistor R2 are configured as a common-drain amplifier and provide the current to the rest of the circuit of the Arbel cell 302. Transistor M4 can be configured as a depletion-mode shunt transistor. It is preferred that the turn-on voltage of the transistor M4 is close to, or slightly less than, zero. In one embodiment, the transistor M4 is made “slow” in order to retain a desired high impedance. In one embodiment, the buffering transistor M3 is preferred to be kept small in order to minimize power consumption.
Section 3 of the Arbel cell 302 is configured to generate the voltage sawtooth and includes transistors M5, M6, M7, and resistors R3, R4, R5, and R6. The source nodes of the buffer-diode pair of transistors M3 and M4 connect to the pull-up transistor M5 and to the gate of the pull-down transistor M6. The source of the pull-up transistor M5 connects to the drain of the pull-down transistor M6. Connected to the body of the pull-up and pull-down transistors M5 and M6, respectively, are resistive divider networks 402 and 404 which can control where the peak of the sawtooth occurs as well as for fine tuning of the A/D converter 200 (FIG. 2). Also connected to the source of the pull-up transistor M5 is the drain of the transistor M7 (e.g., slosh-back diode). The source of the transistor M7 is the output Vout of the Arbel cell 302. The transistor M7 serves as a “valve” to isolate the functionality of the Arbel cell 302 from the load resistor 304 (FIG. 3).
FIG. 4A is a high level schematic of the Arbel cell 302 shown in FIGS. 3 and 4. The Arbel cell 302 includes a dc voltage source 406 for generating a voltage drop, a buffer 408 which corresponds to section 2 shown in FIG. 4, a pull down transistor 410 which corresponds to the pull down transistor M6 shown in FIG. 4, and an isolation circuit 412. The operation of the circuit 302 as shown in FIG. 4A is similar to what has been described with respect to FIG. 4 and is therefore not repeated.
FIG. 5 is the sawtooth output of each of the four channels (e.g., Arbel channel 206) with 1, 2, 4, and 8 cells of the Arbel channel 206. The sawtooth signal, when fed into the comparator logic (e.g., comparator 208), is used to generate the binary information. In one embodiment, the voltage sawtooth signal is generated using an all-CMOS process. Such is done primarily by using the pull-down transistor M6 (FIG. 4). In one embodiment, the transistor M6 can be a “large” transistor having a high constant Kp or width. For example, the “large” transistor can be defined as a transistor wherein for a given gate bias, the drain current will be high. In such embodiment, the transistor M6 can have a higher threshold voltage relative to other transistors of the Arbel cell 302 shown in FIG. 4. During operation, when the transistor M6 turns on, it tries to drain a large amount of current. Since it would be difficult for the transistor M6 to drain large amount of current, it pulls down the output voltage Vout.
The exemplary design of the 4-bit A/D converter as shown in FIG. 2 includes transistors and resistors. The majority of the resistors can be biasing resistors to trim and align the circuit. In each Arbel cell, three resistor pairs are provided that can be used to tune the A/D converter 200 (FIG. 2). The divider network 202 (FIG. 2) at the input changes the spacing of the peaks. The Arbel cell body biases can be used to tune each individual transition (e.g., R3, R4, R5, and R6 of FIG. 4). The reference voltage at the comparator (e.g., comparator 208) changes the duty cycle and allows even spacing of the transitions. The inventors have found that the number of transistors required for the exemplary A/D converter using the Arbel cell shown in FIG. 4 is much smaller than comparable flash converters.
FIG. 6 shows the input-output characteristic (e.g., voltage transfer characteristic) of the resulting A/D converter 200 (FIG. 2) as measured from a PSPICE simulation. The horizontal axis is shown to represent the input voltage and the curve shown represents the digital output of the A/D converter 200. The curve shows that the output of the A/D converter 200 is highly linear. The inventors have measured the static power consumption of the A/D converter 200 in the same simulation. Such static power consumption was found to be on average less than 200 mV as shown in FIG. 7.
The pulse response of the A/D converter 200 was tested in PSPICE with the application of a signal with a low level just below a threshold level for generating a “0000” output, a high level just above the threshold for generating a “1111” output, and a one nanosecond rise and fall time. Such results are shown in FIG. 8. The inventors have found that the response time is less than 2 ns, implying a sampling rate of 500 million samples per second (MS/s). Each bit of the output of the A/D converter 200 is generated individually, eliminating the need for complex encoder logic circuitry. The overall speed of the A/D converter 200 is determined by the speed of the Arbel channels (e.g., Arbel channel 206), and in particular the LSB channel. The dynamic power of the A/D converter 200 is shown in FIG. 9.
Aspects of the invention provide various advantages, which in some embodiments include elimination of the resistive ladder, reduction in the number of comparators, and elimination of the encoder logic without sacrificing performance, when compared to conventional high speed, low resolution A/D converters. The circuit design according to various embodiments of the present invention reduces the die size of A/D conversion thereby enhancing possibilities for integration as well as manufacturing economics. Other advantages include minimizing the number of comparators to N for an N-bit converter thereby minimizing power consumption and allowing BiCMOS or bipolar comparators to be used with less of an impact on power consumption or total die size. Such reduction also results in greater manufacturing yield, since with fewer devices, the total probability of error is reduced.
Further, various embodiments of the invention use N discrete channels to convert to N bits thereby eliminating the need for an encoder circuit used in prior designs. Such circuit design without an encoder circuit can also be applied to other architectures such as, for example, flash converters. The design in accordance with various embodiments generates a distinct transition required for each bit through the generation of multiple sawtooths as shown in FIG. 5, and therefore requires no encoder. Although various biasing resistors have been used in accordance with various embodiments, similar output can be achieved without using many of the biasing resistors through careful adjustments to various circuit parameters.
The A/D conversion circuit in accordance with various embodiments employs a novel topology to significantly reduce the complexity and the total number of components relative to comparable devices. The design in accordance with various aspects has numerous advantages which will enable the development of small, more pervasive sensor applications. In addition, numerous other military and commercial applications are possible including, but not limited to, microwave systems, high-speed communication, radar and sonar. Commercial applications include video processing and medical imaging. The A/D converter in accordance with various aspects provides the following innovations: a) development of a high speed, low power A/D converter in all-CMOS technology; b) N-bit conversion using N comparators; c) a self-encoding design based on maximum folding; d) a flexible, scalable design based on modular components; e) a design capable of generating multiple cycles of voltage “sawtooths” from a single ramp; f) a novel method of performing folding functions; g) a cell design potentially capable of other functions both analog and digital; h) a deterministic A/D converter without use of a resistor ladder; and i) a low component count.
Appendix 1 discloses an exemplary PSPICE simulation of the exemplary 4-bit A/D converter shown in FIG. 2.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.