The present application claims priority from Japanese patent application JP 201846636 filed on Mar. 14, 2018, the content of which is hereby incorporated by reference into this application.
The present disclosure relates to an analysis apparatus configured to analyze characteristics of a viscoelastic material by a finite element method.
A viscoelastic material constitutive law in which an elastic element and a viscoelastic element are arranged in parallel with each other has heretofore been known as a model for analyzing the characteristics of a viscoelastic material (e.g., rubber).
One apparatus of the related art (hereinafter referred to as “related-art apparatus”) is configured to analyze the stress-strain characteristics of the viscoelastic material by using a relaxation time representing the damping characteristics of the viscoelastic element as a constant (e.g., Japanese Patent No. 6048358).
The behavior of the viscoelastic material may vary depending on an environmental temperature. However, in the related-art apparatus, the relaxation time is defined as a function that is independent of the environmental temperature. Therefore, the related-art apparatus cannot analyze the characteristics (e.g., stress-strain characteristics) of the viscoelastic material in consideration of the dependence of the viscoelastic material on the environmental temperature.
The present disclosure provides an analysis apparatus capable of reproducing the dependence of a viscoelastic material on an environmental temperature.
An analysis apparatus according to one embodiment is an apparatus configured to analyze characteristics of a viscoelastic material based on a viscoelastic material constitutive law in which an elastic element and a viscoelastic element are arranged in parallel with each other.
The analysis apparatus includes: a first calculation module (1041) configured to set a predetermined input condition for a viscoelastic material model divided into a finite number of elements each having a node to calculate a displacement amount of the node; a second calculation module (1042) configured to calculate a strain rate at the node through use of the displacement amount; a third calculation module (1043) configured to calculate, as a relaxation time (τi) of the viscoelastic element, a value proportional to a value of a power using the strain rate as a base and a value of a power using a shift factor (α(T)) of a temperature-time conversion law as a base; and a fourth calculation module (1044) configured to calculate a stress at the node through use of the relaxation time.
In the analysis apparatus having such configuration, the relaxation time representing damping characteristics of the viscoelastic element is calculated by using a power function of the shift factor of the temperature-time conversion law. Therefore, the analysis apparatus can reproduce the dependence of a viscoelastic material on an environmental temperature. Thus, the accuracy with which the characteristics (e.g., stress-strain characteristics) of the viscoelastic material are predicted when the environmental temperature has changed can be improved.
In one aspect of the analysis apparatus, the analysis apparatus further includes a shift factor calculation module (1030) configured to calculate the shift factor. The shift factor calculation module is configured to: calculate, from test results of a harmonic oscillation test performed at a plurality of environmental temperatures by using the viscoelastic material serving as an analysis object, an elastic modulus of the viscoelastic material at each of the plurality of environmental temperatures; normalize the elastic modulus at each of the plurality of environmental temperatures through use of a reference elastic modulus (G(T0)) at a reference temperature (T0) out of the plurality of environmental temperatures; determine a function f(T) representing a relationship between a logarithmic value of the normalized elastic modulus and a temperature; and calculate a shift factor α(T) based on a material constant mi obtained from a relationship between an elastic modulus and an amplitude in the harmonic oscillation test in which the viscoelastic material is used, the function f(T), and the following expression (A).
f(T)=(1+mi)log α(T) (A)
According to this aspect, the shift factor of the temperature-time conversion law can be calculated from the test results of the harmonic oscillation test performed at the plurality of environmental temperatures.
In one aspect of the analysis apparatus, the analysis apparatus further includes a shift factor calculation module (1030) configured to calculate the shift factor. The shift factor calculation module is configured to: produce, from test results of a stress relaxation test performed at a plurality of environmental temperatures by using the viscoelastic material serving as an analysis object, a stress relaxation graph for each of the plurality of environmental temperatures; normalize the stress relaxation graph for each of the plurality of environmental temperatures through use of a maximum stress (σ0) at a reference temperature (T0) out of the plurality of environmental temperatures to calculate a relaxation time at each of the plurality of environmental temperatures; normalize a logarithmic value of the relaxation time at each of the plurality of environmental temperatures through use of a relaxation time at the reference temperature to determine a function f(T) representing a relationship between the normalized logarithmic value of the relaxation time and a temperature; and calculate a shift factor α(T) based on a material constant mi obtained from a relationship between an elastic modulus and an amplitude in a harmonic oscillation test in which the viscoelastic material is used, the function f(T), and the following expression (B).
f(T)=(1+mi)log α(T) (B)
According to this aspect, the shift factor of the temperature-time conversion law can be calculated from the test results of the stress relaxation test performed at the plurality of environmental temperatures.
In one aspect of the analysis apparatus, an exponent of the value of the power using the shift factor as a base is a value obtained by adding 1 to an exponent of the value of the power using the strain rate as a base.
In the above description, in order to facilitate understanding of the above one or more aspect of the apparatus, a name and/or reference numeral used in one or more embodiments described later are enclosed in parentheses and assigned to each of the constituent features of the apparatus. However, each of the constituent features of the apparatus is not limited to the embodiments defined by the name and/or reference numeral.
Now, referring to the accompanying drawings, a description is given of one or more embodiments of the present disclosure. The accompanying drawings are illustrations of the embodiments, but those illustrations are examples to be used for the understanding of the embodiments, and are not to be used to limit the interpretation of the disclosure.
<Outline of Analysis Involving Using Viscoelastic Material Constitutive Law>
A viscoelastic material constitutive law to be used in an embodiment is described with reference to
Here, a rigidity ratio in each of the elastic element and the viscoelastic elements to be connected in parallel with each other is represented by γi (i=0 to N), and a relaxation time in each of the viscoelastic elements is represented by τi=ηi/Gi. A stress S at a time t in the viscoelastic material model is represented by the following expression (1) and expression (2).
In the expression (1), S represents a second Piola-Kirchhoff stress, and S∘ having a superscript represents the stress of only an elastic component from which a viscous force component has been removed. J represents the volume change ratio of a viscoelastic material. The volume change ratio J is represented by J=det[F] through the use of the determinant (det) of a deformation gradient tensor F representing a linear transformation relationship between positions before deformation and after the deformation at a certain substance point. An operator DEV is represented by the following expression (3) through the use of a right Cauchy-Green tensor C=FT·F. [] in the expression (3) represents a variable serving as the operand of the operator DEV.
DEV[]=[
]−1/3[(
):C]·C−1 (3)
Qi in the expression (1) represents a viscous force in each of the viscoelastic elements. Qi is represented by an evolution equation represented by the expression (2).
0
represents the deviator of strain potential energy in a superelastic body.
represents a modified right Cauchy-Green tensor from which a volume component has been removed, and is represented by the following expression (4).
The second Piola-Kirchhoff stress S represented by the expression (1) and the expression (2) can be represented in an integral form represented by the following expression (5).
Uo
represents the volume component of the strain potential energy. Further, g(t) represents a relaxation function, and is represented by the expression (6).
Here, the deformation of the expression (5) represented as a function of the time t into the following expression (7) can provide a second Piola-Kirchhoff stress Sn+1 at a time tn+1. A function in a calculation step n is represented by (⋅)n, and a function in a calculation step n+1 is represented by (⋅)n+1.
H(i)n+1 in the expression (7) represents an intermediate function obtained as an approximate solution by integration over a time interval [tn, tn+1] through the use of a midpoint rule, and is represented by the following expression (8).
{tilde over (S)}n+1o,{tilde over (S)}no
are defined by the following expression (9) and expression (10), respectively.
A Kirchhoff elastic stress
Thus, the expression (9) can also be represented by the following expression (12).
{tilde over (S)}on+1=
Further, a Kirchhoff stress tensor Tn+1 can be represented by the following expression (13) through the use of the second Piola-Kirchhoff stress Sn+1.
τn+1=Fn+1Sn+1Fn+1T (13)
Therefore, as can be seen from the expression (7) and the expression (13), the Kirchhoff stress tensor can be represented by the following expression (14).
An operator dev in the expression (14) is defined by the following expression (15). () in the expression (15) represents a variable serving as the operand of the operator DEV.
dev[)
)]Fn+1T (15)
Further, a relaxation function g* in the expression (14) is defined by the following expression (16).
As can be seen from the foregoing, the value of the Kirchhoff stress tensor can be obtained by holding the H(i)n+1 and
<Analysis Processing>
In the viscoelastic model of the related-art apparatus, the relaxation time τi has been defined as a function that is independent of an environmental temperature. Therefore, there has been a problem in that the accuracy with which the characteristics (e.g., stress-strain characteristics) of a viscoelastic material are predicted when the environmental temperature has changed is not high.
In view of the foregoing, the inventors of the present application have found the definition of the relaxation time τi as a power function of the shift factor of a temperature-time conversion law (temperature-time superposition principle). Thus, the dependence of the viscoelastic material on the environmental temperature is reproduced, and hence the accuracy with which the characteristics (e.g., stress-strain characteristics) of the viscoelastic material are predicted can be improved.
In this embodiment the relaxation time τi satisfying a relational equation represented by the following expression (17) is used.
τi=Aiα(T)m
Ē
represents a Green-Lagrange strain tensor from which a deviator has been removed, and is represented by the following expression (18) through the use of the following modified right Cauchy-Green tensor:
Ē′
represents a strain rate, and represents the time derivative of the strain tensor.
∥Ē′∥
represents the magnitude of the strain rate, and is represented by the following expression (19) when a three-dimensional strain tensor is used.
α(T) is a value to be newly introduced in this embodiment, and represents the shift factor of the temperature-time conversion law. T represents the environmental temperature. Ai and mi each represent a material constant. Therefore, as represented by the expression (17), the relaxation time τi is defined as a value proportional to the value of a power using the strain rate as a base and the value of a power using the shift factor of the temperature-time conversion law as a base. Further, the exponent of the value of the power using the shift factor of the temperature-time conversion law as a base is a value obtained by adding 1 to the exponent of the value of the power using the strain rate as a base.
A method of calculating the shift factor α(T) is described later. Further, methods of calculating the material constants Ai and mi are also described later.
Next, expression deformation required in terms of numerical analysis at the time of the introduction of the relaxation time τi represented by the expression (17) is described. In order to calculate the Kirchhoff stress by using the expression (14), an expression including the relaxation time τi is required to be deformed. Specifically, the expression (8) is deformed into the following expression (20).
Further, the expression (16) is deformed into the following expression (22).
Here, a function of the relaxation time τi is defined by the following expression (23) and expression (24).
The expression (24) is used as the relaxation time τi in each of the second term on the right side of the expression (20) and the second term on the right &de of the expression (21), and the expression (22). This is because an approximate solution obtained by integration over the time interval [tn, tn+1] through the use of the midpoint rule is used.
Next, methods of calculating the material constants mi and Ai in the viscoelastic material model described in this embodiment are described.
∥G(t)∥∝ε−m
Here, the expression (2) is deformed into an evolution equation represented by the following expression (26) by substituting the expression (17) into the expression (2). The expression (25) is obtained by solving the expression (26).
log G=(−1−mi)×log ε+β (27)
As can be seen from the expression (27), the material constant mi can be obtained from the following relational equation (mi=−1−Ii). β in the expression (27) represents the intercept of an approximate line shown in
When the value of the material constant mi does not change with the applied frequency ωi to a very large extent, instead of obtaining the material constant mi corresponding to each frequency, a common exponent m obtained as the average of the respective material constants mi may be used. In the case where the common exponent m is used, a calculation load can be reduced as compared to that of the case where the different material constants mi are used for the respective frequencies.
The material constant Ai can be obtained from a relationship represented by the following expression (28) by using the material constant mi obtained by the above-mentioned method. A frequency ωi in the expression (28) is the applied frequency in the harmonic oscillation test. The material constants Ai corresponding to the respective viscoelastic elements different from each other in frequency component ωi can be obtained by changing the frequency.
Next, a method of calculating the rigidity ratio γ0 of the elastic element is described.
Next, a method of calculating the elastic modulus G0 of the elastic element is described. In this embodiment, the elastic modulus G0 of the elastic element is determined by defining superelastic coefficients C10, C20, and C30 defined in a Yeoh material model serving as a superelastic material model. Those superelastic coefficients can be derived by obtaining the relaxation stresses Q∞ for the plurality of input strains Epre in the stress relaxation test shown in
Next, a method of calculating the rigidity ratio γi of each of the viscoelastic elements is described. In
The rigidity ratio γi of each viscoelastic element can be obtained from an area Zi surrounded by the relation curve Qi between the strain E and the stress Q shown in
The material constants mi and Ai, the rigidity ratios γ0 and γi, and the elastic modulus G0 can be identified by the foregoing methods.
Next, a method of calculating the shift factor α(T) of the temperature-time conversion law is described. As shown in
Here, the following expression (29) is valid for a relationship between an elastic modulus G(T) and the shift factor α(T) in the harmonic oscillation test.
G(T)˜α(T)(−1−m
Therefore, first, the elastic modulus G(T) is calculated from the test results of the harmonic oscillation test. Here, the T0 out of the plurality of environmental temperatures (T0, T1, T2, . . . , TN) is used as a reference temperature. Each of elastic moduli at the plurality of environmental temperatures is normalized through the use of an elastic modulus G(T0) at the reference temperature T0. Next, as shown in
f(T)=(1+mi)log α(T) (30)
Therefore, the shift factor α(T) can be calculated by using the material constant mi.
<Hardware Configuration of Analysis Apparatus>
Next, an analysis apparatus configured to analyze the characteristics of a viscoelastic material by a finite element method is described. As illustrated in
The information processing device 910 includes a CPU 911, a RAM 912, a ROM 913, a hard disk drive (HDD) 914, and an I/O interface 915. The ROM 913 stores an instruction (a program or a routine) to be executed by the CPU 911. The CPU 911 is configured to execute the instruction to achieve various functions to be described later.
The information processing device 910 is connected to the input device 920 and the output device 930 via the I/O interface 915. The input device 920 is a device configured to receive various requests from a user, and includes a keyboard and a mouse. The output device 930 includes a display configured to output a result of processing executed by the information processing device 910.
<Function Configuration of Analysis Apparatus>
The CPU 911 is configured to read out and execute the instruction stored in the ROM 913 to achieve the respective functions of “a construction module 1010, a material constant calculation module 1020, a shift factor (SF) calculation module 1030, and a stress calculation module 1040” illustrated in
The construction module 1010 constructs the viscoelastic material model of the viscoelastic material to be used as an analysis object. In the viscoelastic material model the viscoelastic material serving as an analysis object is represented as an aggregate of an element and a node (grid point). For example, when the viscoelastic material is represented by using a two-dimensional model, a triangular element having three nodes or a quadrangular element having four nodes is used as each element. When the viscoelastic material is represented by using a three-dimensional model, a tetrahedral element or a hexahedral element may be used as each element. In the viscoelastic material model, node coordinate values in a coordinate system, an element shape, material characteristics, and the like are defined for each element. The construction module 1010 can be achieved by using, for example, general-purpose software based on a known technology called a preprocessor. The construction module 1010 stores in the model storage 1060 the viscoelastic material model divided into a finite number of elements each having nodes.
The test result storage 1050 stores data on test results (e.g., the results of a harmonic oscillation test and a stress relaxation test) required for the calculation of the material constants mi and Ai, the rigidity ratios γ0 and γi, the superelastic coefficients C10, C20, and C30 in the elastic element, and the shift factor α(T).
The material constant calculation module 1020 acquires the data on the test results from the test result storage 1050 to calculate the material constants mi and Ai, and rigidity ratios γ0 and γi of the viscoelastic material model, and the superelastic coefficients C10, C20, and C30 in the elastic element (those values are hereinafter sometimes collectively referred to as “parameters”) as described above. The material constant calculation module 1020 stores the calculated parameters in the parameter storage 1070. In order to enable the analysis of a plurality of kinds of viscoelastic materials, the parameter storage 1070 may store the parameters for each viscoelastic material.
The SF calculation module 1030 acquires data on the test results of the harmonic oscillation test performed at a plurality of environmental temperatures from the test result storage 1050. The SF calculation module 1030 calculates the elastic modulus G(T) at each of the plurality of environmental temperatures. Next, the SF calculation module 1030 normalizes the elastic modulus G(T) at each of the plurality of environmental temperatures through the use of the reference elastic modulus G(T0) at the reference temperature T0 out of the plurality of environmental temperatures. The SF calculation module 1030 determines the function f(T) representing a relationship between the logarithmic value log(G(T)/G(T0)) of the normalized elastic modulus and the temperature T as shown in
The stress calculation module 1040 calculates a displacement amount, a strain amount, and a stress at a node of each element through the use of the viscoelastic material model. The stress calculation module 1040 has a first calculation module 1041, a second calculation module 1042, a third calculation module 1043, and a fourth calculation module 1044.
The first calculation module 1041 acquires the viscoelastic material model from the model storage 1060. The first calculation module 1041 sets boundary conditions for the viscoelastic material model to calculate a displacement amount U of a node hi each element from an input condition for each calculation step. The boundary conditions are various conditions to be given to the viscoelastic material model at the time of the simulation of the behavior of the viscoelastic material. The first calculation module 1041 produces a rigidity matrix for solving a rigidity equation in each element. Then, the first calculation module 1041 produces an entire rigidity matrix representing the entire structure of the viscoelastic material model. The first calculation module 1041 introduces input conditions (e.g., the displacement amount of a known node and node force of the known node) into the entire rigidity matrix to execute analysis processing, to thereby calculate the displacement amount U of an unknown node. The first calculation module 1041 can be achieved by using, for example, general-purpose software based on a known technology called a solver.
The second calculation module 1042 receives the displacement amount U obtained by the first calculation module 1041 as an input value. The second calculation module 1042 calculates a strain rate at each node of each element through the use of the displacement amount U. The second calculation module 1042 calculates a strain rate in the step n+1 serving as the next calculation step through the use of a strain amount obtained in the calculation step n.
The second calculation module 1042 calculates a total displacement amount φn+1 in the calculation step n+1 from a total displacement amount φn of the nodes in the calculation step n and the displacement amount U obtained by the first calculation module 1041 in accordance with an expression “φn+1=φn+U”. Here, relationships represented by the following expression (31) to the expression (36) are valid.
φn+1=φn+U (31)
Fn+1=Dφn+1 (32)
Jn+1=det[Fn+1] (33)
Cn+1=Fn+1TFn+1 (34)
The second calculation module 1042 calculates, from the total displacement amount φn+1, and the relationships represented by the expression (32) to the expression (36), a deformation gradient tensor Fn+1, a volume change ratio (Jacobian) Jn+1, a right Cauchy-Green tensor Cn+1, a modified deformation gradient tensor
D in the expression (32) is a differential operator for obtaining the deformation gradient tensor F.
The second calculation module 1042 calculates, from the modified right Cauchy-Green tensor obtained by the expression (36) and the strain amount in the calculation step n, a strain amount and a strain rate in the calculation step n+1 in accordance with the following expression (37) and expression (38). Δtn represents a time step discretized in correspondence with each calculation step.
The third calculation module 1043 receives the strain rate obtained by the second calculation module 1042 as an input value. Further, the third calculation module 1043 acquires the material constants mi and Ai from the parameter storage 1070. Further, the third calculation module 1043 acquires the shift factor α(T) corresponding to the environmental temperature T from the parameter storage 1070. The third calculation module 1043 calculates the relaxation time required for the calculation of a stress from the material constants mi and Ai, the shift factor α(T), and the strain rate. Specifically, the third calculation module 1043 calculates the relaxation time τi from the expression (23) and the expression (24).
The fourth calculation module 1044 receives the relaxation time τi obtained by the third calculation module 1043 as an input value. The fourth calculation module 1044 determines a Kirchhoff stress at a node with the relaxation time τi. First, the fourth calculation module 1044 determines the Kirchhoff elastic stress in the calculation step n+1 through the use of the expression (11). Next, the fourth calculation module 1044 determines the intermediate function H(i)n+1 through the use of the expression (20) and the expression (21), and determines
Next, the fourth calculation module 1044 calculates the Kirchhoff stress through the use of the expression (14) and the expression (22). The fourth calculation module 1044 stores in the calculation result storage 1080 the values of the intermediate function and the Kirchhoff stress obtained in each calculation step. The stress calculation module 1040 repeatedly executes the above-mentioned processing a predetermined number of calculation steps. Finally, the fourth calculation module 1044 produces a stress-strain curve and a stress relaxation curve in the viscoelastic material model from the calculation results stored in the calculation result storage 1080. The fourth calculation module 1044 causes the output device 930 to display the stress-strain curve and the stress relaxation curve.
<Operation>
The CPU is configured to execute an “analysis routine” illustrated in
Step 1101: The CPU constructs the viscoelastic material model of the viscoelastic material to be used as an analysis object.
Step 1102: The CPU calculates the material constants mi and Ai, and rigidity ratios γ0 and γi of the viscoelastic material model, and the superelastic coefficients C10, C20, and C30 in the elastic element as described above.
Step 1103: The CPU calculates the shift factor α(T) of the viscoelastic material model as described above.
Step 1104: The CPU sets the number of calculation steps n to “1”.
Step 1105: The CPU calculates the displacement amount U at each node of each element of the viscoelastic material model as described above.
Step 1106: The CPU calculates the strain rate at the node of each element through the use of the displacement amount U as described above.
Step 1107: The CPU calculates the relaxation time τi from the material constants mi and Ai, the shift factor α(T), and the strain rate as described above.
Step 1108: The CPU calculates the Kirchhoff stress at the node through the use of the relaxation time τi as described above.
When the CPU proceeds to Step 1109, the CPU determines whether or not a predetermined termination condition is valid. The termination condition is valid when the processing in Step 1105 to Step 1108 described above is executed a predetermined number of calculation steps Nth, which has been determined in advance (i.e., when n=Nth).
When the termination condition is not valid, the CPU makes a determination “No” in Step 1109, and proceeds to Step 1110 to increment the number of calculation steps n. After that, the CPU returns to Step 1105.
When the termination condition is valid, the CPU makes a determination “Yes” in Step 1109, and proceeds to Step 1111. In Step 1111, the CPU produces the stress-strain curve and the stress relaxation curve in the viscoelastic material model from the calculation results, and causes the output device 930 to display the curves. After that, the CPU proceeds to Step 1195 to temporarily terminate the routine.
<Experimental Results>
Amplitude: 0.2 μm
Frequency: 1 Hz
Prestrain: 0.25 N
In the analysis apparatus according to this embodiment, the relaxation time τi representing the damping characteristics of a viscoelastic element is defined as a power function of the shift factor of the temperature-time conversion law. Therefore, the analysis apparatus can reproduce the dependence of a viscoelastic material on an environmental temperature. Thus, the accuracy with which the characteristics (e.g., stress-strain characteristics) of the viscoelastic material are predicted can be improved.
The present disclosure is not limited to the embodiment described above, and various modification examples can be adopted within the scope of the present disclosure.
The method of calculating the shift factor α(T) of the temperature-time conversion law is not limited to the above-mentioned example. The SF calculation module 1030 may determine the shift factor α(T) in accordance with the following flow. For example, a stress relaxation test is performed on the test body of the viscoelastic material at a plurality of environmental temperatures (T=T0, T1, T2, . . . , TN). At this time, a prestrain is constant, and a strain rate is also constant.
As shown in
Next, as shown in
The material constant Ai may be calculated from the results of the constant strain rate test. The deformation of the expression (28) provides the following expression (39).
ωiε in the numerator of the expression (39) represents the maximum strain rate in the harmonic oscillation test, and hence can be associated with a strain rate Vnom in the constant strain rate test. In addition, the amplitude ε in the denominator of the expression (39) represents the maximum strain amount in the harmonic oscillation test, and hence can be associated with a measured strain E* in the constant strain rate test. Therefore, the expression (39) can be rewritten into the following expression (40) by using the strain rate Vnom and the measured strain E* in the constant strain rate test.
Therefore, the material constant Ai can be calculated from the test results in the constant strain rate test by using the expression (40).
Number | Date | Country | Kind |
---|---|---|---|
JP2018-046636 | Mar 2018 | JP | national |
Number | Date | Country |
---|---|---|
2015-75383 | Apr 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20190285610 A1 | Sep 2019 | US |