The invention relates to an analysis device and a method for analyzing a viscosity of a fluid. The invention also relates to a computer program and a machine-readable storage medium on which the computer program is stored.
PT (prothrombin time) and INR (International Normalized Ratio) are the standard measure for blood coagulation. Usually, the INR in blood samples is determined by adding thromboplastin and then measuring the time to coagulation. The determination can be carried out in the laboratory; meanwhile, test strip devices are now also available for self-measurement by the patient, comparable to the procedure of a blood sugar measurement. Coagulation management is essential for patients with cardiac assist systems to minimize pump thrombosis. Monitoring of blood viscosity as an INR substitute parameter may be sufficient for coagulation management.
EP 2175770 B1 describes an explicit blood viscosity sensor based on surface waves, abbreviated as SAW, for determining viscosity.
U.S. Pat. No. 7,591,777 B2 describes a viscosity determination in cardiac assist systems by the mechanical effect of the blood viscosity on the drive of the cardiac assist system.
The task of the invention is to provide an improved method for analyzing a viscosity of a fluid and an improved analysis device for this purpose. In particular, it is a task of the invention to specify a method and a device that allows the viscosity of a fluid to be analyzed continuously and on a short time scale.
This task is achieved by the determination devices, systems, and methods disclosed herein. Advantageous embodiments of the invention are disclosed herein.
An analysis device for analyzing a viscosity of a fluid and a method according to the invention for analyzing a viscosity of a fluid and finally a corresponding computer program are presented below. Advantageous further embodiments and improvements of the subject matter specified herein are possible using the measures specified herein.
In light of this background, the approach presented here presents an analysis device for analyzing a viscosity of a fluid and a method for analyzing a viscosity of a fluid and finally a corresponding computer program according to the main claims. Advantageous further developments and improvements of the device specified in the independent claim are possible using the measures listed in the dependent claims.
The advantages achievable with the presented approach are that an analysis device presented here is designed to determine and provide or transmit the viscosity of a fluid quickly and easily using a real-time Doppler parameter of the fluid. A Doppler parameter can in this case be understood to mean a parameter that represents information about a change in a frequency of a signal emitted into the fluid to a frequency of a signal received from the fluid. For example, the Doppler parameter corresponds to a Doppler shift. In the present case, a Doppler spectrum can be understood to mean a spectrum that contains frequencies that result from a signal emitted into the fluid, as well as frequencies that result from a signal received from the fluid. This approach then can for example permit an analysis of the Doppler shift of different frequency components of signals emitted into the fluid with respect to the frequency components resulting from signals received from the fluid.
An analysis device for analyzing a viscosity of a fluid is presented. The analysis device comprises a detection device and a provisioning device. The detection device is formed to determine the viscosity of the fluid using at least one Doppler parameter of a Doppler spectrum of the fluid. The provisioning device is formed to provide or emit a viscosity signal that represents the viscosity determined by the detection device. The Doppler spectrum is to be understood as a product from a flow profile of the fluid and a directional characteristic of an ultrasonic element, which generates or can generate a sound wave in the fluid. The flow profile can be dependent on a flow velocity of the fluid and additionally or alternatively on a shaping of an intake device through which the fluid flows.
The detection device can be designed to read the Doppler parameter from such an ultrasonic element, which can be an ultrasonic transducer. The ultrasonic element can be formed to generate the sound wave in the fluid and to sense the Doppler parameter of a returning reflected sound wave in the fluid. The generated sound wave can have a defined or fixed directional characteristic. The detection device and/or the provisioning device can be part of, or be formed to be coupled to, the ultrasonic element. For example, the detection device can be formed to read the Doppler parameter sensed by the ultrasonic element from the ultrasonic element.
The detection device can be formed to determine the viscosity using a functional relationship between the Doppler parameter to the viscosity and/or using a lookup table, in particular wherein a relationship between the Doppler parameter to the viscosity can be stored in the lookup table. The look-up table can be a calibration table that can store measurement data for all relevant viscosities of the fluid for all relevant Doppler parameters and additionally or alternatively other relevant parameters such as flow velocities of the fluid. Using the real-time Doppler parameter, a viscosity mapped thereto can then be read quickly and easily from the look-up table. Or the viscosity can be quickly and easily determined by solving the functional relationship using the real-time Doppler parameter. The lookup table and/or the functional relationship can be stored in the detection device or can be read for use by the detection device.
It is also advantageous if the detection device is formed according to an embodiment to determine the viscosity using an interpolation of a first viscosity stored in the lookup table and a second (adjacent) viscosity stored in the lookup table. This allows calculation accuracy to be increased.
The analysis device can also comprise a cannula having an intake interface for receiving the fluid and an outlet interface opposite the intake interface for discharging the fluid, in particular wherein the Doppler parameter can represent a Doppler parameter in the cannula. Such a cannula can be formed for use on or in a cardiac assist system. For example, the cannula can be shaped or formed to receive blood as the fluid. The real-time viscosity of the blood in the cannula can then be advantageously determined using the analysis device. The detection device can also be formed to determine the viscosity using at least one cannula parameter of the cannula. The cannula parameter can be a cannula width or a cannula radius.
According to a further advantageous embodiment, the analysis device comprises a flow device for conveying the fluid from the intake interface to the outlet interface of the cannula, in particular wherein the flow device can be arranged or arrangeable on or in the area of the outlet interface. The flow device can comprise a drive device in the form of an electric motor and a coupled impeller. When the flow device is in operation, a volume flow of the fluid can thus be caused through the cannula, wherein the volume flow renders the flow profile measurable as a function of the viscosity of the fluid, a flow velocity of the fluid, and a shaping of the cannula, for example the cannula width or the cannula radius. Such an analysis device with a flow device can be formed or usable as a cardiac assist system. This cardiac assist system can advantageously determine a real-time blood viscosity and provide or transmit it for example for a diagnostic method.
The detection device can also be formed to determine the viscosity using at least one flow parameter of the flow profile, in particular a flow velocity, of the fluid through the cannula. The flow velocity can be measurable using an ultrasonic element formed to sense the Doppler shift of the ultrasonic signal reflected on particles of the fluid.
It is further advantageous if the analysis device according to an exemplary embodiment comprises an ultrasonic element, which is formed to generate a sound wave in the fluid in order to detect the Doppler parameter, in particular wherein the ultrasonic element can be arranged in the region of the intake interface of the cannula. The ultrasonic element can be formed to generate the sound wave with a defined or fixed directional characteristic. In this case, the directional characteristic can be aligned in the direction of the expected fluid flow of the fluid through the cannula.
The detection device can be formed to determine the viscosity using the Doppler parameter, which represents a Doppler frequency and/or a width of the Doppler spectrum.
A method for analyzing a viscosity of a fluid is also presented. The method comprises a detection step and a provisioning step. The detection step involves determining the viscosity of the fluid using at least one Doppler parameter of a Doppler spectrum of the fluid. The provisioning step involves providing or transmitting a viscosity signal, which represents the viscosity determined during the detection step.
This method can be performed using the analysis device presented above. The method can be implemented in software or hardware, for example, or in a mixed form of software and hardware, for example in a control device.
A computer program product or computer program having program code which can be stored on a machine-readable carrier or storage medium such as a semiconductor memory, a hard drive memory, or optical memory and is used to carry out, implement, and/or control the steps of the method according to one of the embodiments described above is also advantageous, in particular if the program product or program is executed on a computer or a device.
Design examples of the approach presented here are shown in the drawings and explained in more detail in the following description. The drawings show in:
The following description of favorable exemplary embodiments of the present invention uses the same or similar reference symbols shown in the various figures for elements that act in similar ways, wherein a repeated description of these elements is omitted.
If a design example includes an “and/or” conjunction between a first feature and a second feature, this should be read to mean that the design example according to one embodiment comprises both the first feature and the second feature and, according to another embodiment, comprises either only the first feature or only the second feature.
The analysis device 100 comprises a detection device 110 and a provisioning device 115. The detection device 110 is formed to detect the viscosity 105 of the fluid using at least one Doppler parameter 120 of a Doppler spectrum of the fluid. The provisioning device 115 is formed to provide or transmit a viscosity signal 130 representing the viscosity 105 determined by the detection device 110.
According to this exemplary embodiment, the detection device 110 is designed to determine the viscosity 105 using a flow parameter 135 of the fluid through a cannula, in which the fluid is accommodated, and/or to determine a cannula parameter 140 of the cannula. According to this exemplary embodiment, the detection device 110 is formed to read the Doppler parameter 120 and/or the flow parameter 135 and/or the cannula parameter 140 in the form of a sensor signal each.
The cannula 200 has an intake interface 215 formed to receive the fluid 217 and an outlet interface 220 formed to discharge the fluid 217 opposite the intake interface 215. According to this exemplary embodiment, the Doppler parameter represents a Doppler parameter in the cannula 200.
The flow device 205 is formed to convey the fluid 217 from the intake interface 215 to the outlet interface 220 of the cannula 200. For this purpose, the flow device 205 according to this exemplary embodiment is arranged or can be arranged on or in the area of the outlet interface 220. According to this exemplary embodiment, the flow device 205 comprises a drive device in the form of an electric motor and/or a coupled impeller, which is accommodated in the cannula 200.
According to this exemplary embodiment, the detection device 110 is formed to determine the viscosity using the flow parameter, which represents a flow velocity v of a flow profile 225 of the fluid through the cannula 200. According to this exemplary embodiment, the detection device 110 is also formed to determine the viscosity using the cannula parameter of the cannula 200, which represents a cannula width r of the cannula 200.
The ultrasonic element 210 is formed to generate a sound wave in the fluid 217 in order to determine the Doppler parameter in the reflection of the sound waves on particles in the fluid.
According to this exemplary embodiment, the ultrasonic element 210 is arranged in the region of the intake interface 215 of the cannula 200. A directional characteristic 230 of the ultrasonic element 210 is also shown, wherein the directional characteristic 230 is fixed and/or defined according to this exemplary embodiment.
According to this exemplary embodiment, the detection device 110 is formed to determine the viscosity using the Doppler parameter, which represents a Doppler frequency and/or a width of the Doppler spectrum. According to this exemplary embodiment, the detection device 110 is formed to determine the viscosity using a functional relationship between the Doppler parameter to the viscosity and/or using a lookup table, wherein a relationship between the Doppler parameter and the viscosity is stored in the lookup table. According to this exemplary embodiment, the detection device 110 is also formed to determine the viscosity by using an interpolation of a first viscosity stored in the lookup table and an adjacent second viscosity stored in the lookup table.
The following again describes details of the analysis device 100 in more detail and in other words:
According to this exemplary embodiment, the analysis device 100 presented here can be used as a cardiac assist system. For patients with a cardiac assist system, also called VAD patients, where VAD stands for “Ventricular Assist Device”, coagulation management is essential to minimize pump thrombosis. For this purpose, patients are for example treated with drugs for inhibiting plasma blood coagulation, and the INR is thus for example adjusted in the range 2 to 2.5.
The flow profile 225 and thus the viscosity of the blood can be determined by analyzing the Doppler spectrum with the ultrasonic element 210 integrated according to this exemplary embodiment in a tip of the cannula 200 of a VAD system, which can also be referred to as an inlet cannula.
In accordance with this exemplary embodiment, the blood viscosity is determined by the detection device 110 while the analysis device 100 is in operation, either continuously or at fixed time intervals in accordance with an alternative exemplary embodiment. The provisioning device 115 is formed to provide a physician and/or patient with the determined viscosity as a parameter for therapy management. For this purpose, the viscosity signal is formed to display the viscosity on a display and/or to transmit it to a web service by wireless transmission.
Advantageously, in the analysis device 100 presented here, only a simple so-called “single element” ultrasonic transducer is sufficient as an ultrasonic element 210, which is formed according to this exemplary embodiment as a circular disk. Such an ultrasonic element 210 is possible due to the special spatial positioning of the ultrasonic element 210 shown here in the direction of the expected flow of the fluid 217. The ultrasonic element 210 is formed according to an exemplary embodiment for quantifying the flow velocity v of the fluid 217.
The ultrasonic element 210 integrated in the tip of the intake cannula measures the Doppler spectrum of the flow in the cannula 200, for example with the so-called “pulsed-wave Doppler” method; this method is also called a “pulsed Doppler”.
In other words,
The cardiac assist system 300 shown here as an example can also be referred to as a cardiac assist system.
According to this exemplary embodiment, the assist system also comprises a distal tip 360 with sensors; according to an exemplary embodiment, the sensors comprise at least one pressure and/or at least one temperature sensor, as well as the ultrasonic element 210, which radiates into the cannula 200 along the axis of the support system through an intake region of the intake interface 215. The cannula 200 directs the blood to the flow machine with impeller, which is located in the area of the outlet interface 220. This is followed by an electric motor 365 and a connection cable 370.
The figure shows a resulting Doppler spectrum 700 of the fluid for the real focusing ultrasonic element 210, which has a real directional characteristic 230, and a real flow profile 225 as generated in the cannula.
Higher viscosities cause a further widening of the Doppler spectrum 700 because the flow flows faster in the middle and slower at the perimeter for a given volume flow of the fluid, and the areas of slow flow take up more cross-sectional area in the focus area of the ultrasonic element 210.
The Doppler frequency shifts of all velocities V, occurring in the flow profile 225 and shown in the Doppler spectrum are:
The peak in the Doppler spectrum 700 represents the dominant velocity, or the most frequently occurring velocity analogous to a histogram. However, this value is still biased with the directional characteristic 230 of the ultrasonic element 210, which does not operate with equal sensitively in all directions.
The most frequently occurring Doppler frequency represents the most frequently occurring velocity, since the latter is to be expected due to the special mechanical design in the main direction of radiation of the ultrasonic element 210, because:
α0°=→0 cos(α0°)=1.
For a given ultrasonic element 210 with a fixed directional characteristic 230, a width of the Doppler spectrum 700 correlates with a velocity distribution in the observation space. The detection device relies on characteristic figures of the Doppler spectrum 700 as a calculation metric—according to an exemplary embodiment based on the parameters Doppler frequency at half the maximum amplitude of the Doppler spectrum 700 and/or width of the Doppler spectrum 700, according to an exemplary embodiment at an exemplary 90% of the peak value and/or frequency of the maximum amplitude of the Doppler spectrum 700 and maximum Doppler frequency in the Doppler spectrum 700.
The calculation or the determination of the viscosity are carried out according to an exemplary embodiment by the detection device in a calculation-efficient manner using a lookup table or calibration table, abbreviated as LUT, which stores measurement data for all relevant viscosities at all relevant flow velocities. Based on the dominant Doppler frequency, a column for the dominant flow velocity is selected according to an exemplary embodiment and the viscosity is read from said column according to an exemplary embodiment based on the width of the Doppler spectrum 700. According to an exemplary embodiment, the calculation accuracy is further increased by interpolating between adjacent table entries.
A use of the flow profile 225 of the analysis device presented here for viscosity determination is demonstrated by experimentally generating different flow profiles. In an exemplary embodiment with an ultrasonic element 210, the ultrasonic element 210 is visually detectable.
The method 800 includes detection as a step 805 and provisioning as a step 810. The detection step 805 involves determining the viscosity of the fluid using at least one Doppler parameter of a Doppler spectrum of the fluid. The provisioning step 810 involves providing or transmitting a viscosity signal that represents the viscosity determined during the detection step 805.
The method steps 805, 810 presented here can be repeated and carried out in a sequence other than that described.
Number | Date | Country | Kind |
---|---|---|---|
102018208945.0 | Jun 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/064810 | 6/6/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/234169 | 12/12/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3088323 | Welkowitz et al. | May 1963 | A |
4023562 | Hynecek et al. | May 1977 | A |
4559952 | Angelsen et al. | Dec 1985 | A |
4781525 | Hubbard et al. | Nov 1988 | A |
4888011 | Kung et al. | Dec 1989 | A |
4889131 | Salem et al. | Dec 1989 | A |
4902272 | Milder et al. | Feb 1990 | A |
5045051 | Milder et al. | Sep 1991 | A |
5269811 | Hayes | Dec 1993 | A |
5289821 | Swartz | Mar 1994 | A |
5456715 | Liotta | Oct 1995 | A |
5527159 | Bozeman, Jr. et al. | Jun 1996 | A |
5581038 | Lampropoulos | Dec 1996 | A |
5613935 | Jarvik | Mar 1997 | A |
5662115 | Torp | Sep 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5720771 | Snell | Feb 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5766207 | Potter et al. | Jun 1998 | A |
5827203 | Nita | Oct 1998 | A |
5865759 | Koblanski | Feb 1999 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5904708 | Goedeke | May 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5980465 | Elgas | Nov 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6024704 | Meador et al. | Feb 2000 | A |
6053873 | Govari et al. | Apr 2000 | A |
6176822 | Nix et al. | Jan 2001 | B1 |
6183412 | Benkowsi et al. | Feb 2001 | B1 |
6185460 | Thompson | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6231498 | Pfeiffer et al. | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6314322 | Rosenberg | Nov 2001 | B1 |
6351048 | Schob et al. | Feb 2002 | B1 |
6398734 | Cimochowski et al. | Jun 2002 | B1 |
6432136 | Weiss et al. | Aug 2002 | B1 |
6438409 | Malik et al. | Aug 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6530876 | Spence | Mar 2003 | B1 |
6540658 | Fasciano et al. | Apr 2003 | B1 |
6540659 | Milbocker | Apr 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6579257 | Elgas et al. | Jun 2003 | B1 |
6602182 | Milbocker | Aug 2003 | B1 |
6605032 | Benkowsi et al. | Aug 2003 | B2 |
6652447 | Benkowsi et al. | Nov 2003 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6879126 | Paden et al. | Apr 2005 | B2 |
6912423 | Ley et al. | Jun 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6984201 | Khaghani et al. | Jan 2006 | B2 |
7010954 | Siess | Mar 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7024244 | Muhlenberg et al. | Apr 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7083588 | Shmulewitz et al. | Aug 2006 | B1 |
7138776 | Gauthier et al. | Nov 2006 | B1 |
7160243 | Medvedev | Jan 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7177681 | Xhu | Feb 2007 | B2 |
7238151 | Frazier | Jul 2007 | B2 |
7396327 | Morello | Jul 2008 | B2 |
7513864 | Kantrowitz et al. | Apr 2009 | B2 |
7520850 | Brockway | Apr 2009 | B2 |
7527599 | Hickey | May 2009 | B2 |
7591777 | LaRose | Sep 2009 | B2 |
7744560 | Struble | Jun 2010 | B2 |
7794384 | Sugiura et al. | Sep 2010 | B2 |
7819916 | Yaegashi | Oct 2010 | B2 |
7850593 | Vincent et al. | Dec 2010 | B2 |
7850594 | Sutton et al. | Dec 2010 | B2 |
7856335 | Morello et al. | Dec 2010 | B2 |
7862501 | Woodward et al. | Jan 2011 | B2 |
7951062 | Morello | May 2011 | B2 |
7951129 | Chinchoy | May 2011 | B2 |
7963905 | Salmonsen et al. | Jun 2011 | B2 |
7988728 | Ayre | Aug 2011 | B2 |
8075472 | Zilbershlag et al. | Dec 2011 | B2 |
8190390 | Morello et al. | May 2012 | B2 |
8211028 | Karamanoglu et al. | Jul 2012 | B2 |
8303482 | Schima et al. | Nov 2012 | B2 |
8323173 | Benkowsi et al. | Dec 2012 | B2 |
8435182 | Tamura | May 2013 | B1 |
8449444 | Poirier | May 2013 | B2 |
8545380 | Farnan et al. | Oct 2013 | B2 |
8585572 | Mehmanesh | Nov 2013 | B2 |
8591393 | Walters et al. | Nov 2013 | B2 |
8594790 | Kjellstrom et al. | Nov 2013 | B2 |
8622949 | Zafirelis et al. | Jan 2014 | B2 |
8657733 | Ayre et al. | Feb 2014 | B2 |
8657875 | Kung et al. | Feb 2014 | B2 |
8715151 | Poirier | May 2014 | B2 |
8747293 | Arndt et al. | Jun 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8864643 | Reichenbach et al. | Oct 2014 | B2 |
8864644 | Yomtov | Oct 2014 | B2 |
8876685 | Crosby et al. | Nov 2014 | B2 |
8882477 | Fritz, IV et al. | Nov 2014 | B2 |
8888728 | Aboul-Hosn et al. | Nov 2014 | B2 |
8897873 | Schima et al. | Nov 2014 | B2 |
8903492 | Soykan et al. | Dec 2014 | B2 |
9091271 | Bourque | Jul 2015 | B2 |
9297735 | Graichen et al. | Mar 2016 | B2 |
9308305 | Chen et al. | Apr 2016 | B2 |
9345824 | Mohl et al. | May 2016 | B2 |
9371826 | Yanai et al. | Jun 2016 | B2 |
9427508 | Reyes et al. | Aug 2016 | B2 |
9474840 | Siess | Oct 2016 | B2 |
9492601 | Casas et al. | Nov 2016 | B2 |
9511179 | Casas et al. | Dec 2016 | B2 |
9555173 | Spanier | Jan 2017 | B2 |
9555175 | Bulent et al. | Jan 2017 | B2 |
9556873 | Yanai et al. | Jan 2017 | B2 |
9566374 | Spence et al. | Feb 2017 | B2 |
9636442 | Karmon et al. | May 2017 | B2 |
9656010 | Burke | May 2017 | B2 |
9669142 | Spanier et al. | Jun 2017 | B2 |
9669144 | Spanier et al. | Jun 2017 | B2 |
9694123 | Bourque et al. | Jul 2017 | B2 |
9713701 | Sarkar et al. | Jul 2017 | B2 |
9744282 | Rosenberg et al. | Aug 2017 | B2 |
9789236 | Bonde | Oct 2017 | B2 |
9833550 | Siess | Dec 2017 | B2 |
9848899 | Sliwa et al. | Dec 2017 | B2 |
9849224 | Angwin et al. | Dec 2017 | B2 |
9878087 | Richardson et al. | Jan 2018 | B2 |
9943236 | Bennett et al. | Apr 2018 | B2 |
9950102 | Spence et al. | Apr 2018 | B2 |
9974894 | Morello | May 2018 | B2 |
9999714 | Spanier et al. | Jun 2018 | B2 |
10010662 | Wiesener et al. | Jul 2018 | B2 |
10022480 | Greatrex et al. | Jul 2018 | B2 |
10029037 | Muller et al. | Jul 2018 | B2 |
10052420 | Medvedev et al. | Aug 2018 | B2 |
10279093 | Reichenbach et al. | May 2019 | B2 |
10322217 | Spence | Jun 2019 | B2 |
10342906 | D'Ambrosio et al. | Jul 2019 | B2 |
10350342 | Thomas et al. | Jul 2019 | B2 |
10357598 | Aboul-Hosn et al. | Jul 2019 | B2 |
10376162 | Edelman et al. | Aug 2019 | B2 |
10413651 | Yomtov et al. | Sep 2019 | B2 |
10426879 | Farnan | Oct 2019 | B2 |
10449275 | Corbett | Oct 2019 | B2 |
10500322 | Karch | Dec 2019 | B2 |
10525178 | Zeng | Jan 2020 | B2 |
10549020 | Spence et al. | Feb 2020 | B2 |
10561771 | Heilman et al. | Feb 2020 | B2 |
10561772 | Schumacher | Feb 2020 | B2 |
10561773 | Ferrari et al. | Feb 2020 | B2 |
10632241 | Schenck et al. | Apr 2020 | B2 |
10660998 | Hodges | May 2020 | B2 |
10668195 | Flores | Jun 2020 | B2 |
10732583 | Rudser | Aug 2020 | B2 |
10857275 | Granegger | Dec 2020 | B2 |
10864308 | Muller et al. | Dec 2020 | B2 |
11027114 | D'Ambrosio et al. | Jun 2021 | B2 |
RE48649 | Siess | Jul 2021 | E |
11067085 | Granegger et al. | Jul 2021 | B2 |
11120908 | Agnello et al. | Sep 2021 | B2 |
11131968 | Rudser | Sep 2021 | B2 |
11147960 | Spanier et al. | Oct 2021 | B2 |
11154701 | Reyes et al. | Oct 2021 | B2 |
11154702 | Kadrolkar et al. | Oct 2021 | B2 |
11185682 | Farnan | Nov 2021 | B2 |
11191945 | Siess et al. | Dec 2021 | B2 |
11197618 | Edelman et al. | Dec 2021 | B2 |
11217344 | Agnello | Jan 2022 | B2 |
11235139 | Kudlik | Feb 2022 | B2 |
11241572 | Dague et al. | Feb 2022 | B2 |
11273299 | Wolman et al. | Mar 2022 | B2 |
11285310 | Curran et al. | Mar 2022 | B2 |
11285311 | Siess et al. | Mar 2022 | B2 |
11298524 | El Katerji et al. | Apr 2022 | B2 |
11311711 | Casas et al. | Apr 2022 | B2 |
11316679 | Agnello | Apr 2022 | B2 |
11320382 | Aikawa | May 2022 | B2 |
11324395 | Banik et al. | May 2022 | B2 |
11331082 | Itoh et al. | May 2022 | B2 |
11337724 | Masubuchi et al. | May 2022 | B2 |
11338125 | Liu et al. | May 2022 | B2 |
11351356 | Mohl | Jun 2022 | B2 |
11351357 | Mohl | Jun 2022 | B2 |
11351358 | Nix et al. | Jun 2022 | B2 |
11357438 | Stewart et al. | Jun 2022 | B2 |
11357968 | El Katerji et al. | Jun 2022 | B2 |
11376415 | Mohl | Jul 2022 | B2 |
11376419 | Reyes et al. | Jul 2022 | B2 |
11389639 | Casas | Jul 2022 | B2 |
11389641 | Nguyen et al. | Jul 2022 | B2 |
11413444 | Nix et al. | Aug 2022 | B2 |
11413445 | Brown et al. | Aug 2022 | B2 |
11420041 | Karch | Aug 2022 | B2 |
11439806 | Kimball et al. | Sep 2022 | B2 |
11446481 | Wolman et al. | Sep 2022 | B2 |
11478629 | Harjes et al. | Oct 2022 | B2 |
11517740 | Agarwa et al. | Dec 2022 | B2 |
11521723 | Liu et al. | Dec 2022 | B2 |
11524165 | Tan et al. | Dec 2022 | B2 |
11527322 | Agnello et al. | Dec 2022 | B2 |
11529062 | Moyer et al. | Dec 2022 | B2 |
11554260 | Reyes et al. | Jan 2023 | B2 |
11572879 | Mohl | Feb 2023 | B2 |
11574741 | Tan et al. | Feb 2023 | B2 |
11577068 | Spence et al. | Feb 2023 | B2 |
11581083 | El Katerji et al. | Feb 2023 | B2 |
11583659 | Pfeffer et al. | Feb 2023 | B2 |
11587337 | Lemay et al. | Feb 2023 | B2 |
11590337 | Granegger et al. | Feb 2023 | B2 |
11622695 | Adriola et al. | Apr 2023 | B1 |
11628293 | Gandhi et al. | Apr 2023 | B2 |
11639722 | Medvedev et al. | May 2023 | B2 |
11648386 | Poirer | May 2023 | B2 |
11653841 | Reyes et al. | May 2023 | B2 |
11666746 | Ferrari et al. | Jun 2023 | B2 |
11668321 | Richert et al. | Jun 2023 | B2 |
11674517 | Mohl | Jun 2023 | B2 |
11676718 | Agnello et al. | Jun 2023 | B2 |
11684276 | Cros et al. | Jun 2023 | B2 |
11684769 | Harjes et al. | Jun 2023 | B2 |
11694539 | Kudlik et al. | Jul 2023 | B2 |
11694813 | El Katerji et al. | Jul 2023 | B2 |
11696782 | Carlson et al. | Jul 2023 | B2 |
11707617 | Reyes et al. | Jul 2023 | B2 |
11712167 | Medvedev et al. | Aug 2023 | B2 |
11754077 | Mohl | Sep 2023 | B1 |
D1001145 | Lussier et al. | Oct 2023 | S |
D1001146 | Lussier et al. | Oct 2023 | S |
11771885 | Liu et al. | Oct 2023 | B2 |
11779234 | Harjes et al. | Oct 2023 | B2 |
11781551 | Yanai et al. | Oct 2023 | B2 |
11790487 | Barbato et al. | Oct 2023 | B2 |
11793994 | Josephy et al. | Oct 2023 | B2 |
11806116 | Tuval et al. | Nov 2023 | B2 |
11806517 | Petersen | Nov 2023 | B2 |
11806518 | Michelena et al. | Nov 2023 | B2 |
11813079 | Lau et al. | Nov 2023 | B2 |
11818782 | Doudian et al. | Nov 2023 | B2 |
11824381 | Conyers et al. | Nov 2023 | B2 |
11826127 | Casas | Nov 2023 | B2 |
11832793 | McWeeney et al. | Dec 2023 | B2 |
11832868 | Smail et al. | Dec 2023 | B2 |
11837364 | Lee et al. | Dec 2023 | B2 |
11844592 | Tuval et al. | Dec 2023 | B2 |
11844940 | D'Ambrosio et al. | Dec 2023 | B2 |
11850073 | Wright et al. | Dec 2023 | B2 |
11850414 | Schenck et al. | Dec 2023 | B2 |
11850415 | Schwammenthal et al. | Dec 2023 | B2 |
D1012284 | Glaser et al. | Jan 2024 | S |
11857345 | Hanson et al. | Jan 2024 | B2 |
11864878 | Duval et al. | Jan 2024 | B2 |
11872384 | Cotter | Jan 2024 | B2 |
11883207 | El Katerji et al. | Jan 2024 | B2 |
D1014552 | Lussier et al. | Feb 2024 | S |
11890082 | Cros et al. | Feb 2024 | B2 |
11896199 | Lent et al. | Feb 2024 | B2 |
11900660 | Saito et al. | Feb 2024 | B2 |
11903657 | Geric et al. | Feb 2024 | B2 |
11906411 | Graichen et al. | Feb 2024 | B2 |
11911550 | Itamochi et al. | Feb 2024 | B2 |
D1017634 | Lussier et al. | Mar 2024 | S |
D1017699 | Moore et al. | Mar 2024 | S |
11923078 | Fallen et al. | Mar 2024 | B2 |
11923093 | Moffitt et al. | Mar 2024 | B2 |
11925794 | Malkin et al. | Mar 2024 | B2 |
11931073 | Walsh et al. | Mar 2024 | B2 |
11931528 | Rohl et al. | Mar 2024 | B2 |
11931588 | Aghassian | Mar 2024 | B2 |
11986274 | Edelman | May 2024 | B2 |
12017076 | Tan et al. | Jun 2024 | B2 |
12023476 | Tuval et al. | Jul 2024 | B2 |
12029891 | Siess et al. | Jul 2024 | B2 |
12059559 | Muller et al. | Aug 2024 | B2 |
12076544 | Siess et al. | Sep 2024 | B2 |
20010016686 | Okada et al. | Aug 2001 | A1 |
20010037093 | Benkowski et al. | Nov 2001 | A1 |
20010039828 | Shin et al. | Nov 2001 | A1 |
20020022785 | Romano | Feb 2002 | A1 |
20020147495 | Petroff | Oct 2002 | A1 |
20020151761 | Viole | Oct 2002 | A1 |
20030069465 | Benkowski et al. | Apr 2003 | A1 |
20030130581 | Salo et al. | Jul 2003 | A1 |
20030139643 | Smith et al. | Jul 2003 | A1 |
20030167002 | Nagar et al. | Sep 2003 | A1 |
20030191357 | Frazier | Oct 2003 | A1 |
20040022640 | Siess et al. | Feb 2004 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040065143 | Husher | Apr 2004 | A1 |
20040130009 | Tangpuz | Jul 2004 | A1 |
20040167376 | Peters et al. | Aug 2004 | A1 |
20040167410 | Hettrick | Aug 2004 | A1 |
20040225177 | Coleman et al. | Nov 2004 | A1 |
20040241019 | Goldowsky | Dec 2004 | A1 |
20040260346 | Overall et al. | Dec 2004 | A1 |
20050001324 | Dunn | Jan 2005 | A1 |
20050019167 | Nusser et al. | Jan 2005 | A1 |
20050107658 | Brockway | May 2005 | A1 |
20050126268 | Ouriev et al. | Jun 2005 | A1 |
20050267322 | LaRose | Dec 2005 | A1 |
20060030809 | Barzilay et al. | Feb 2006 | A1 |
20060108697 | Wang | May 2006 | A1 |
20060108901 | Mao-Chin | May 2006 | A1 |
20060122583 | Pesach et al. | Jun 2006 | A1 |
20060196277 | Allen et al. | Sep 2006 | A1 |
20060229488 | Ayre et al. | Oct 2006 | A1 |
20060287600 | McEowen | Dec 2006 | A1 |
20060287604 | Hickey | Dec 2006 | A1 |
20070060787 | Peters et al. | Mar 2007 | A1 |
20070073352 | Euler et al. | Mar 2007 | A1 |
20070088214 | Shuros et al. | Apr 2007 | A1 |
20070156006 | Smith et al. | Jul 2007 | A1 |
20070255352 | Roline et al. | Nov 2007 | A1 |
20070266778 | Corey et al. | Nov 2007 | A1 |
20070282209 | Lui et al. | Dec 2007 | A1 |
20070299325 | Farrell et al. | Dec 2007 | A1 |
20080015517 | Geistert et al. | Jan 2008 | A1 |
20080082005 | Stern et al. | Apr 2008 | A1 |
20080091239 | Johansson et al. | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080102096 | Molin et al. | May 2008 | A1 |
20080108901 | Baba et al. | May 2008 | A1 |
20080108930 | Weitzel et al. | May 2008 | A1 |
20080133006 | Crosby et al. | Jun 2008 | A1 |
20080146996 | Smisson | Jun 2008 | A1 |
20080210016 | Zwirn et al. | Sep 2008 | A1 |
20080262289 | Goldowsky | Oct 2008 | A1 |
20080262361 | Gutfinger et al. | Oct 2008 | A1 |
20080269822 | Ljungstrom et al. | Oct 2008 | A1 |
20080275339 | Thiemann et al. | Nov 2008 | A1 |
20080306328 | Ercolani | Dec 2008 | A1 |
20090024042 | Nunez et al. | Jan 2009 | A1 |
20090025459 | Zhang et al. | Jan 2009 | A1 |
20090064755 | Fleischli et al. | Mar 2009 | A1 |
20090105799 | Hekmat et al. | Apr 2009 | A1 |
20090131765 | Roschak et al. | May 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090226328 | Morello | Sep 2009 | A1 |
20090312650 | Maile et al. | Dec 2009 | A1 |
20100010354 | Skerl et al. | Jan 2010 | A1 |
20100082099 | Vodermayer et al. | Apr 2010 | A1 |
20100087742 | Bishop et al. | Apr 2010 | A1 |
20100160801 | Takatani et al. | Jun 2010 | A1 |
20100219967 | Kaufmann | Sep 2010 | A1 |
20100222632 | Poirier | Sep 2010 | A1 |
20100222633 | Poirier | Sep 2010 | A1 |
20100222635 | Poirier | Sep 2010 | A1 |
20100222878 | Poirier | Sep 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20100298625 | Reichenbach et al. | Nov 2010 | A1 |
20100324378 | Tran et al. | Dec 2010 | A1 |
20110004075 | Stahmann et al. | Jan 2011 | A1 |
20110022057 | Eigler et al. | Jan 2011 | A1 |
20110071336 | Yomtov | Mar 2011 | A1 |
20110144744 | Wampler | Jun 2011 | A1 |
20110184301 | Holmstrom | Jul 2011 | A1 |
20110218435 | Srinivasan et al. | Sep 2011 | A1 |
20110230068 | Pahl | Sep 2011 | A1 |
20120022645 | Burke | Jan 2012 | A1 |
20120084024 | Norcross, Jr. | Apr 2012 | A1 |
20120150089 | Penka et al. | Jun 2012 | A1 |
20120203476 | Dam | Aug 2012 | A1 |
20120247200 | Ahonen et al. | Oct 2012 | A1 |
20120310037 | Choi et al. | Dec 2012 | A1 |
20120330214 | Peters et al. | Dec 2012 | A1 |
20130041204 | Heilman et al. | Feb 2013 | A1 |
20130046129 | Medvedev et al. | Feb 2013 | A1 |
20130066141 | Doerr et al. | Mar 2013 | A1 |
20130066142 | Doerr et al. | Mar 2013 | A1 |
20130072846 | Heide et al. | Mar 2013 | A1 |
20130116575 | Mickle et al. | May 2013 | A1 |
20130144379 | Najafi et al. | Jun 2013 | A1 |
20130289376 | Lang | Oct 2013 | A1 |
20130303831 | Evans | Nov 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140013852 | Brown et al. | Jan 2014 | A1 |
20140100414 | Tamez et al. | Apr 2014 | A1 |
20140114202 | Hein et al. | Apr 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140200389 | Yanai et al. | Jul 2014 | A1 |
20140243688 | Caron et al. | Aug 2014 | A1 |
20140275720 | Ferrari | Sep 2014 | A1 |
20140296677 | McEowen | Oct 2014 | A1 |
20140303426 | Kerkhoffs et al. | Oct 2014 | A1 |
20140342203 | Elian | Nov 2014 | A1 |
20150032007 | Ottevanger et al. | Jan 2015 | A1 |
20150141832 | Yu et al. | May 2015 | A1 |
20150141842 | Spanier et al. | May 2015 | A1 |
20150157216 | Stigall et al. | Jun 2015 | A1 |
20150174307 | Eckman et al. | Jun 2015 | A1 |
20150190092 | Mori | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150273184 | Scott et al. | Oct 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150306290 | Rosenberg et al. | Oct 2015 | A1 |
20150306291 | Bonde et al. | Oct 2015 | A1 |
20150307344 | Ernst | Oct 2015 | A1 |
20150327921 | Govari | Nov 2015 | A1 |
20150335804 | Marseille et al. | Nov 2015 | A1 |
20150365738 | Purvis et al. | Dec 2015 | A1 |
20160000983 | Mohl et al. | Jan 2016 | A1 |
20160008531 | Wang et al. | Jan 2016 | A1 |
20160022889 | Bluvshtein et al. | Jan 2016 | A1 |
20160022890 | Schwammenthal et al. | Jan 2016 | A1 |
20160045165 | Braido et al. | Feb 2016 | A1 |
20160095968 | Rudser | Apr 2016 | A1 |
20160101230 | Ochsner et al. | Apr 2016 | A1 |
20160144166 | Decréet al. | May 2016 | A1 |
20160151553 | Bonde | Jun 2016 | A1 |
20160166747 | Frazier et al. | Jun 2016 | A1 |
20160213828 | Sievers | Jul 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160278856 | Panescu | Sep 2016 | A1 |
20160302672 | Kuri | Oct 2016 | A1 |
20160317043 | Campo | Nov 2016 | A1 |
20160338629 | Doerr | Nov 2016 | A1 |
20170010144 | Lenner et al. | Jan 2017 | A1 |
20170021070 | Petersen | Jan 2017 | A1 |
20170049945 | Halvorsen et al. | Feb 2017 | A1 |
20170086780 | Sokulin et al. | Mar 2017 | A1 |
20170098491 | Ziaie et al. | Apr 2017 | A1 |
20170112985 | Yomtov | Apr 2017 | A1 |
20170128646 | Karch | May 2017 | A1 |
20170136164 | Yeatts | May 2017 | A1 |
20170202575 | Stanfield et al. | Jul 2017 | A1 |
20170224279 | Cahan et al. | Aug 2017 | A1 |
20170239407 | Hayward | Aug 2017 | A1 |
20170258980 | Katsuki et al. | Sep 2017 | A1 |
20170348470 | D'Ambrosio et al. | Dec 2017 | A1 |
20170354812 | Callaghan et al. | Dec 2017 | A1 |
20180064860 | Nunez et al. | Mar 2018 | A1 |
20180078159 | Edelman et al. | Mar 2018 | A1 |
20180093070 | Cottone | Apr 2018 | A1 |
20180110910 | Rodemerk et al. | Apr 2018 | A1 |
20180199635 | Longinotti-Buitoni et al. | Jul 2018 | A1 |
20180250457 | Morello et al. | Sep 2018 | A1 |
20180256796 | Hansen | Sep 2018 | A1 |
20180256800 | Conyers et al. | Sep 2018 | A1 |
20180264182 | Spanier et al. | Sep 2018 | A1 |
20180280598 | Curran et al. | Oct 2018 | A1 |
20180316209 | Gliner | Nov 2018 | A1 |
20180326131 | Muller et al. | Nov 2018 | A1 |
20180353667 | Moyer et al. | Dec 2018 | A1 |
20180369469 | Le Duc De Lillers et al. | Dec 2018 | A1 |
20190001038 | Yomtov et al. | Jan 2019 | A1 |
20190054223 | Frazier et al. | Feb 2019 | A1 |
20190083690 | Siess et al. | Mar 2019 | A1 |
20190192752 | Tiller et al. | Jun 2019 | A1 |
20190192753 | Liu et al. | Jun 2019 | A1 |
20190209755 | Nix et al. | Jul 2019 | A1 |
20190209758 | Tuval et al. | Jul 2019 | A1 |
20190216995 | Kapur et al. | Jul 2019 | A1 |
20190217002 | Urakabe | Jul 2019 | A1 |
20190223877 | Nitzen et al. | Jul 2019 | A1 |
20190240680 | Hayakawa | Aug 2019 | A1 |
20190254543 | Hartholt et al. | Aug 2019 | A1 |
20190282741 | Franano et al. | Sep 2019 | A1 |
20190282744 | D'Ambrosio et al. | Sep 2019 | A1 |
20190351117 | Cambronne et al. | Nov 2019 | A1 |
20190351118 | Graichen et al. | Nov 2019 | A1 |
20200016309 | Kallenbach et al. | Jan 2020 | A1 |
20200038567 | Siess et al. | Feb 2020 | A1 |
20200060559 | Edelman et al. | Feb 2020 | A1 |
20200069857 | Schwammenthal et al. | Mar 2020 | A1 |
20200147283 | Tanner et al. | May 2020 | A1 |
20200164125 | Muller et al. | May 2020 | A1 |
20200164126 | Muller | May 2020 | A1 |
20200253583 | Brisken et al. | Aug 2020 | A1 |
20200312450 | Agnello et al. | Oct 2020 | A1 |
20210268264 | Stotz | Sep 2021 | A1 |
20210290087 | Schlebusch | Sep 2021 | A1 |
20210290930 | Kasel | Sep 2021 | A1 |
20210290933 | Stotz | Sep 2021 | A1 |
20210339002 | Schlebusch et al. | Nov 2021 | A1 |
20210339004 | Schlebusch et al. | Nov 2021 | A1 |
20210346674 | Baumbach et al. | Nov 2021 | A1 |
20210346675 | Schlebusch et al. | Nov 2021 | A1 |
20210346676 | Schlebusch et al. | Nov 2021 | A1 |
20210346677 | Baumbach et al. | Nov 2021 | A1 |
20210346678 | Baumbach et al. | Nov 2021 | A1 |
20210378523 | Budde | Dec 2021 | A1 |
20210379359 | Schellenberg | Dec 2021 | A1 |
20210379360 | Schellenberg | Dec 2021 | A1 |
20210393944 | Wenning | Dec 2021 | A1 |
20220016411 | Winterwerber | Jan 2022 | A1 |
20220032032 | Schlebusch et al. | Feb 2022 | A1 |
20220032036 | Baumbach et al. | Feb 2022 | A1 |
20220039669 | Schlebusch et al. | Feb 2022 | A1 |
20220047173 | Stotz et al. | Feb 2022 | A1 |
20220072298 | Spanier et al. | Mar 2022 | A1 |
20220076807 | Agnello | Mar 2022 | A1 |
20220079457 | Tuval et al. | Mar 2022 | A1 |
20220105339 | Nix et al. | Apr 2022 | A1 |
20220126085 | Farnan | Apr 2022 | A1 |
20220126086 | Schlebusch et al. | Apr 2022 | A1 |
20220142462 | Douk et al. | May 2022 | A1 |
20220161019 | Mitze et al. | May 2022 | A1 |
20220361762 | Lalancette | Nov 2022 | A1 |
20230173250 | Stigloher | Jun 2023 | A1 |
20230191141 | Wenning et al. | Jun 2023 | A1 |
20240011808 | Winzer et al. | Jan 2024 | A1 |
20240074828 | Wenning | Mar 2024 | A1 |
20240245902 | Schlebusch et al. | Jul 2024 | A1 |
Number | Date | Country |
---|---|---|
3 122 415 | Jul 2020 | CA |
1192351 | Sep 1998 | CN |
1222862 | Jul 1999 | CN |
1202871 | May 2005 | CN |
1661338 | Aug 2005 | CN |
101128168 | Feb 2008 | CN |
101208045 | Jun 2008 | CN |
101214158 | Jul 2008 | CN |
101351237 | Jan 2009 | CN |
101448535 | Jun 2009 | CN |
101460094 | Jun 2009 | CN |
101579233 | Nov 2009 | CN |
201437016 | Apr 2010 | CN |
101711683 | May 2010 | CN |
201658687 | Dec 2010 | CN |
102421372 | Apr 2012 | CN |
102803923 | Nov 2012 | CN |
103328018 | Sep 2013 | CN |
103857326 | Jun 2014 | CN |
103957957 | Jul 2014 | CN |
104105449 | Oct 2014 | CN |
104188687 | Dec 2014 | CN |
106104229 | Nov 2016 | CN |
106333707 | Jan 2017 | CN |
206007680 | Mar 2017 | CN |
107530479 | Jan 2018 | CN |
107632167 | Jan 2018 | CN |
109939282 | Jun 2019 | CN |
209790495 | Dec 2019 | CN |
210020563 | Feb 2020 | CN |
195 20 920 | Dec 1995 | DE |
198 21 307 | Oct 1999 | DE |
100 59 714 | May 2002 | DE |
100 60 275 | Jun 2002 | DE |
101 44 269 | Mar 2003 | DE |
102 26 305 | Oct 2003 | DE |
10 2006 001 180 | Sep 2007 | DE |
10 2009 007 216 | Aug 2010 | DE |
10 2009 011 726 | Sep 2010 | DE |
10 2009 025 464 | Jan 2011 | DE |
10 2009 047 845 | Mar 2011 | DE |
10 2011 106 142 | Dec 2012 | DE |
20 2011 110 389 | Sep 2013 | DE |
10 2015 004 177 | Oct 2015 | DE |
10 2015 219 263 | Apr 2017 | DE |
10 2015 222 199 | May 2017 | DE |
20 2015 009 422 | Jul 2017 | DE |
10 2012 207 042 | Sep 2017 | DE |
10 2016 013 334 | Apr 2018 | DE |
10 2018 208 536 | Dec 2019 | DE |
10 2018 208 862 | Dec 2019 | DE |
10 2018 208 916 | Dec 2019 | DE |
10 2018 208 927 | Dec 2019 | DE |
10 2018 208 945 | Dec 2019 | DE |
10 2018 210 076 | Dec 2019 | DE |
10 2018 212 153 | Jan 2020 | DE |
10 2018 213 151 | Feb 2020 | DE |
10 2018 213 350 | Feb 2020 | DE |
10 2018 220 658 | Jun 2020 | DE |
10 2018 222 505 | Jun 2020 | DE |
10 2020 102 473 | Aug 2021 | DE |
11 2020 003 151 | Mar 2022 | DE |
0 794 411 | Sep 1997 | EP |
0 916 359 | May 1999 | EP |
1 062 959 | Dec 2000 | EP |
1 339 443 | Nov 2001 | EP |
1 011 803 | Sep 2004 | EP |
1 354 606 | Jun 2006 | EP |
2 143 385 | Jan 2010 | EP |
2 175 770 | Apr 2010 | EP |
2 187 807 | Jun 2012 | EP |
2 570 143 | Mar 2013 | EP |
2 401 003 | Oct 2013 | EP |
1 871 441 | Nov 2014 | EP |
2 859 911 | Apr 2015 | EP |
2 213 227 | Aug 2016 | EP |
2 835 141 | Aug 2016 | EP |
3 088 016 | Nov 2016 | EP |
2 585 129 | Mar 2017 | EP |
2 945 661 | Nov 2017 | EP |
2 136 861 | Dec 2017 | EP |
3 020 426 | Dec 2017 | EP |
3 287 154 | Feb 2018 | EP |
3 205 359 | Aug 2018 | EP |
3 205 360 | Aug 2018 | EP |
3 389 738 | Aug 2019 | EP |
2 505 090 | Dec 2019 | EP |
3 668 560 | Jun 2020 | EP |
3 720 520 | Oct 2020 | EP |
3 753 594 | Dec 2020 | EP |
3 357 523 | Jan 2021 | EP |
3 490 628 | Feb 2021 | EP |
3 487 548 | Mar 2021 | EP |
3 509 661 | Mar 2021 | EP |
3 515 523 | Mar 2021 | EP |
3 528 863 | Mar 2021 | EP |
3 615 103 | Mar 2021 | EP |
4 271 461 | Mar 2021 | EP |
3 131 600 | Jun 2021 | EP |
3 131 615 | Jun 2021 | EP |
3 463 505 | Sep 2021 | EP |
3 884 970 | Sep 2021 | EP |
2 599 510 | Oct 2021 | EP |
3 003 421 | Oct 2021 | EP |
3 027 241 | Oct 2021 | EP |
3 668 561 | Oct 2021 | EP |
3 164 168 | Dec 2021 | EP |
3 344 129 | Dec 2021 | EP |
3 624 867 | Mar 2022 | EP |
3 651 822 | Mar 2022 | EP |
3 689 389 | Mar 2022 | EP |
3 737 436 | Mar 2022 | EP |
3 984 589 | Apr 2022 | EP |
3 654 006 | May 2022 | EP |
3 737 310 | Jul 2022 | EP |
2 999 400 | Aug 2022 | EP |
3 711 788 | Aug 2022 | EP |
3 694 573 | Sep 2022 | EP |
3 600 477 | Oct 2022 | EP |
3 897 768 | Oct 2022 | EP |
2 892 583 | Jan 2023 | EP |
3 370 797 | Jan 2023 | EP |
3 597 231 | Jan 2023 | EP |
3 668 562 | Jan 2023 | EP |
3 856 275 | Jan 2023 | EP |
3 003 420 | Feb 2023 | EP |
3 397 299 | Feb 2023 | EP |
3 046 594 | Mar 2023 | EP |
3 938 005 | Apr 2023 | EP |
3 685 562 | May 2023 | EP |
3 397 298 | Jul 2023 | EP |
3 809 959 | Jul 2023 | EP |
2 072 150 | Sep 2023 | EP |
2 961 984 | Sep 2023 | EP |
3 352 808 | Sep 2023 | EP |
3 768 156 | Sep 2023 | EP |
4 052 754 | Oct 2023 | EP |
3 157 596 | Nov 2023 | EP |
3 766 428 | Nov 2023 | EP |
3 781 027 | Nov 2023 | EP |
4 061 470 | Nov 2023 | EP |
4 070 720 | Nov 2023 | EP |
3 449 958 | Dec 2023 | EP |
3 687 596 | Dec 2023 | EP |
3 768 340 | Dec 2023 | EP |
3 801 675 | Jan 2024 | EP |
3 566 636 | Feb 2024 | EP |
3 634 526 | Feb 2024 | EP |
3 768 347 | Feb 2024 | EP |
3 790 606 | Feb 2024 | EP |
3 930 780 | Feb 2024 | EP |
3 397 147 | Mar 2024 | EP |
3 782 695 | Mar 2024 | EP |
3 854 448 | Mar 2024 | EP |
4 140 532 | May 2024 | EP |
3 693 038 | Jun 2024 | EP |
3 970 765 | Jul 2024 | EP |
3 854 444 | Sep 2024 | EP |
2 913 485 | Jun 2022 | ES |
S59-080229 | May 1984 | JP |
S61-125329 | Jun 1986 | JP |
S62-113555 | Jul 1987 | JP |
S62-204733 | Sep 1987 | JP |
S62-282284 | Dec 1987 | JP |
S64-68236 | Mar 1989 | JP |
H02-055886 | Feb 1990 | JP |
H02-234750 | Sep 1990 | JP |
H05-079875 | Mar 1993 | JP |
H06-218044 | Aug 1994 | JP |
H07-047025 | May 1995 | JP |
H08-057042 | Mar 1996 | JP |
H08-066398 | Mar 1996 | JP |
H08-327527 | Dec 1996 | JP |
H10-052489 | Feb 1998 | JP |
H10-505766 | Jun 1998 | JP |
H11-239617 | Sep 1999 | JP |
2000-512191 | Sep 2000 | JP |
2001-037728 | Feb 2001 | JP |
2001-506140 | May 2001 | JP |
2001-276213 | Oct 2001 | JP |
2002-525175 | Aug 2002 | JP |
2003-019197 | Jan 2003 | JP |
2003-047656 | Feb 2003 | JP |
2003-062065 | Mar 2003 | JP |
2004-515278 | May 2004 | JP |
2005-028137 | Feb 2005 | JP |
2005-192687 | Jul 2005 | JP |
2006-528006 | Dec 2006 | JP |
2007-222644 | Sep 2007 | JP |
2008-511414 | Apr 2008 | JP |
2006-518249 | Aug 2008 | JP |
2008-178690 | Aug 2008 | JP |
2009-504290 | Feb 2009 | JP |
2009-240348 | Oct 2009 | JP |
2010-518907 | Jun 2010 | JP |
2012-520157 | Sep 2012 | JP |
2013-128792 | Jul 2013 | JP |
2014-524274 | Sep 2014 | JP |
2015-514529 | May 2015 | JP |
2015-514531 | May 2015 | JP |
2015-515429 | May 2015 | JP |
2015-122448 | Jul 2015 | JP |
2015-527172 | Sep 2015 | JP |
2015-181800 | Oct 2015 | JP |
2016-002466 | Jan 2016 | JP |
2016-509950 | Apr 2016 | JP |
2017-500932 | Jan 2017 | JP |
2017-176719 | Oct 2017 | JP |
2017-532084 | Nov 2017 | JP |
2019-523110 | Aug 2019 | JP |
2020-072985 | May 2020 | JP |
WO 92015239 | Sep 1992 | WO |
WO 98043688 | Oct 1998 | WO |
WO 00033047 | Jun 2000 | WO |
WO 2006122001 | Nov 2006 | WO |
WO 2010142286 | Dec 2010 | WO |
WO 2010143272 | Dec 2010 | WO |
WO 2012018917 | Feb 2012 | WO |
WO 2012112378 | Aug 2012 | WO |
WO 2013160443 | Oct 2013 | WO |
WO 2014042925 | Mar 2014 | WO |
WO 2014141284 | Sep 2014 | WO |
WO 2014165635 | Oct 2014 | WO |
WO 2015085220 | Jun 2015 | WO |
WO 2016001284 | Jan 2016 | WO |
WO 2016066180 | May 2016 | WO |
WO 2016137743 | Sep 2016 | WO |
WO 2017032751 | Mar 2017 | WO |
WO 2017066257 | Apr 2017 | WO |
WO 2017106190 | Jun 2017 | WO |
WO 2017147291 | Aug 2017 | WO |
WO 2017214118 | Dec 2017 | WO |
WO 2018048800 | Mar 2018 | WO |
WO 2018109038 | Jun 2018 | WO |
WO 2018213089 | Nov 2018 | WO |
WO 2019013794 | Jan 2019 | WO |
WO 2019034670 | Feb 2019 | WO |
WO 2019034775 | Feb 2019 | WO |
WO 2019078723 | Apr 2019 | WO |
WO 2019126721 | Jun 2019 | WO |
WO 2019137911 | Jul 2019 | WO |
WO 2019193604 | Oct 2019 | WO |
WO 2019219883 | Nov 2019 | WO |
WO 2019229210 | Dec 2019 | WO |
WO 2019229220 | Dec 2019 | WO |
WO 2019234145 | Dec 2019 | WO |
WO 2019234146 | Dec 2019 | WO |
WO 2019234148 | Dec 2019 | WO |
WO 2019234149 | Dec 2019 | WO |
WO 2019234151 | Dec 2019 | WO |
WO 2019234152 | Dec 2019 | WO |
WO 2019234153 | Dec 2019 | WO |
WO 2019234161 | Dec 2019 | WO |
WO 2019234162 | Dec 2019 | WO |
WO 2019234163 | Dec 2019 | WO |
WO 2019234164 | Dec 2019 | WO |
WO 2019234166 | Dec 2019 | WO |
WO 2019234167 | Dec 2019 | WO |
WO 2019234169 | Dec 2019 | WO |
WO 2019243582 | Dec 2019 | WO |
WO 2020030686 | Feb 2020 | WO |
WO 2020030706 | Feb 2020 | WO |
WO 2020064707 | Apr 2020 | WO |
WO 2020089429 | May 2020 | WO |
WO 2020198280 | Oct 2020 | WO |
WO 2020243756 | Dec 2020 | WO |
WO 2022074136 | Apr 2022 | WO |
WO 2022109590 | May 2022 | WO |
WO 2022173970 | Aug 2022 | WO |
WO 2023049813 | Mar 2023 | WO |
Entry |
---|
Hertz Ph.D. et al, “Ultrasonic Engineering in Heart Diagnosis”, The American Journal of Cardiology, Jan. 1967, vol. 19, No. 1, pp. 6-17. |
International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/064810, dated Aug. 1, 2019 in 15 pages. |
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/EP2019/064810, dated Aug. 18, 2020 in 20 pages. |
Kong et al., “A Stein Equation Approach for Solutions to the Diophantine Equations,” 2010 Chinese Control and Decision Conference, Xuzhou, May 26, 2010, pp. 3024-3028. |
Koseli et al., “Online Viscosity Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry”, Turk J Chem, Jan. 2006, vol. 30, pp. 297-305. |
McCormick et al., “Resolution of a 2/spl pi/ Ambiguity Problem in Multiple Frequency Spectral Estimation,” in IEEE Transactions on Aerospace and Electronic Systems, Jan. 1995, vol. 31, No. 1, pp. 2-8. |
Syrmos et al., “A Generalized Bezout Equation in Output Feedback Design,” Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, Dec. 1992, vol. 4, pp. 3590-3594. |
Udesen et al., “A Simple Method to Reduce Aliasing Artifacts in Color Flow Mode Imaging”, IEEE Ultrasonics Symposium, 2005, Rotterdam, The Netherlands, Sep. 18-21, 2005, pp. 1352-1355. |
Lombardi et al., “Flow Rate Profiler: an instrument to measure blood velocity profiles”, Ultrasonics, 2001, vol. 39, pp. 143-150. |
Mushi et al., “Identification of Fluidic Element Models to Simulate the Short-Term Baroreflex”, Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, Dec. 13-15, 2006, pp. 6. |
Vollkron et al., “Advanced Suction Detection for an Axial Flow Pump”, Artificial Organs, 2006, vol. 30, No. 9, pp. 665-670. |
Vollkron et al., “Development of a Suction Detection System for Axial Blood Pumps”, Artificial Organs, 2004, vol. 28, No. 8, pp. 709-716. |
Atkinson et al., “Pulse-Doppler Ultrasound and Its Clinical Application”, The Yale Journal of Biology and Medicine, 1977, vol. 50, pp. 367-373. |
Leguy et al., “Assessment of Blood Volume Flow in Slightly Curved Arteries from a Single Velocity Profile”, Journal of Biomechanics, 2009, pp. 1664-1672. |
Sinha et al., “Effect of Mechanical Assistance of the Systemic Ventricle in Single Ventricle Circulation with Cavopulmonary Connection”, The Journal of Thoracic and Cardiovascular Surgery, Apr. 2014, vol. 147, No. 4, pp. 1271-1275. |
“Understanding Hot-Wire Anemometry”, Advanced Thermal Solutions, Inc., 2007, pp. 13-17. |
Vieli, A., “Doppler Flow Determination”, BJA: British Journal of Anaesthesia, 1988, vol. 60, pp. 107S-112S. |
Yuanyuan et al., “Characteristics Analysis for Doppler Ultrasound Blood Flow Signals”, China Medical Device Information, 5(1), Feb. 28, 1999, pp. 36-42. |
Zhang, Dabiao et al., “Design of Microwave Velocity and Distance Monitor System”, Instrument Technique and Sensor, Hebei Normal University, Apr. 25, 2004, pp. 3. |
Murali, Akila, “Design of Inductive Coils for Wireless Power Transfer to Pediatric Implants”, A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, California State University, Northridge, May 2018, pp. 37. |
Number | Date | Country | |
---|---|---|---|
20220050037 A1 | Feb 2022 | US |