Present invention relates to the field of analog to digital conversion. Specifically, it relates to analog to digital converter with reduced loop delay. More specifically, relates to converters involving a flash converter and digital to analog converter in feedback loop of the system; with one analog input signal generating the digital output accurately representing the behaviour of the input signal in time and voltage. The current invention enables the improvement in linearity of the analog to digital converter and also signal to noise ratio in certain use case.
Analog to digital converters are key interface to the computing applications requiring the real-world data; real world analog signal is sampled using a clock to get it converted into discrete time digital signal to be used for forthcoming signal processing requirements. The fundamental requirement from this converter process is to represent the analog signal with best possible accuracy; key parameters to benchmark the accuracy of the conversion is noise and linearity in a global perspective.
Inherently linear, single bit DAC's can be used inside sigma delta converters but they are not suitable for high resolution and high dynamic range requirements as they need large Oversampling ratios to meet these requirements. Therefore, multi bit DAC's are most suitable and are invariably used for such applications. However, multi bit DAC's have the problem of element mismatch and DAC linearity can be a major concern. To improve DAC linearity DEM/DWA/PR sequences are applied to the input of the DAC by employing mismatch shaping algorithms inside DEM (103). The issue with Mismatch shaper DEM (103) is that it adds extra delay in feedback loop (?) which impacts the stability of the loop. Prior art U.S. Pat. No. 6,346,898 quantizer array (101) is shown in
U.S. patent Ser. No. 10/075,181 is using segmented rotators to reduce the latency for digital code generation, but this method still produces significant delay which cannot be accepted in the wide bandwidth converters.
Principal Object of this invention is to provide an arrangement of sigma-delta analog-to-digital converter (ADC) with reduced excess loop delay.
The other object is to provide ADC with improved linearity by noise shaping the element mismatch of the feedback DAC without impacting the loop delay.
Analog to digital converter (ADC) is composed of noise shaping filter and multi-level quantizer, where said quantizer is made from an array of comparators, each coupled with one reference level, the said quantizer is coupled with a thermometric digital to analog converters (DAC) in the feedback path, the said DAC output is compared with ADC input and error is fed to noise shaping filter, said reference levels of each quantizer is generated from a digital to analog converter coupled with a digital quantizer reference controller and said digital quantizer reference controller is randomly changing the reference levels in a way that quantizer coupled DAC elements are indirectly randomised to improve the overall linearity and noise performance of the converter.
In one of the embodiments, the said digital reference controller is also coupled to the said quantizer outputs to further shape DAC mismatch noise based on history of previous outputs of the quantizer without adding any delay to the loop.
In other embodiment, method of randomization in digital reference controller may have noise transfer function described by (1-Z-1)2.
In other embodiment, the converter operates in a way that said noise shaping is using the comparators outputs.
The invention also provides a method of using the quantizer made of comparator arrays with reference generated from a digitally controlled DAC with comparator outputs coupled to another main DAC operating to generate analog signal.
The method, further get the reference voltages controlled by a digital controller to randomise the main DAC elements to achieve the mismatch noise shaped and improved linearity for the application, said arrangement may be used to improve linearity of the MDAC in the pipelined converters as well.
Present invention as described in
As an example of 3b quantizer and 3b feedback DAC in case of continuous time delta sigma ADC the Quantizer array consists of 7 comparators and each connected with 3b reference generation DAC on reference input. When analog input is applied to the quantizer array, 3b reference generation DAC is generating 7 different reference voltages need to generate thermometric outputs from the comparators and this output is applied to feedback DAC (305) to generate the analog feedback signal for the loop. The feedback DAC (303) can be implemented in any way e.g. if it is a current steering DAC (402) then it comprises of 7 current sources switching to produce analog output. If there is any mismatch in the current sources of the feedback DAC 305 it will result in distortion of the ADC. If desired ADC resolution is 16b then DAC (305) current source elements must match for up to 16b accuracy, which is difficult to achieve without randomisation/DWA or DEM.
Randomisation is a technique to uniformly spread the element mismatch across the spectrum by randomly selecting the elements. Techniques like Dynamic Element Matching (DEM) or data weighted averaging (DWA) shape the noise introduced by the element mismatch. However, adding any mismatch shaper in loop between Quantizer (306) and feedback DAC (305) will add excess loop delay causing stability issues of ADC loop. In the present invention a set of components indicated by block (303) enable the mismatch shaping operation without impacting the loop delay. Further, individual DAC elements of reference generation DAC (402) enable minimum parasitic load at the reference input of the comparator array. Digital controller can optionally take the feedback from the quantizer output to perform Dynamic element matching or can simply act as a randomizer by not taking any feedback from quantizer. The whole arrangement results in a much faster operation than any of the prior arts.
The complete implementation of Multi bit parallel DAC based reference (301) require N*K number of digital controls where K is reference generation DAC resolution and N is the no of comparators as against N*N in the prior art 1. Further, 301 does not need any N*N switch matrix as was needed inside 201 of prior art 1. As a result, total parasitic capacitance on reference nodes is exponentially reduced and this results in fast settling of the reference voltages and higher speed of operations can be achieved. Further, the reference generation DAC block (402) has no design restrictions and can be implemented as binary or thermometric DAC. This block 402 can easily be adapted to any of the available DAC topologies like current steering or ladder.
Another application of the present invention is shown in
The Digital Controller 401 can use any scheme or algorithm to implement the randomized reference generation within constraints of clock timing. Amongst plurality of schemes, one example is shown in
Another example scheme is shown in
The Digital Controller can also be used to generate any higher order noise shaping mismatch function to address higher linearity requirements.
While the invention has been particularly described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes may be made therein without departing from the scope of the invention encompassed by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201911048483 | Nov 2019 | IN | national |