The subject matter disclosed herein generally relates to machines configured to the technical field of special-purpose machines that facilitate analysis of large bodies of textual data including computerized variants of such special-purpose machines and improvements to such variants, and to the technologies by which such special-purpose machines become improved compared to other special-purpose machines that facilitate analysis of large bodies of textual data. Embodiments of the present disclosure relate generally to searching large sets of data and, more particularly, but not by way of limitation, to a system and method of identifying documents and additional elements of interest based on search terms.
Machine learning processes are often useful in making predictions based on data sets. Users may want to explore a large quantity of text or documents as part of a data set. Typically, an individual performs a series of searches, with the help of a search engine or search tool, to target individual specified aspects, things, entities, or people referenced in the documents. The series of searches may provide a separate lists of results from which the user manually identifies relevant documents. However, manual review of results within the list is often time consuming and prohibitive where the list of results is large.
Various ones of the appended drawings merely illustrate example embodiments of the present disclosure and cannot be considered as limiting its scope.
The headings provided herein are merely for convenience and do not necessarily affect the scope or meaning of the terms used.
The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.
Example embodiments described herein disclose a textual identification system configured to identify texts within a set of textual data and elements of interest from within the identified texts. In some instances, the textual identification system provides unique and semantically meaningful elements of interest from within the textual data to expand or focus searches performed on the set of textual data. The identification of elements of interest may eliminate or consolidate deviations within usage, context, and spelling of the elements of interest to improve types, accuracy, and semantically related content of the elements of interest with respect to an initial set of search terms.
For example, in some embodiments, the textual identification system may initially present a graphical user interface at a client device. Upon receiving search terms (e.g., selections from predetermined terms or freely entered term), the textual identification system identifies texts (e.g., text documents, video documents, audio documents, publications, or multimedia documents) from textual data accessible by the textual identification system. Based on the search terms and the identified texts, the textual identification system identifies and presents elements of interest (e.g., additional terms) associated with, or included in, the identified texts. The textual identification system parses the texts within the set of textual data to identify terms contained within the texts, the context in which the terms are used, deviations among usage and form of the terms, and meaningful semantic relationships among two or more terms within the texts. Based on the context, deviations, and meaningful semantic relationships of terms within the identified texts, the textual identification system generates a list of elements of interest and presents the elements of interest along with identifications of the identified texts.
The textual identification system provides technical improvements to previous search suggestion systems by identifying multiple disparate contextual uses and semantically meaningful combinations of terms within identified texts and with respect to the search terms used to identify the texts. Use of the indices, matrices, and data structures described herein may also increase the speed and precision with which additional terms are identified. Further, the textual identification system may better identify additional terms by merging or eliminating presentation of additional terms to remove extraneous terms, merge deviant uses of terms, and merging or separating terms based on contextual or semantically meaningful usage, thereby improving previous suggested search systems.
Examples merely typify possible variations. Unless explicitly stated otherwise, components and functions are optional and may be combined or subdivided, and operations may vary in sequence or be combined or subdivided. In the following description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of example embodiments. It will be evident to one skilled in the art, however, that the present subject matter may be practiced without these specific details.
With reference to
The client device 110 may comprise, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smart phones, tablets, ultra books, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may utilize to access the networked system 102. In some embodiments, the client device 110 may comprise a display module (not shown) to display information (e.g., in the form of user interfaces). In further embodiments, the client device 110 may comprise one or more of a touch screens, accelerometers, gyroscopes, cameras, microphones, global positioning system (GPS) devices, and so forth. The client device 110 may be a device of a user that is used to perform a transaction involving digital items within the networked system 102. One or more users 106 may be a person, a machine, or other means of interacting with client device 110. In embodiments, the user 106 is not part of the network architecture 100, but may interact with the network architecture 100 via client device 110 or another means. For example, one or more portions of network 104 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, a wireless network, a WiFi network, a WiMax network, another type of network, or a combination of two or more such networks.
Each of the client device 110 may include one or more applications (also referred to as “apps”) such as, but not limited to, a web browser, messaging application, electronic mail (email) application, and the like.
One or more users 106 may be a person, a machine, or other means of interacting with the client device 110. In example embodiments, the user 106 is not part of the network architecture 100, but may interact with the network architecture 100 via the client device 110 or other means. For instance, the user provides input (e.g., touch screen input or alphanumeric input) to the client device 110 and the input is communicated to the networked system 102 via the network 104. In this instance, the networked system 102, in response to receiving the input from the user, communicates information to the client device 110 via the network 104 to be presented to the user. In this way, the user can interact with the networked system 102 using the client device 110.
An application program interface (API) server 120 and a web server 122 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 140. The application servers 140 may host one or more publication systems comprising a textual identification system 150, which may comprise one or more modules or applications and which may be embodied as hardware, software, firmware, or any combination thereof. The application servers 140 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more information storage repositories or database(s) 126. In an example embodiment, the databases 126 are storage devices that store information to be posted (e.g., publications or listings) to the networked system 102. The databases 126 may also store digital item information in accordance with example embodiments.
Additionally, a third-party application 132, executing on third-party server(s) 130, is shown as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 120. For example, the third-party application 132, utilizing information retrieved from the networked system 102, supports one or more features or functions on a website hosted by the third party. The third-party website, for example, provides one or more functions that are supported by the relevant systems or servers of the networked system 102.
The textual identification system 150 provides functionality operable to identify and retrieve documents or data and elements of interest in response to receiving search terms. For example, the textual identification system 150 may access sets of data (e.g., document corpora) stored in a structured format from the databases 126, the third-party servers 130, the client device 110, and other sources. In some example embodiments, the textual identification system 150 analyzes the set of data in order to determine portions of the data associated with the search terms and additional terms (e.g., elements of interest).
Further, while the network architecture 100 shown in
Additionally, a third-party application 132, executing on a third-party server(s) 130, is shown as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 120. For example, the third-party application 128, utilizing information retrieved from the networked system 102, may support one or more features or functions on a website hosted by the third party. The third-party website may, for example, provide one or more promotional, marketplace, or payment functions that are supported by the relevant applications of the networked system 102.
The access component 210 accesses or otherwise receives selections of at least one document corpus from a set of document corpora. The access component 210 may access the set of textual corpora by accessing a set of metadata identifying the set of textual corpora. In some instances, the access component 210 accesses the set of textual corpora by accessing one or more database directly or via a network connection. The access component 210 may also access or otherwise receive one or more search terms within a graphical user interface. In some embodiments, the access component 210 retrieves a data structure including textual identifications for a set of textual data and an indication of one or more data elements within one or more texts included in the set of textual data.
The document component 220 identifies a set of textual data based on one or more search terms. The document component 220 may use search algorithms to identify the set of textual data based on an index of keywords associated with the content and metadata of the document. In some embodiments, the document component 220 dynamically partitions the set of textual data to identify a textual, textual component, a text or text set within a textual corpus, or a textual corpus containing the set of documents associated with the one or more search terms. In some instances, the document component 220 partitions a set of textual corpora or merges two or more textual corpora based on search terms received from the access component 210.
The database component 230 generates data structures and modified data structures. In some embodiments, the database component 230 generates data structures including textual identifications for texts within the set of textual data. The data structures may also include indications of one or more data elements within the texts. The data elements may be words, titles, names, addresses, numbers, or any other suitable information contained within a text. The database component 230 may generate modified data structures from the data structures generated to represent texts within the textual data. In some embodiments, the database component 230 generates modified data structures by assigning index numbers to each element, term, combinations of elements, or combination of terms within a data structure. A full index (e.g., the data structure) may be reduced to include texts within the set of textual data identified based on the search terms. The database component 230 may sum rows within the modified data structure. In some instances, the database component 230 also processes counts for the terms using one or more processes to transform the modified data structure and remove or discount popular or common entries adding little value to analysis based on high frequency of occurrence.
The element component 240 identifies elements of interest within modified data structures generated by the database component 230. In some embodiments, the elements of interest are identified, at least in part, based on the summed rows of the modified data structures. The element component 240 may map textual identifications of sets of textual data to rows in transformed or modified data structures generated by the database component 230. In some instances, the element component 240 selects elements of interest by summing values from transformed matrices based on comparison of values associated with the elements to an interest threshold. The element component 240 may also identify element types for each element of interest.
The presentation component 250 causes presentations of graphical user interfaces, visual indicators, portions of texts, and other elements described herein. In some embodiments, the presentation component 250 causes presentation of a graphical user interface including selectable interface elements configured to receive search terms or provide search terms for selection and subsequent query of the set of textual data. The presentation component 250 may cause presentation of elements of interest within the graphical user interface as well as portions of texts accessed or retrieved from the set of textual data based on the search terms provided to the access component 210. In some embodiments, the presentation component 250 causes presentation of unique and tailored graphical user interfaces based on a combination of the texts, the search terms, and the elements of interest. The tailored graphical user interfaces may be presented differently to different users based on the information retrieved by the textual identification system 150, the user performing the search, element relationships or collocations, combinations thereof, and other suitable information. In some instances, portions of the graphical user interface are dynamically generated, such that a portion of the graphical user interface may only appear when information relevant to the portion is retrieved, identified, or generated by the textual identification system 150. In these instances, the graphical user interface may automatically resize, reorient, repartition, or otherwise adjust one or more initially presented portions of the graphical user interface to accommodate addition of a new portion based on the inclusion of additional information from the textual identification system 150.
The context component 260 determines context occurrences for elements of interest within texts of the set of textual data. In some instances, the context component 260 tokenizes the context to provide an index number for terms included in a textual proximate to another term for which context is being determined. The context component 260 may associate index numbers for terms surrounding a specified term and may link instances of a term surrounding a specified term that have a lexical similarity.
The normalization component 270 normalizes elements of interest by removing redundant elements of interest based on the context occurrence of two or more elements of interest. The normalization component 270 may generate a normalized set of elements of interest by identifying deviations among the instances. In some embodiments, normalization of the elements of interest occurs without removing or merging instances of the terms within the data structures described herein. The normalization component 270 may pass the normalized set of elements of interest to the presentation component 250, such that the presentation component 250 presents the elements of interest without duplication of elements of interest having deviating instances.
Any one or more of the components described may be implemented using hardware alone (e.g., one or more of the processors of a machine) or a combination of hardware and software. For example, any component described in the textual identification system 150 may physically include an arrangement of one or more processors (e.g., a subset of or among the one or more processors of the machine) configured to perform the operations described herein for that component. As another example, any component of the textual identification system 150 may include software, hardware, or both, that configure an arrangement of one or more processors (e.g., among the one or more processors of the machine) to perform the operations described herein for that component. Accordingly, different components of the textual identification system 150 may include and configure different arrangements of such processors or a single arrangement of such processors as different points in time. Moreover, any two or more components of the textual identification system 150 may be logically or physically combined into a single component, and the functions described herein for a single component may be subdivided among multiple components. Furthermore, according to various example embodiments, components described herein as being implemented within a single machine, database, or device may be distributed across multiple machines, databases, or devices.
In operation 310, the access component 210 receives a selection of a textual corpus from a set of textual corpora. Each textual corpus of the set of textual corpora contains one or more texts. The texts or text sets may include documents of varying types. For example the document types may include text documents, video documents, audio documents, multimedia documents, and other suitable documents. In the present disclosure, “textual” is used interchangeably with a broad number of document types, publications (e.g., documents published or otherwise accessible directly or by a network connection). Further, although described as texts, text sets, sets of textual data, or textual corpora, it should be understood that one or more terms, such as publication, may be used interchangeably in the present disclosure or embodiments disclosed herein. The set of texts (e.g., set of documents) may be identified from the selected textual corpus (e.g., document corpus).
In some embodiments, the presentation component 250 is activated by a selection of a graphical interface element to initiate presentation of a graphical user interface, as shown in
In operation 320, the access component 210 receives or otherwise accesses one or more search terms displayed within the graphical user interface. In some embodiments, the access component 210 receives the search terms from an input device of a client device on which the graphical user interface is presented. The access component 210 receives the one or more search terms as one or more differing types of user input through the input device. For example, the one or more search terms may be received within a text input field (e.g., a text box presented in the graphical user interface), as a selection from a set of radio buttons, as a selection from a drop down menu, as a selection from a scroll menu, or any other suitable input type.
In operation 330, the document component 220 identifies a set of textual data (e.g., a set of documents or set of publication data) based on the one or more search terms. In some embodiments, the set of documents are identified based on a presence of the one or more search terms within the document or within metadata associated with the document. In some embodiments, once the documents are incorporated into a document corpus, a content of the document and metadata associated with the document may be parsed and indexed to identify keywords. Keywords may include words, named individuals, named entities (e.g., a city name, a project name, an organization name), titles, authors, fields (e.g., From, To, Carbon Copy, and Blind Carbon Copy fields), dates, and other suitable terms. The keywords and the metadata may be extracted from the documents and accompanying data using information extraction and machine learning algorithms. In some embodiments, the document component 220 uses one or more search engine algorithms to identify the set of documents based on the index of the keywords associated with the content and metadata of the document.
In operation 340, the access component 210 retrieves a data structure including textual identifications (e.g., document identifications) for the set of textual data and an indication of the one or more data elements within the documents (e.g., texts within the textual data). In some embodiments, the data structure may be the index of keywords in the content and metadata of the documents identified based on the search terms. The index may include semantically meaningful collocations as well as the keywords from the content and the metadata. In some instances, the index is generated as a table having counts of the terms and semantically meaningful collocations within the document content and metadata. In some embodiments, the counts are a number of instances that a given term or semantically meaningful collocation occurs within the document content or the metadata for the document.
The indexes for the documents within the document corpus include collocations of semantically meaningful n-grams. Semantically meaningful collocations may include frequently occurring compositions of words having semantic meaning. For example, “strong” and “coffee” may occur together more often than a predetermined instance threshold and, when occurring together within a predefined distance, contain a semantic meaning, “strong coffee,” which may not occur in collocations of synonyms of the two terms. In some instances, the semantically meaningful n-grams or collocations may be determined heuristically. The semantically meaningful n-grams or collocations may also be identified using semantic analysis, stochastic semantic analysis, natural language processing, natural language understanding, or any other suitable algorithmic identification of the meaningful semantic relation between collocated terms.
In operation 350, the database component 230 processes the data structure to generate a modified data structure. In some embodiments, to generate the modified data structure, the database component 230 assigns an index number to each term or semantically meaningful n-gram. The index number may be obtained by sorting the textual representations of the terms and semantically meaningful n-grams and associating each with a position in a sort order. For example, “Aardvark” may receive an index number of zero and “Zena” may receive an index number of one thousand.
The modified data structure may be generated by reducing the full index to documents included in the set of documents identified based on the one or more search terms. In some embodiments, the terms, semantically meaningful n-grams, entity names, and the like are provided values within the modified data structure to construct a count matrix. The count matrix may include documents (e.g., documents identified within a specified document corpus or set of document corpora) as rows and elements of interest (e.g., terms and semantically meaningful n-grams) as columns. The documents in the rows may be represented by a document identification (e.g., a numerical value, an alphanumeric combination, or a set of characters). The terms and semantically meaningful collocations may be represented within a cell of the columns by the term or terms and an indication of a term type. The term type may indicate a category for the term. The intersections between the rows and columns may include a value for a number of occurrences of the specified element of interest within the specified document.
In operation 360, the database component 230 sums rows within the modified data structure. The rows include values for data elements included in each of the identified set of documents. In some embodiments, the counts (e.g., values at the intersections of specified rows and columns) are processed using a Term Frequency-Inverse Document Frequency (TF-IDF) transformation. The TF-IDF transformation may discount popular items as less interesting. In some instances, the TF-IDF transformation is a two-step process. First, the database component 230 sums the number of documents in which each item occurs. Second, the database component 230 divides the entries in each of the table rows of the modified data structure by the sum. The database component 230 thereby decreases weights of less informative but more popular or frequent terms. The TF-IDF transformation may generate a transformed data structure. In some embodiments, the transformed data structure is used as the basis for identifying potentially interesting elements or terms.
In operation 370, the element component 240 identifies one or more elements of interest based on the summed rows of the modified data structure. In some embodiments, to extract the one or more elements of interest, the element component 240 maps document identifications of the set of documents identified in operation 330 to rows of the transformed data structure. Using the mapping, the element component 240 creates a smaller matrix (e.g., an element matrix) composed of the document rows returned as query results. In the element matrix, the element component 240 selects terms of interest by summing the values from the transformed matrix and identifying the terms having a summed value above an interest threshold. In some embodiments, the interest threshold is predetermined. In some instances, the interest threshold is dynamic. In these embodiments, the dynamic interest threshold may be set as a function of the summed values for the terms. For example, the dynamic interest threshold may be set, at the time of summing the values for the terms, to select terms and to return a set number of terms (e.g., elements of interest) for each document of the set of documents identified in operation 330.
In operation 380, the presentation component 250 causes presentation of the elements of interest in a first portion of the graphical user interface and the textual identifications for the set of documents in a second portion of the graphical user interface. In some embodiments, the presentation component 250 causes presentation of the elements of interest and the document identifications in the graphical user interface depicted in
In operation 510, the context component 260 determines a context occurrence for each element of interest within the set of documents. The context occurrence represents a number of related times a term occurs in a document. In some instances, a context around each term may be tokenized. The context component 260, in tokenizing the context, may identify an index number for terms included in the document proximate to the term for which context is being determined. The context component 260 may then associate, in a matrix, one or more index numbers for the terms surrounding the specified term for which the context is being identified. In some embodiments, the context component 260 associates the index numbers of surrounding terms for each instance of a term for which the context is being identified. For example, where the context component 260 is determining context for three instances of the term “cheese,” the context component 260 may identify three sets of terms, with a set of terms surrounding each of the instances of the term “cheese.” The context component 260 may identify the index number for each of the terms within the three sets of terms and associate the index numbers with the instance of the term that they surround.
After the context component 260 identifies and associates the index numbers with instances of the term, the context component 260 determines the context of an instance of the term by comparing the associated index numbers. The context component 260 may link two or more instances of the term for which the surrounding terms are determined to have a lexical similarity. The lexical similarity of surrounding terms may be identified based on an overlap of terms identified within the surrounding terms. Overlap of terms may be identified where the same term occurs in two or more of the surrounding terms. Lexical similarity may also be identified where terms in sets of surrounding terms are synonyms, have similar definitions, or are otherwise semantically related. In some instances, the lexical similarity may be determined based on Jaccard coefficients determined for the sets of surrounding terms defined by a size of set intersection divided by a size of a set union.
In operation 520, the normalization component 270 normalizes the elements of interest by removing redundant elements of interest based on the context occurrence of two or more elements of interest. The normalization component 270 generates a normalized set of elements of interest. The normalization component 270 may normalize instances of an element of interest within a document by identifying one or more deviations among the instances. Deviations may include misspellings, different case usage, partial omissions (e.g., omitting a term forming a linked set of terms such as a full name), or other suitable deviations. In some embodiments, normalizing the elements of interest removes redundant instances of the same element of interest within a list presented at a client device. Removal of the redundant instances may free attention space within the list and remove confusion between similar instances of a term that refer to the same entity. In some instances, the normalization component 270 normalizes the elements of interest for presentation without removing or merging instances of the terms within one or more of the matrices or indices described above. By maintaining separate instances of the element of interest, the normalization component 270 prevents the database component 230 from erroneously reducing a term's likelihood of being deemed important based on overrepresentation due to merged instances.
In operation 530, the presentation component 250 causes presentation of the normalized set of elements of interest in the first portion of the graphical user interface. In some embodiments, the presentation component 250 presents the normalized set of elements of interest similarly to or the same as described above with respect to operation 380. The normalized set of elements may be presented in the first portion of the graphical user interface. In some instances, the elements of the normalized set of elements are presented in an order according to their association with the documents identified based on the search terms. In some embodiments, the normalized set of elements may be presented as an ordered list independent of a relationship to the identified documents presented in the second portion 420.
In operation 540, the element component 240 identifies an element type for each of the elements of interest. In some embodiments, the element component 240 identifies the element type for the elements of interest by determining the elements of interest identified from the set of documents retrieved based on the search terms. The element component 240 may then parse one or more of the matrices or indices described above to identify the element type for each element of interest.
In operation 550, the presentation component 250 causes presentation of a visual indicator differentiating the elements of interest based on the element types. The visual indicator may be a graphical indicator or a textual indicator. In some instances, the visual indicator is coded to indicate the element type without including all of the characters or words for the element type. For example, the presentation component 250 may identify an element type as a city name and abbreviate or otherwise code the element type as “CN.” Although the coding of the visual indicator has been described given a specific example of an abbreviation, it should be understood that the presentation component 250 may code the element type in any suitable manner. Further, in some embodiments, the presentation component may generate and cause presentation of key mapping codes and full names for element types.
In operation 560, the presentation component 250 causes presentation of at least a portion of a document of the set of documents in a third portion of the graphical user interface. In some embodiments, as shown in
In operation 610, the context component 260 generates a set of tokens for each element of interest. The set of tokens may represent the context occurrence of a specified element. In some embodiments, operation 610 is performed in response to determining the context of occurrence for each element of interest, as described above with respect to operation 510 of the method 500. The context component 260 may tokenize each element of interest using the index numbers described above or may generate a separate set of context tokens. The tokens may be a numerical value or any other suitable value to identify the term and associate the term with the term for which the context is being identified.
In operation 620, the context component 260 identifies an overlap of two or more elements of interest based on the set of tokens for the two or more elements of interest. The overlap may be determined based on semantic relatedness. For example, the overlap may be determined based on occurrence of a term within two or more sets of tokens for the two or more elements. As described above, with respect to operation 510, the semantic relatedness or lexical similarity may be determined based on Jaccard coefficients determined for the set of tokens.
In operation 630, the context components 260 links the two or more elements of interest. The two or more elements of interest may be linked in one or more of the matrices or indices described above. In some instances, the two or more elements are linked by generating a context matrix for each document within the set of documents identified in relation to the one or more search terms described above with respect to the method 300. The context matrix may include the terms within a document in both rows and columns. A bit or value at an intersection of two terms may indicate a contextual link between the two terms. Although the linking of elements of interest has been described with respect to a matrix, it should be understood that the elements of interest may be linked using metadata, data tables, or any other suitable method.
In operation 710, the access component 210 accesses a set of document corpora. In some embodiments, the set of document corpora includes the selected document corpus of operation 310. In some instances, the set of document corpora is accessed in response to receiving the one or more search terms in operation 320. For example, as shown, operation 710 may occur after operations 310-380. As shown in
In operation 720, the document component 220 dynamically partitions the set of document corpora to identify a document corpus containing the set of documents associated with the one or more search terms. In some instances, the document component 220 identifies the document corpus by identifying the search terms among keywords associated with each document corpus of the set of document corpora. In some embodiments, each document corpus may be associated with a distinct database or data source. For example, each distinct database or data source may be associated with or part of a distinct client device. In identifying the document corpus, the document component 220 may select a client device from which the document component may select documents in response to receiving the one or more search terms.
In some embodiments, the document component 220 dynamically partitions the set of document corpora regardless of distribution of the document corpora among multiple client devices. In these instances, the document component 220 identifies the one or more search terms. The document component 220 may compare the one or more search terms with an index or matrix identifying terms associated with individual documents within each document corpus of the set of document corpora. The index or matrix may also identify the document corpus with which each of the documents are associated. The document component 220 may identify one or more document corpora from the index or matrix. The document component 220 may then perform a comparative analysis of the one or more document corpora to identify a single document corpus to search using the one or more search terms. In some instances, the comparative analysis identifies the document corpus having a highest number of occurrences of the search terms, and selects the specified document corpus.
In some instances, the document component 220 combines two or more document corpora to generate a dynamic document corpus. In these embodiments, where several document corpora include a suitable number of instances of occurrences of the search terms, the document component 220 selects the two or more document corpora and searches each of the document corpora for documents including the one or more search terms.
Modules, Components, and Logic
Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied on a machine-readable medium) or hardware modules. A “hardware module” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
In some embodiments, a hardware module may be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware module may include dedicated circuitry or logic that is permanently configured to perform certain operations. For example, a hardware module may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware module may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware module may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware modules become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
Accordingly, the phrase “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. As used herein, “hardware-implemented module” refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where a hardware module comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware modules) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented module” refers to a hardware module implemented using one or more processors.
Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)).
The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented modules may be distributed across a number of geographic locations.
Machine and Software Architecture
The components, methods, applications and so forth described in conjunction with
Software architectures are used in conjunction with hardware architectures to create devices and machines tailored to particular purposes. For example, a particular hardware architecture coupled with a particular software architecture will create a mobile device, such as a mobile phone, tablet device, or so forth. A slightly different hardware and software architecture may yield a smart device for use in the “internet of things,” while yet another combination produces a server computer for use within a cloud computing architecture. Not all combinations of such software and hardware architectures are presented here as those of skill in the art can readily understand how to implement the subject matter in different contexts from the disclosure contained herein.
Software Architecture
In the example architecture of
The operating system 814 may manage hardware resources and provide common services. The operating system 814 may include, for example, a kernel 828, services 830, and drivers 832. The kernel 828 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 828 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 830 may provide other common services for the other software layers. The drivers 832 may be responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 832 may include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), WiFi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.
The libraries 816 may provide a common infrastructure that may be utilized by the applications 820 and/or other components and/or layers. The libraries 816 typically provide functionality that allows other software modules to perform tasks in an easier fashion than to interface directly with the underlying operating system 814 functionality (e.g., kernel 828, services 830, and/or drivers 832). The libraries 816 may include system libraries 834 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematic functions, and the like. In addition, the libraries 816 may include API libraries 836 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, JPG, PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D information in a graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 816 may also include a wide variety of other libraries 838 to provide many other APIs to the applications 820 and other software components/modules.
The frameworks 818 (also sometimes referred to as middleware) may provide a higher-level common infrastructure that may be utilized by the applications 820 and/or other software components/modules. For example, the frameworks 818 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks 818 may provide a broad spectrum of other APIs that may be utilized by the applications 820 and/or other software components/modules, some of which may be specific to a particular operating system or platform.
The applications 820 includes built-in applications 840 and/or third-party applications 842. Examples of representative built-in applications 840 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third-party applications 842 may include any of the built-in applications as well as a broad assortment of other applications. In a specific example, the third-party application 842 (e.g., an application developed using the Android™ or iOS™ software development kit (SDK) by an entity other than the vendor of the particular platform) may be mobile software running on a mobile operating system such as iOS™, Android™, Windows® Phone, or other mobile operating systems. In this example, the third-party application 842 may invoke the API calls 824 provided by the mobile operating system such as operating system 814 to facilitate functionality described herein.
The applications 820 may utilize built in operating system functions (e.g., kernel 828, services 830 and/or drivers 832), libraries (e.g., system libraries 834, API libraries 836, and other libraries 838), and frameworks/middleware 818 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as the presentation layer 844. In these systems, the application/module “logic” can be separated from the aspects of the application/module that interact with a user.
Some software architectures utilize virtual machines. In the example of
Example Machine Architecture and Machine-Readable Medium
The machine 900 may include processors 910, memory 930, and I/O components 950, which may be configured to communicate with each other such as via a bus 902. In an example embodiment, the processors 910 (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, processor 912 and processor 914 that may execute instructions 916. The term “processor” is intended to include multi-core processor that may comprise two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously. Although
The memory/storage 930 may include a memory 932, such as a main memory, or other memory storage, and a storage unit 936, both accessible to the processors 910 such as via the bus 902. The storage unit 936 and memory 932 store the instructions 916 embodying any one or more of the methodologies or functions described herein. The instructions 916 may also reside, completely or partially, within the memory 932, within the storage unit 936, within at least one of the processors 910 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 900. Accordingly, the memory 932, the storage unit 936, and the memory of the processors 910 are examples of machine-readable media.
As used herein, “machine-readable medium” means a device able to store instructions and data temporarily or permanently and may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store the instructions 916. The term “machine-readable medium” shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., instructions 916) for execution by a machine (e.g., machine 900), such that the instructions, when executed by one or more processors of the machine 900 (e.g., processors 910), cause the machine 900 to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.
The I/O components 950 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 950 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 950 may include many other components that are not shown in
In further example embodiments, the I/O components 950 may include biometric components 956, motion components 958, environmental components 960, or position components 962 among a wide array of other components. For example, the biometric components 956 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), and the like. The motion components 958 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environmental components 960 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometer that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 962 may include location sensor components (e.g., a Global Position System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
Communication may be implemented using a wide variety of technologies. The I/O components 950 may include communication components 964 operable to couple the machine 900 to a network 980 or devices 970 via coupling 982 and coupling 972 respectively. For example, the communication components 964 may include a network interface component or other suitable device to interface with the network 980. In further examples, communication components 964 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), WiFi® components, and other communication components to provide communication via other modalities. The devices 970 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).
Moreover, the communication components 964 may detect identifiers or include components operable to detect identifiers. For example, the communication components 964 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 964, such as, location via Internet Protocol (IP) geo-location, location via Wi-Fi® signal triangulation, location via detecting a NFC beacon signal that may indicate a particular location, and so forth.
Transmission Medium
In various example embodiments, one or more portions of the network 980 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, the network 980 or a portion of the network 980 may include a wireless or cellular network and the coupling 982 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other type of cellular or wireless coupling. In this example, the coupling 982 may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard setting organizations, other long range protocols, or other data transfer technology.
The instructions 916 may be transmitted or received over the network 980 using a transmission medium via a network interface device (e.g., a network interface component included in the communication components 964) and utilizing any one of a number of well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 916 may be transmitted or received using a transmission medium via the coupling 972 (e.g., a peer-to-peer coupling) to the devices 970. The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding, or carrying the instructions 916 for execution by the machine 900, and includes digital or analog communications signals or other intangible media to facilitate communication of such software.
Language
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Although an overview of the inventive subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or inventive concept if more than one is, in fact, disclosed.
The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application claims priority to U.S. Provisional Application Ser. No. 62/424,844, filed Nov. 21, 2016, the disclosure of which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5109399 | Thompson | Apr 1992 | A |
5329108 | Lamoure | Jul 1994 | A |
5632009 | Rao et al. | May 1997 | A |
5670987 | Doi et al. | Sep 1997 | A |
5724575 | Hoover et al. | Mar 1998 | A |
5781704 | Rossmo | Jul 1998 | A |
5798769 | Chiu et al. | Aug 1998 | A |
5845300 | Comer et al. | Dec 1998 | A |
5872973 | Mitchell | Feb 1999 | A |
5897636 | Kaeser | Apr 1999 | A |
6057757 | Arrowsmith et al. | May 2000 | A |
6073129 | Levine et al. | Jun 2000 | A |
6091956 | Hollenberg | Jul 2000 | A |
6094653 | Li et al. | Jul 2000 | A |
6161098 | Wallman | Dec 2000 | A |
6167405 | Rosensteel, Jr. et al. | Dec 2000 | A |
6219053 | Tachibana et al. | Apr 2001 | B1 |
6232971 | Haynes | May 2001 | B1 |
6243717 | Gordon et al. | Jun 2001 | B1 |
6247019 | Davies | Jun 2001 | B1 |
6279018 | Kudrolli et al. | Aug 2001 | B1 |
6304873 | Klein et al. | Oct 2001 | B1 |
6341310 | Leshem et al. | Jan 2002 | B1 |
6366933 | Ball et al. | Apr 2002 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6374251 | Fayyad et al. | Apr 2002 | B1 |
6418438 | Campbell | Jul 2002 | B1 |
6430305 | Decker | Aug 2002 | B1 |
6456997 | Shukla | Sep 2002 | B1 |
6510504 | Satyanarayanan | Jan 2003 | B2 |
6549752 | Tsukamoto | Apr 2003 | B2 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6560620 | Ching | May 2003 | B1 |
6567936 | Yang et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6581068 | Bensoussan et al. | Jun 2003 | B1 |
6594672 | Lampson et al. | Jul 2003 | B1 |
6631496 | Li et al. | Oct 2003 | B1 |
6642945 | Sharpe | Nov 2003 | B1 |
6674434 | Chojnacki et al. | Jan 2004 | B1 |
6714936 | Nevin, III | Mar 2004 | B1 |
6745382 | Zothner | Jun 2004 | B1 |
6775675 | Nwabueze et al. | Aug 2004 | B1 |
6820135 | Dingman et al. | Nov 2004 | B1 |
6828920 | Owen et al. | Dec 2004 | B2 |
6839745 | Dingari et al. | Jan 2005 | B1 |
6877137 | Rivette et al. | Apr 2005 | B1 |
6976210 | Silva et al. | Dec 2005 | B1 |
6978419 | Kantrowitz | Dec 2005 | B1 |
6980984 | Huffman et al. | Dec 2005 | B1 |
6985950 | Hanson et al. | Jan 2006 | B1 |
7036085 | Barros | Apr 2006 | B2 |
7043702 | Chi et al. | May 2006 | B2 |
7055110 | Kupka | May 2006 | B2 |
7058648 | Lightfoot et al. | Jun 2006 | B1 |
7111231 | Huck et al. | Sep 2006 | B1 |
7139800 | Bellotti et al. | Nov 2006 | B2 |
7158878 | Rasmussen | Jan 2007 | B2 |
7162475 | Ackerman | Jan 2007 | B2 |
7168039 | Bertram | Jan 2007 | B2 |
7171427 | Witkowski et al. | Jan 2007 | B2 |
7194680 | Roy et al. | Mar 2007 | B1 |
7269786 | Malloy et al. | Sep 2007 | B1 |
7278105 | Kitts et al. | Oct 2007 | B1 |
7290698 | Poslinski et al. | Nov 2007 | B2 |
7318054 | Nomura | Jan 2008 | B2 |
7333998 | Heckerman et al. | Feb 2008 | B2 |
7370047 | Gorman | May 2008 | B2 |
7373669 | Eisen | May 2008 | B2 |
7379811 | Rasmussen et al. | May 2008 | B2 |
7379903 | Caballero et al. | May 2008 | B2 |
7392249 | Harris et al. | Jun 2008 | B1 |
7426654 | Adams, Jr. et al. | Sep 2008 | B2 |
7451397 | Weber et al. | Nov 2008 | B2 |
7454466 | Bellotti et al. | Nov 2008 | B2 |
7461077 | Greenwood et al. | Dec 2008 | B1 |
7461158 | Rider et al. | Dec 2008 | B2 |
7467375 | Tondreau et al. | Dec 2008 | B2 |
7487139 | Fraleigh et al. | Feb 2009 | B2 |
7502786 | Liu et al. | Mar 2009 | B2 |
7525422 | Bishop et al. | Apr 2009 | B2 |
7529727 | Arning et al. | May 2009 | B2 |
7529734 | Dirisala | May 2009 | B2 |
7558677 | Jones | Jul 2009 | B2 |
7574409 | Patinkin | Aug 2009 | B2 |
7574428 | Leiserowitz et al. | Aug 2009 | B2 |
7579965 | Bucholz | Aug 2009 | B2 |
7596285 | Brown | Sep 2009 | B2 |
7614006 | Molander | Nov 2009 | B2 |
7617232 | Gabbert et al. | Nov 2009 | B2 |
7620628 | Kapur et al. | Nov 2009 | B2 |
7627812 | Chamberlain et al. | Dec 2009 | B2 |
7634717 | Chamberlain et al. | Dec 2009 | B2 |
7703021 | Flam | Apr 2010 | B1 |
7706817 | Bamrah et al. | Apr 2010 | B2 |
7712049 | Williams et al. | May 2010 | B2 |
7716077 | Mikurak et al. | May 2010 | B1 |
7725530 | Sah et al. | May 2010 | B2 |
7725547 | Albertson et al. | May 2010 | B2 |
7725728 | Ama et al. | May 2010 | B2 |
7730082 | Sah et al. | Jun 2010 | B2 |
7730109 | Rohrs et al. | Jun 2010 | B2 |
7756843 | Palmer | Jul 2010 | B1 |
7761407 | Stern | Jul 2010 | B1 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7783658 | Bayliss | Aug 2010 | B1 |
7805457 | Viola et al. | Sep 2010 | B1 |
7809703 | Balabhadrapatruni et al. | Oct 2010 | B2 |
7814084 | Hallett et al. | Oct 2010 | B2 |
7814102 | Miller | Oct 2010 | B2 |
7818658 | Chen | Oct 2010 | B2 |
7870493 | Pall et al. | Jan 2011 | B2 |
7894984 | Rasmussen et al. | Feb 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7899796 | Borthwick et al. | Mar 2011 | B1 |
7917376 | Bellin et al. | Mar 2011 | B2 |
7920963 | Jouline et al. | Apr 2011 | B2 |
7933862 | Chamberlain et al. | Apr 2011 | B2 |
7941321 | Greenstein et al. | May 2011 | B2 |
7962281 | Rasmussen et al. | Jun 2011 | B2 |
7962495 | Jain et al. | Jun 2011 | B2 |
7962848 | Bertram | Jun 2011 | B2 |
7970240 | Chao et al. | Jun 2011 | B1 |
7971150 | Raskutti et al. | Jun 2011 | B2 |
7979457 | Garman | Jul 2011 | B1 |
7984374 | Caro et al. | Jul 2011 | B2 |
8001465 | Kudrolli et al. | Aug 2011 | B2 |
8001482 | Bhattiprolu et al. | Aug 2011 | B2 |
8010545 | Stefik et al. | Aug 2011 | B2 |
8015487 | Roy et al. | Sep 2011 | B2 |
8024778 | Cash et al. | Sep 2011 | B2 |
8036632 | Cona et al. | Oct 2011 | B1 |
8036971 | Aymeloglu et al. | Oct 2011 | B2 |
8037046 | Udezue et al. | Oct 2011 | B2 |
8041714 | Aymeloglu et al. | Oct 2011 | B2 |
8046283 | Burns et al. | Oct 2011 | B2 |
8046362 | Bayliss | Oct 2011 | B2 |
8054756 | Chand et al. | Nov 2011 | B2 |
8095582 | Cramer | Jan 2012 | B2 |
8103543 | Zwicky | Jan 2012 | B1 |
8112425 | Baum et al. | Feb 2012 | B2 |
8126848 | Wagner | Feb 2012 | B2 |
8134457 | Velipasalar et al. | Mar 2012 | B2 |
8135679 | Bayliss | Mar 2012 | B2 |
8135719 | Bayliss | Mar 2012 | B2 |
8145703 | Frishert et al. | Mar 2012 | B2 |
8185819 | Sah et al. | May 2012 | B2 |
8196184 | Amirov et al. | Jun 2012 | B2 |
8214361 | Sandler et al. | Jul 2012 | B1 |
8214490 | Vos et al. | Jul 2012 | B1 |
8214764 | Gemmell et al. | Jul 2012 | B2 |
8225201 | Michael | Jul 2012 | B2 |
8229902 | Vishniac et al. | Jul 2012 | B2 |
8229947 | Fujinaga | Jul 2012 | B2 |
8230333 | Decherd et al. | Jul 2012 | B2 |
8266168 | Bayliss | Sep 2012 | B2 |
8271461 | Pike et al. | Sep 2012 | B2 |
8280880 | Aymeloglu et al. | Oct 2012 | B1 |
8290838 | Thakur et al. | Oct 2012 | B1 |
8290926 | Ozzie et al. | Oct 2012 | B2 |
8290942 | Jones et al. | Oct 2012 | B2 |
8301464 | Cave et al. | Oct 2012 | B1 |
8301904 | Gryaznov | Oct 2012 | B1 |
8302855 | Ma et al. | Nov 2012 | B2 |
8312367 | Foster | Nov 2012 | B2 |
8312546 | Alme | Nov 2012 | B2 |
8321943 | Walters et al. | Nov 2012 | B1 |
8347398 | Weber | Jan 2013 | B1 |
8352881 | Champion et al. | Jan 2013 | B2 |
8368695 | Howell et al. | Feb 2013 | B2 |
8386377 | Xiong et al. | Feb 2013 | B1 |
8392394 | Kumar et al. | Mar 2013 | B1 |
8397171 | Klassen et al. | Mar 2013 | B2 |
8412707 | Mianji | Apr 2013 | B1 |
8447674 | Choudhuri et al. | May 2013 | B2 |
8447722 | Ahuja et al. | May 2013 | B1 |
8452790 | Mianji | May 2013 | B1 |
8463036 | Ramesh et al. | Jun 2013 | B1 |
8473454 | Evanitsky et al. | Jun 2013 | B2 |
8484115 | Aymeloglu et al. | Jul 2013 | B2 |
8484168 | Bayliss | Jul 2013 | B2 |
8489331 | Kopf et al. | Jul 2013 | B2 |
8489623 | Jain et al. | Jul 2013 | B2 |
8489641 | Seefeld et al. | Jul 2013 | B1 |
8495077 | Bayliss | Jul 2013 | B2 |
8498969 | Bayliss | Jul 2013 | B2 |
8498984 | Hwang et al. | Jul 2013 | B1 |
8504542 | Chang et al. | Aug 2013 | B2 |
8510743 | Hackborn et al. | Aug 2013 | B2 |
8514082 | Cova et al. | Aug 2013 | B2 |
8515207 | Chau | Aug 2013 | B2 |
8554579 | Tribble et al. | Oct 2013 | B2 |
8554653 | Falkenborg et al. | Oct 2013 | B2 |
8554709 | Goodson et al. | Oct 2013 | B2 |
8560413 | Quarterman | Oct 2013 | B1 |
8577911 | Stepinski et al. | Nov 2013 | B1 |
8589273 | Creeden et al. | Nov 2013 | B2 |
8595234 | Siripurapu et al. | Nov 2013 | B2 |
8600872 | Yan | Dec 2013 | B1 |
8620641 | Farnsworth et al. | Dec 2013 | B2 |
8639757 | Zang et al. | Jan 2014 | B1 |
8646080 | Williamson et al. | Feb 2014 | B2 |
8676857 | Adams et al. | Mar 2014 | B1 |
8682812 | Ranjan | Mar 2014 | B1 |
8688573 | Rukonic et al. | Apr 2014 | B1 |
8689108 | Duffield et al. | Apr 2014 | B1 |
8700643 | Gossweiler, III | Apr 2014 | B1 |
8713467 | Goldenberg et al. | Apr 2014 | B1 |
8726379 | Stiansen et al. | May 2014 | B1 |
8739278 | Varghese | May 2014 | B2 |
8742934 | Sarpy, Sr. et al. | Jun 2014 | B1 |
8744890 | Bernier et al. | Jun 2014 | B1 |
8745516 | Mason et al. | Jun 2014 | B2 |
8781169 | Jackson et al. | Jul 2014 | B2 |
8786605 | Curtis et al. | Jul 2014 | B1 |
8787939 | Papakipos et al. | Jul 2014 | B2 |
8788405 | Sprague et al. | Jul 2014 | B1 |
8788407 | Singh et al. | Jul 2014 | B1 |
8799799 | Cervelli et al. | Aug 2014 | B1 |
8806355 | Twiss et al. | Aug 2014 | B2 |
8812960 | Sun et al. | Aug 2014 | B1 |
8818892 | Sprague et al. | Aug 2014 | B1 |
8830322 | Nerayoff et al. | Sep 2014 | B2 |
8832594 | Thompson et al. | Sep 2014 | B1 |
8868537 | Colgrove et al. | Oct 2014 | B1 |
8898184 | Garman | Nov 2014 | B1 |
8917274 | Ma et al. | Dec 2014 | B2 |
8924388 | Elliot et al. | Dec 2014 | B2 |
8924389 | Elliot et al. | Dec 2014 | B2 |
8924872 | Bogomolov et al. | Dec 2014 | B1 |
8930331 | McGrew et al. | Jan 2015 | B2 |
8937619 | Sharma et al. | Jan 2015 | B2 |
8938686 | Erenrich et al. | Jan 2015 | B1 |
8949164 | Mohler | Feb 2015 | B1 |
8954410 | Chang et al. | Feb 2015 | B2 |
9009171 | Grossman et al. | Apr 2015 | B1 |
9009827 | Albertson et al. | Apr 2015 | B1 |
9021260 | Falk et al. | Apr 2015 | B1 |
9021384 | Beard et al. | Apr 2015 | B1 |
9043696 | Meiklejohn et al. | May 2015 | B1 |
9043894 | Dennison et al. | May 2015 | B1 |
9069842 | Melby | Jun 2015 | B2 |
9092482 | Harris et al. | Jul 2015 | B2 |
9100428 | Visbal | Aug 2015 | B1 |
9111281 | Stibel et al. | Aug 2015 | B2 |
9116975 | Shankar et al. | Aug 2015 | B2 |
9129219 | Robertson et al. | Sep 2015 | B1 |
9135658 | Sprague et al. | Sep 2015 | B2 |
9146954 | Boe et al. | Sep 2015 | B1 |
9165299 | Stowe et al. | Oct 2015 | B1 |
9177344 | Singh et al. | Nov 2015 | B1 |
9171334 | Visbal et al. | Dec 2015 | B1 |
9202249 | Cohen et al. | Dec 2015 | B1 |
9208159 | Stowe et al. | Dec 2015 | B2 |
9229952 | Meacham et al. | Jan 2016 | B1 |
9230280 | Maag et al. | Jan 2016 | B1 |
9256664 | Chakerian et al. | Feb 2016 | B2 |
9280532 | Cicerone et al. | Mar 2016 | B2 |
9348920 | Kesin | Mar 2016 | B1 |
9344447 | Cohen et al. | May 2016 | B2 |
9367872 | Visbal et al. | Jun 2016 | B1 |
9535974 | Kesin et al. | Jan 2017 | B1 |
9547693 | Sheasby et al. | Jan 2017 | B1 |
9619557 | Kesin et al. | Apr 2017 | B2 |
20010021936 | Bertram | Sep 2001 | A1 |
20010051949 | Carey et al. | Dec 2001 | A1 |
20010056522 | Satyanarayana | Dec 2001 | A1 |
20020013781 | Petersen | Jan 2002 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020065708 | Senay et al. | May 2002 | A1 |
20020083039 | Ferrari et al. | Jun 2002 | A1 |
20020091694 | Hrle et al. | Jul 2002 | A1 |
20020091707 | Keller et al. | Jul 2002 | A1 |
20020095360 | Joao | Jul 2002 | A1 |
20020095658 | Shulman et al. | Jul 2002 | A1 |
20020103705 | Brady | Aug 2002 | A1 |
20020116120 | Ruiz et al. | Aug 2002 | A1 |
20020130907 | Chi et al. | Sep 2002 | A1 |
20020147805 | Leshem et al. | Oct 2002 | A1 |
20020169759 | Kraft et al. | Nov 2002 | A1 |
20020174201 | Ramer et al. | Nov 2002 | A1 |
20020194119 | Wright et al. | Dec 2002 | A1 |
20030028560 | Kudrolli et al. | Feb 2003 | A1 |
20030033228 | Bosworth-Davies | Feb 2003 | A1 |
20030036848 | Sheha et al. | Feb 2003 | A1 |
20030039948 | Donahue | Feb 2003 | A1 |
20030074368 | Schuetze et al. | Apr 2003 | A1 |
20030097330 | Hillmer et al. | May 2003 | A1 |
20030105759 | Bess et al. | Jun 2003 | A1 |
20030115481 | Baird et al. | Jun 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030126102 | Borthwick | Jul 2003 | A1 |
20030130993 | Mendelevitch et al. | Jul 2003 | A1 |
20030140106 | Raguseo | Jul 2003 | A1 |
20030144868 | MacIntyre et al. | Jul 2003 | A1 |
20030154044 | Lundstedt et al. | Aug 2003 | A1 |
20030163352 | Surpin et al. | Aug 2003 | A1 |
20030172014 | Quackenbush et al. | Sep 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030212718 | Tester | Nov 2003 | A1 |
20030225755 | Iwayama et al. | Dec 2003 | A1 |
20030229848 | Arend et al. | Dec 2003 | A1 |
20040032432 | Baynger | Feb 2004 | A1 |
20040034570 | Davis | Feb 2004 | A1 |
20040064256 | Barinek et al. | Apr 2004 | A1 |
20040085318 | Hassler et al. | May 2004 | A1 |
20040095349 | Bito et al. | May 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040111480 | Yue | Jun 2004 | A1 |
20040117345 | Bamford et al. | Jun 2004 | A1 |
20040117387 | Civetta et al. | Jun 2004 | A1 |
20040126840 | Cheng et al. | Jul 2004 | A1 |
20040143602 | Ruiz et al. | Jul 2004 | A1 |
20040143796 | Lerner et al. | Jul 2004 | A1 |
20040148301 | McKay et al. | Jul 2004 | A1 |
20040153418 | Hanweck | Aug 2004 | A1 |
20040160309 | Stilp | Aug 2004 | A1 |
20040163039 | Gorman | Aug 2004 | A1 |
20040181554 | Heckerman et al. | Sep 2004 | A1 |
20040193600 | Kaasten et al. | Sep 2004 | A1 |
20040205524 | Richter et al. | Oct 2004 | A1 |
20040221223 | Yu et al. | Nov 2004 | A1 |
20040236688 | Bozeman | Nov 2004 | A1 |
20040260702 | Cragun et al. | Dec 2004 | A1 |
20040267746 | Marcjan et al. | Dec 2004 | A1 |
20050010472 | Quatse et al. | Jan 2005 | A1 |
20050027705 | Sadri et al. | Feb 2005 | A1 |
20050028094 | Allyn | Feb 2005 | A1 |
20050039119 | Parks et al. | Feb 2005 | A1 |
20050065811 | Chu et al. | Mar 2005 | A1 |
20050078858 | Yao et al. | Apr 2005 | A1 |
20050080769 | Gemmell et al. | Apr 2005 | A1 |
20050086207 | Heuer et al. | Apr 2005 | A1 |
20050097441 | Herbach et al. | May 2005 | A1 |
20050108063 | Madill, Jr. et al. | May 2005 | A1 |
20050108231 | Findleton et al. | May 2005 | A1 |
20050114763 | Nonomura et al. | May 2005 | A1 |
20050125715 | Di Franco et al. | Jun 2005 | A1 |
20050154628 | Eckart et al. | Jul 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050162523 | Darrell et al. | Jul 2005 | A1 |
20050166144 | Gross | Jul 2005 | A1 |
20050180330 | Shapiro | Aug 2005 | A1 |
20050182793 | Keenan et al. | Aug 2005 | A1 |
20050183005 | Denoue et al. | Aug 2005 | A1 |
20050210409 | Jou | Sep 2005 | A1 |
20050222928 | Steier et al. | Oct 2005 | A1 |
20050246327 | Yeung et al. | Nov 2005 | A1 |
20050251786 | Citron et al. | Nov 2005 | A1 |
20050289524 | McGinnes | Dec 2005 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060026170 | Kreitler et al. | Feb 2006 | A1 |
20060045470 | Poslinski et al. | Mar 2006 | A1 |
20060059139 | Robinson | Mar 2006 | A1 |
20060074866 | Chamberlain et al. | Apr 2006 | A1 |
20060074881 | Vembu et al. | Apr 2006 | A1 |
20060080283 | Shipman | Apr 2006 | A1 |
20060080316 | Gilmore et al. | Apr 2006 | A1 |
20060080616 | Vogel et al. | Apr 2006 | A1 |
20060080619 | Carlson et al. | Apr 2006 | A1 |
20060093222 | Saffer et al. | May 2006 | A1 |
20060095521 | Patinkin | May 2006 | A1 |
20060106847 | Eckardt, III et al. | May 2006 | A1 |
20060116991 | Calderwood | Jun 2006 | A1 |
20060129746 | Porter | Jun 2006 | A1 |
20060136402 | Lee | Jun 2006 | A1 |
20060139375 | Rasmussen et al. | Jun 2006 | A1 |
20060142949 | Helt | Jun 2006 | A1 |
20060143034 | Rothermel et al. | Jun 2006 | A1 |
20060143075 | Carr et al. | Jun 2006 | A1 |
20060143079 | Basak et al. | Jun 2006 | A1 |
20060149596 | Surpin et al. | Jul 2006 | A1 |
20060161558 | Tamma et al. | Jul 2006 | A1 |
20060184889 | Molander | Aug 2006 | A1 |
20060203337 | White | Sep 2006 | A1 |
20060209085 | Wong et al. | Sep 2006 | A1 |
20060218206 | Bourbonnais et al. | Sep 2006 | A1 |
20060218405 | Ama et al. | Sep 2006 | A1 |
20060218491 | Grossman et al. | Sep 2006 | A1 |
20060218637 | Thomas et al. | Sep 2006 | A1 |
20060241974 | Chao et al. | Oct 2006 | A1 |
20060242040 | Rader | Oct 2006 | A1 |
20060242630 | Koike et al. | Oct 2006 | A1 |
20060253502 | Raman et al. | Nov 2006 | A1 |
20060265397 | Bryan et al. | Nov 2006 | A1 |
20060271277 | Hu et al. | Nov 2006 | A1 |
20060279630 | Aggarwal et al. | Dec 2006 | A1 |
20070000999 | Kubo et al. | Jan 2007 | A1 |
20070011150 | Frank | Jan 2007 | A1 |
20070011304 | Error | Jan 2007 | A1 |
20070016363 | Huang et al. | Jan 2007 | A1 |
20070038646 | Thota | Feb 2007 | A1 |
20070038962 | Fuchs et al. | Feb 2007 | A1 |
20070057966 | Ohno et al. | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070078832 | Ott, IV et al. | Apr 2007 | A1 |
20070083541 | Fraleigh et al. | Apr 2007 | A1 |
20070094389 | Nussey et al. | Apr 2007 | A1 |
20070106582 | Baker et al. | May 2007 | A1 |
20070130206 | Zhou et al. | Jun 2007 | A1 |
20070143253 | Kostamaa et al. | Jun 2007 | A1 |
20070150369 | Zivin | Jun 2007 | A1 |
20070150801 | Chidlovskii et al. | Jun 2007 | A1 |
20070050429 | Goldring et al. | Jul 2007 | A1 |
20070156673 | Maga et al. | Jul 2007 | A1 |
20070162454 | D'Albora et al. | Jul 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070185850 | Walters et al. | Aug 2007 | A1 |
20070185867 | Maga et al. | Aug 2007 | A1 |
20070192122 | Routson et al. | Aug 2007 | A1 |
20070192265 | Chopin et al. | Aug 2007 | A1 |
20070198571 | Ferguson et al. | Aug 2007 | A1 |
20070208497 | Downs et al. | Sep 2007 | A1 |
20070208498 | Barker et al. | Sep 2007 | A1 |
20070208736 | Tanigawa et al. | Sep 2007 | A1 |
20070233709 | Abnous et al. | Oct 2007 | A1 |
20070233756 | D'Souza et al. | Oct 2007 | A1 |
20070240062 | Christena et al. | Oct 2007 | A1 |
20070266336 | Nojima et al. | Nov 2007 | A1 |
20070271317 | Carmel | Nov 2007 | A1 |
20070284433 | Domenica et al. | Dec 2007 | A1 |
20070294200 | Au | Dec 2007 | A1 |
20070294643 | Kyle | Dec 2007 | A1 |
20080015970 | Brookfield et al. | Jan 2008 | A1 |
20080016216 | Worley et al. | Jan 2008 | A1 |
20080040275 | Paulsen et al. | Feb 2008 | A1 |
20080040684 | Crump et al. | Feb 2008 | A1 |
20080051989 | Welsh | Feb 2008 | A1 |
20080052142 | Bailey et al. | Feb 2008 | A1 |
20080065655 | Chakravarthy et al. | Mar 2008 | A1 |
20080071731 | Ma et al. | Mar 2008 | A1 |
20080072180 | Chevalier | Mar 2008 | A1 |
20080077597 | Butler | Mar 2008 | A1 |
20080077642 | Carbone | Mar 2008 | A1 |
20080082486 | Lermant et al. | Apr 2008 | A1 |
20080104019 | Nath | May 2008 | A1 |
20080104060 | Abhyankar et al. | May 2008 | A1 |
20080126951 | Sood et al. | May 2008 | A1 |
20080133567 | Ames et al. | Jun 2008 | A1 |
20080148398 | Mezack et al. | Jun 2008 | A1 |
20080155440 | Trevor et al. | Jun 2008 | A1 |
20080162616 | Gross et al. | Jul 2008 | A1 |
20080104149 | Vishniac et al. | Aug 2008 | A1 |
20080195417 | Surpin | Aug 2008 | A1 |
20080195608 | Clover | Aug 2008 | A1 |
20080195672 | Hamel et al. | Aug 2008 | A1 |
20080201339 | McGrew et al. | Aug 2008 | A1 |
20080208735 | Balet et al. | Aug 2008 | A1 |
20080215546 | Baum et al. | Sep 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080249983 | Meisels et al. | Oct 2008 | A1 |
20080255973 | El Wade et al. | Oct 2008 | A1 |
20080263468 | Cappione et al. | Oct 2008 | A1 |
20080267107 | Rosenberg | Oct 2008 | A1 |
20080270316 | Guidotti et al. | Oct 2008 | A1 |
20080276167 | Michael | Nov 2008 | A1 |
20080278311 | Grange et al. | Nov 2008 | A1 |
20080288306 | MacIntyre et al. | Nov 2008 | A1 |
20080288425 | Posse et al. | Nov 2008 | A1 |
20080294663 | Heinley et al. | Nov 2008 | A1 |
20080301378 | Carrie | Dec 2008 | A1 |
20080301643 | Appleton et al. | Dec 2008 | A1 |
20080313132 | Hao et al. | Dec 2008 | A1 |
20090002492 | Velipasalar et al. | Jan 2009 | A1 |
20090018940 | Wang et al. | Jan 2009 | A1 |
20090024505 | Patel et al. | Jan 2009 | A1 |
20090024589 | Sood et al. | Jan 2009 | A1 |
20090027418 | Maru et al. | Jan 2009 | A1 |
20090030915 | Winter et al. | Jan 2009 | A1 |
20090031247 | Walter et al. | Jan 2009 | A1 |
20090037417 | Shankar et al. | Feb 2009 | A1 |
20090044279 | Crawford et al. | Feb 2009 | A1 |
20090055251 | Shah et al. | Feb 2009 | A1 |
20090076845 | Bellin et al. | Mar 2009 | A1 |
20090082997 | Tokman et al. | Mar 2009 | A1 |
20090083184 | Eisen | Mar 2009 | A1 |
20090088964 | Schaaf et al. | Apr 2009 | A1 |
20090094270 | Alirez et al. | Apr 2009 | A1 |
20090106178 | Chu | Apr 2009 | A1 |
20090106308 | Killian et al. | Apr 2009 | A1 |
20090112745 | Stefanescu | Apr 2009 | A1 |
20090119309 | Gibson et al. | May 2009 | A1 |
20090125359 | Knapic et al. | May 2009 | A1 |
20090125369 | Kloostra et al. | May 2009 | A1 |
20090125459 | Norton et al. | May 2009 | A1 |
20090132921 | Hwangbo et al. | May 2009 | A1 |
20090132953 | Reed, Jr. et al. | May 2009 | A1 |
20090143052 | Bates et al. | Jun 2009 | A1 |
20090144262 | White et al. | Jun 2009 | A1 |
20090144274 | Fraleigh et al. | Jun 2009 | A1 |
20090150854 | Elaasar et al. | Jun 2009 | A1 |
20090157732 | Hao et al. | Jun 2009 | A1 |
20090164387 | Armstrong et al. | Jun 2009 | A1 |
20090164934 | Bhattiprolu et al. | Jun 2009 | A1 |
20090171939 | Athsani et al. | Jul 2009 | A1 |
20090172511 | Decherd et al. | Jul 2009 | A1 |
20090172669 | Bobak et al. | Jul 2009 | A1 |
20090172821 | Daira et al. | Jul 2009 | A1 |
20090177962 | Gusmorino et al. | Jul 2009 | A1 |
20090179892 | Tsuda et al. | Jul 2009 | A1 |
20090187464 | Bai et al. | Jul 2009 | A1 |
20090187546 | Hamilton Whyte | Jul 2009 | A1 |
20090187548 | Ji et al. | Jul 2009 | A1 |
20090192957 | Subramanian et al. | Jul 2009 | A1 |
20090222400 | Kupershmidt et al. | Sep 2009 | A1 |
20090222759 | Drieschner | Sep 2009 | A1 |
20090222760 | Halverson et al. | Sep 2009 | A1 |
20090234720 | George et al. | Sep 2009 | A1 |
20090240664 | Dinker et al. | Sep 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090254842 | Leacock et al. | Oct 2009 | A1 |
20090254970 | Agarwal et al. | Oct 2009 | A1 |
20090254971 | Herz et al. | Oct 2009 | A1 |
20090271343 | Vaiciulis et al. | Oct 2009 | A1 |
20090271359 | Bayliss | Oct 2009 | A1 |
20090271435 | Yako et al. | Oct 2009 | A1 |
20090281839 | Lynn et al. | Nov 2009 | A1 |
20090287470 | Farnsworth et al. | Nov 2009 | A1 |
20090292626 | Oxford et al. | Nov 2009 | A1 |
20090300589 | Watters et al. | Dec 2009 | A1 |
20090307049 | Elliott, Jr. et al. | Dec 2009 | A1 |
20090313223 | Rantanen et al. | Dec 2009 | A1 |
20090313311 | Hoffmann et al. | Dec 2009 | A1 |
20090313463 | Pang et al. | Dec 2009 | A1 |
20090318775 | Michelson et al. | Dec 2009 | A1 |
20090319418 | Herz | Dec 2009 | A1 |
20090319891 | MacKinlay et al. | Dec 2009 | A1 |
20090327208 | Bittner et al. | Dec 2009 | A1 |
20100011282 | Dollard et al. | Jan 2010 | A1 |
20100030722 | Goodson et al. | Feb 2010 | A1 |
20100031141 | Summers et al. | Feb 2010 | A1 |
20100036831 | Vemuri et al. | Feb 2010 | A1 |
20100042922 | Bradateanu et al. | Feb 2010 | A1 |
20100057622 | Faith | Mar 2010 | A1 |
20100057716 | Stefik et al. | Mar 2010 | A1 |
20100070489 | Aymeloglu et al. | Mar 2010 | A1 |
20100070523 | Delgo et al. | Mar 2010 | A1 |
20100070842 | Aymeloglu et al. | Mar 2010 | A1 |
20100070845 | Facemire et al. | Mar 2010 | A1 |
20100070897 | Aymeloglu et al. | Mar 2010 | A1 |
20100076939 | Iwaki et al. | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100077483 | Stolfo et al. | Mar 2010 | A1 |
20100082541 | Kottomtharayil | Apr 2010 | A1 |
20100098318 | Anderson | Apr 2010 | A1 |
20100100963 | Mahaffey | Apr 2010 | A1 |
20100103124 | Kruzeniski et al. | Apr 2010 | A1 |
20100106611 | Paulsen et al. | Apr 2010 | A1 |
20100106752 | Eckardt, III et al. | Apr 2010 | A1 |
20100114817 | Broeder et al. | May 2010 | A1 |
20100114831 | Gilbert et al. | May 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100122152 | Chamberlain et al. | May 2010 | A1 |
20100125546 | Barrett et al. | May 2010 | A1 |
20100131457 | Heimendinger | May 2010 | A1 |
20100131502 | Fordham | May 2010 | A1 |
20100138842 | Balko et al. | Jun 2010 | A1 |
20100145909 | Ngo | Jun 2010 | A1 |
20100161565 | Lee et al. | Jun 2010 | A1 |
20100161688 | Kesselman et al. | Jun 2010 | A1 |
20100161735 | Sharma | Jun 2010 | A1 |
20100162176 | Dunton | Jun 2010 | A1 |
20100169237 | Howard | Jul 2010 | A1 |
20100185691 | Irmak et al. | Jul 2010 | A1 |
20100191563 | Schlaifer et al. | Jul 2010 | A1 |
20100191884 | Holenstein et al. | Jul 2010 | A1 |
20100198684 | Eraker et al. | Aug 2010 | A1 |
20100199225 | Coleman et al. | Aug 2010 | A1 |
20100211535 | Rosenberger | Aug 2010 | A1 |
20100211550 | Daniello et al. | Aug 2010 | A1 |
20100211618 | Anderson et al. | Aug 2010 | A1 |
20100228812 | Uomini | Sep 2010 | A1 |
20100235606 | Oreland et al. | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100250412 | Wagner | Sep 2010 | A1 |
20100262688 | Hussain et al. | Oct 2010 | A1 |
20100280857 | Liu et al. | Nov 2010 | A1 |
20100283787 | Hamedi et al. | Nov 2010 | A1 |
20100293174 | Bennett | Nov 2010 | A1 |
20100306029 | Jolley | Dec 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100312837 | Bodapati et al. | Dec 2010 | A1 |
20100313119 | Baldwin et al. | Dec 2010 | A1 |
20100318838 | Katano et al. | Dec 2010 | A1 |
20100318924 | Frankel et al. | Dec 2010 | A1 |
20100321399 | Ellren et al. | Dec 2010 | A1 |
20100325526 | Ellis et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20100330801 | Rouh | Dec 2010 | A1 |
20110004498 | Readshaw | Jan 2011 | A1 |
20110016118 | Edala | Jan 2011 | A1 |
20110029498 | Ferguson et al. | Feb 2011 | A1 |
20110029526 | Knight | Feb 2011 | A1 |
20110047159 | Baid et al. | Feb 2011 | A1 |
20110047540 | Williams et al. | Feb 2011 | A1 |
20110055140 | Roychowdhury | Mar 2011 | A1 |
20110060753 | Shaked et al. | Mar 2011 | A1 |
20110061013 | Bilicki et al. | Mar 2011 | A1 |
20110066933 | Ludwig | Mar 2011 | A1 |
20110074811 | Hanson et al. | Mar 2011 | A1 |
20110078055 | Faribault et al. | Mar 2011 | A1 |
20110078173 | Seligmann et al. | Mar 2011 | A1 |
20110087519 | Fordyce, III et al. | Apr 2011 | A1 |
20110093327 | Fordyce, III et al. | Apr 2011 | A1 |
20110099133 | Chang et al. | Apr 2011 | A1 |
20110117878 | Barash et al. | May 2011 | A1 |
20110119100 | Ruhl et al. | May 2011 | A1 |
20110131122 | Griffin et al. | Jun 2011 | A1 |
20110131547 | Elaasar | Jun 2011 | A1 |
20110137766 | Rasmussen et al. | Jun 2011 | A1 |
20110153384 | Horne et al. | Jun 2011 | A1 |
20110153592 | DeMarcken | Jun 2011 | A1 |
20110161096 | Buehler et al. | Jun 2011 | A1 |
20110161132 | Goel et al. | Jun 2011 | A1 |
20110161137 | Ubalde et al. | Jun 2011 | A1 |
20110167054 | Bailey et al. | Jul 2011 | A1 |
20110167105 | Ramakrishnan et al. | Jul 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110170799 | Carrino et al. | Jul 2011 | A1 |
20110173032 | Payne et al. | Jul 2011 | A1 |
20110173093 | Psota et al. | Jul 2011 | A1 |
20110173619 | Fish | Jul 2011 | A1 |
20110178842 | Rane et al. | Jul 2011 | A1 |
20110181598 | O'Neall et al. | Jul 2011 | A1 |
20110184813 | Barnes et al. | Jul 2011 | A1 |
20110185316 | Reid et al. | Jul 2011 | A1 |
20110196737 | Vadlamani et al. | Aug 2011 | A1 |
20110208565 | Ross et al. | Aug 2011 | A1 |
20110208724 | Jones et al. | Aug 2011 | A1 |
20110213655 | Henkin et al. | Sep 2011 | A1 |
20110218934 | Elser | Sep 2011 | A1 |
20110218955 | Tang et al. | Sep 2011 | A1 |
20110219321 | Gonzalez Veron et al. | Sep 2011 | A1 |
20110219450 | Mcdougal et al. | Sep 2011 | A1 |
20110225198 | Edwards et al. | Sep 2011 | A1 |
20110225650 | Margolies et al. | Sep 2011 | A1 |
20110231223 | Winters | Sep 2011 | A1 |
20110238413 | Wu et al. | Sep 2011 | A1 |
20110238495 | Kang | Sep 2011 | A1 |
20110238510 | Rowen et al. | Sep 2011 | A1 |
20110238553 | Raj et al. | Sep 2011 | A1 |
20110238570 | Li et al. | Sep 2011 | A1 |
20110246229 | Pacha | Oct 2011 | A1 |
20110251951 | Kolkowitz et al. | Oct 2011 | A1 |
20110258158 | Resende, Jr. et al. | Oct 2011 | A1 |
20110258190 | Chen et al. | Oct 2011 | A1 |
20110258242 | Eidson et al. | Oct 2011 | A1 |
20110270604 | Qi et al. | Nov 2011 | A1 |
20110270705 | Parker | Nov 2011 | A1 |
20110270812 | Ruby et al. | Nov 2011 | A1 |
20110270834 | Sokolan et al. | Nov 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110289407 | Naik et al. | Nov 2011 | A1 |
20110289420 | Morioka | Nov 2011 | A1 |
20110291851 | Whisenant | Dec 2011 | A1 |
20110295649 | Fine et al. | Dec 2011 | A1 |
20110307382 | Siegel | Dec 2011 | A1 |
20110310005 | Chen et al. | Dec 2011 | A1 |
20110314007 | Dassa et al. | Dec 2011 | A1 |
20110314024 | Chang et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120004904 | Shin et al. | Jan 2012 | A1 |
20120005581 | Turner | Jan 2012 | A1 |
20120011238 | Rathod | Jan 2012 | A1 |
20120011245 | Gillette et al. | Jan 2012 | A1 |
20120019559 | Siler et al. | Jan 2012 | A1 |
20120022945 | Falkenborg et al. | Jan 2012 | A1 |
20120036013 | Neuhaus et al. | Feb 2012 | A1 |
20120036434 | Oberstein | Feb 2012 | A1 |
20120050293 | Carlhian et al. | Mar 2012 | A1 |
20120054284 | Rakshit | Mar 2012 | A1 |
20120059853 | Jagota | Mar 2012 | A1 |
20120066166 | Curbera et al. | Mar 2012 | A1 |
20120066296 | Appleton et al. | Mar 2012 | A1 |
20120072825 | Sherkin et al. | Mar 2012 | A1 |
20120075324 | Cardno et al. | Mar 2012 | A1 |
20120079363 | Folting et al. | Mar 2012 | A1 |
20120084117 | Tavares et al. | Apr 2012 | A1 |
20120084118 | Bai et al. | Apr 2012 | A1 |
20120084135 | Nissan et al. | Apr 2012 | A1 |
20120084287 | Lakshminarayan et al. | Apr 2012 | A1 |
20120084866 | Stolfo | Apr 2012 | A1 |
20120106801 | Jackson | May 2012 | A1 |
20120116828 | Shannon | May 2012 | A1 |
20120117082 | Koperda et al. | May 2012 | A1 |
20120123989 | Yu et al. | May 2012 | A1 |
20120124179 | Cappio et al. | May 2012 | A1 |
20120131107 | Yost | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120136804 | Lucia et al. | May 2012 | A1 |
20120137235 | Ts et al. | May 2012 | A1 |
20120144335 | Abeln et al. | Jun 2012 | A1 |
20120150791 | Willson | Jun 2012 | A1 |
20120158527 | Cannelongo et al. | Jun 2012 | A1 |
20120158626 | Zhu et al. | Jun 2012 | A1 |
20120159307 | Chung et al. | Jun 2012 | A1 |
20120159312 | Mital et al. | Jun 2012 | A1 |
20120159362 | Brown et al. | Jun 2012 | A1 |
20120159399 | Bastide et al. | Jun 2012 | A1 |
20120170847 | Tsukidate | Jul 2012 | A1 |
20120173381 | Smith | Jul 2012 | A1 |
20120173985 | Peppel | Jul 2012 | A1 |
20120180002 | Campbell et al. | Jul 2012 | A1 |
20120196557 | Reich et al. | Aug 2012 | A1 |
20120196558 | Reich et al. | Aug 2012 | A1 |
20120197651 | Robinson et al. | Aug 2012 | A1 |
20120203584 | Mishor et al. | Aug 2012 | A1 |
20120203708 | Psota et al. | Aug 2012 | A1 |
20120208636 | Feige | Aug 2012 | A1 |
20120215784 | King et al. | Aug 2012 | A1 |
20120215898 | Shah et al. | Aug 2012 | A1 |
20120221511 | Gibson et al. | Aug 2012 | A1 |
20120221553 | Wittmer et al. | Aug 2012 | A1 |
20120221580 | Barney | Aug 2012 | A1 |
20120226523 | Weiss et al. | Sep 2012 | A1 |
20120245976 | Kumar et al. | Sep 2012 | A1 |
20120246148 | Dror | Sep 2012 | A1 |
20120254129 | Wheeler et al. | Oct 2012 | A1 |
20120266245 | McDougal et al. | Oct 2012 | A1 |
20120278273 | Fang | Nov 2012 | A1 |
20120284345 | Costenaro et al. | Nov 2012 | A1 |
20120290879 | Shibuya et al. | Nov 2012 | A1 |
20120296907 | Long et al. | Nov 2012 | A1 |
20120304244 | Xie et al. | Nov 2012 | A1 |
20120310831 | Harris et al. | Dec 2012 | A1 |
20120310838 | Harris et al. | Dec 2012 | A1 |
20120311684 | Paulsen et al. | Dec 2012 | A1 |
20120323829 | Stokes | Dec 2012 | A1 |
20120323888 | Osann, Jr. | Dec 2012 | A1 |
20120330801 | Mcdougal et al. | Dec 2012 | A1 |
20120330908 | Stowe et al. | Dec 2012 | A1 |
20120330973 | Ghuneim et al. | Dec 2012 | A1 |
20130006426 | Healey et al. | Jan 2013 | A1 |
20130006655 | Van Arkel et al. | Jan 2013 | A1 |
20130006668 | Van Arkel et al. | Jan 2013 | A1 |
20130006725 | Simanek et al. | Jan 2013 | A1 |
20130006916 | Mcbride et al. | Jan 2013 | A1 |
20130016106 | Yip et al. | Jan 2013 | A1 |
20130018796 | Kolhatkar et al. | Jan 2013 | A1 |
20130024268 | Manickavelu | Jan 2013 | A1 |
20130024307 | Fuerstenberg et al. | Jan 2013 | A1 |
20130024339 | Choudhuri et al. | Jan 2013 | A1 |
20130036346 | Cicerone | Feb 2013 | A1 |
20130046635 | Grigg et al. | Feb 2013 | A1 |
20130046842 | Muntz et al. | Feb 2013 | A1 |
20130050217 | Armitage | Feb 2013 | A1 |
20130054306 | Bhalla et al. | Feb 2013 | A1 |
20130055145 | Antony et al. | Feb 2013 | A1 |
20130057551 | Ebert et al. | Mar 2013 | A1 |
20130060742 | Chang et al. | Mar 2013 | A1 |
20130060786 | Serrano et al. | Mar 2013 | A1 |
20130061169 | Pearcy | Mar 2013 | A1 |
20130073377 | Heath | Mar 2013 | A1 |
20130073454 | Busch | Mar 2013 | A1 |
20130078943 | Biage et al. | Mar 2013 | A1 |
20130086482 | Parsons | Apr 2013 | A1 |
20130096988 | Grossman et al. | Apr 2013 | A1 |
20130097130 | Bingol et al. | Apr 2013 | A1 |
20130097482 | Marantz et al. | Apr 2013 | A1 |
20130101159 | Chao et al. | Apr 2013 | A1 |
20130110746 | Ahn | May 2013 | A1 |
20130110822 | Ikeda et al. | May 2013 | A1 |
20130110877 | Bonham et al. | May 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130117011 | Ahmed et al. | May 2013 | A1 |
20130117651 | Waldman et al. | May 2013 | A1 |
20130132381 | Chakrabarti et al. | May 2013 | A1 |
20130150004 | Rosen | Jun 2013 | A1 |
20130151148 | Parundekar et al. | Jun 2013 | A1 |
20130151388 | Falkenborg et al. | Jun 2013 | A1 |
20130151453 | Bhanot et al. | Jun 2013 | A1 |
20130157234 | Gulli et al. | Jun 2013 | A1 |
20130159340 | Blanco et al. | Jun 2013 | A1 |
20130160120 | Malaviya et al. | Jun 2013 | A1 |
20130166348 | Scotto | Jun 2013 | A1 |
20130166480 | Popescu et al. | Jun 2013 | A1 |
20130166550 | Buchmann et al. | Jun 2013 | A1 |
20130176321 | Mitchell et al. | Jul 2013 | A1 |
20130179420 | Park et al. | Jul 2013 | A1 |
20130185245 | Anderson et al. | Jul 2013 | A1 |
20130185307 | El-yaniv et al. | Jul 2013 | A1 |
20130185320 | Iwasaki et al. | Jul 2013 | A1 |
20130197925 | Blue | Aug 2013 | A1 |
20130211985 | Clark et al. | Aug 2013 | A1 |
20130224696 | Wolfe et al. | Aug 2013 | A1 |
20130225212 | Khan | Aug 2013 | A1 |
20130226318 | Procyk et al. | Aug 2013 | A1 |
20130226953 | Markovich et al. | Aug 2013 | A1 |
20130232045 | Tai et al. | Sep 2013 | A1 |
20130238616 | Rose et al. | Sep 2013 | A1 |
20130246170 | Gross et al. | Sep 2013 | A1 |
20130246537 | Gaddala | Sep 2013 | A1 |
20130246597 | Iizawa et al. | Sep 2013 | A1 |
20130251233 | Yang et al. | Sep 2013 | A1 |
20130262527 | Hunter et al. | Oct 2013 | A1 |
20130263019 | Castellanos et al. | Oct 2013 | A1 |
20130267207 | Hao et al. | Oct 2013 | A1 |
20130268520 | Fisher et al. | Oct 2013 | A1 |
20130276799 | Davidson et al. | Oct 2013 | A1 |
20130279757 | Kephart | Oct 2013 | A1 |
20130282696 | John et al. | Oct 2013 | A1 |
20130290011 | Lynn et al. | Oct 2013 | A1 |
20130290825 | Arndt et al. | Oct 2013 | A1 |
20130297619 | Chandrasekaran et al. | Nov 2013 | A1 |
20130304770 | Boero et al. | Nov 2013 | A1 |
20130311375 | Priebatsch | Nov 2013 | A1 |
20130318060 | Chang et al. | Nov 2013 | A1 |
20130318594 | Hoy et al. | Nov 2013 | A1 |
20130318604 | Coates et al. | Nov 2013 | A1 |
20130339218 | Subramanian et al. | Dec 2013 | A1 |
20130339514 | Crank et al. | Dec 2013 | A1 |
20140006109 | Callioni et al. | Jan 2014 | A1 |
20140012796 | Petersen et al. | Jan 2014 | A1 |
20140019936 | Cohanoff | Jan 2014 | A1 |
20140032506 | Hoey et al. | Jan 2014 | A1 |
20140033010 | Richardt et al. | Jan 2014 | A1 |
20140040371 | Gurevich et al. | Feb 2014 | A1 |
20140047319 | Eberlein | Feb 2014 | A1 |
20140047357 | Alfaro et al. | Feb 2014 | A1 |
20140058763 | Zizzamia et al. | Feb 2014 | A1 |
20140058914 | Song et al. | Feb 2014 | A1 |
20140059038 | Mcpherson et al. | Feb 2014 | A1 |
20140067611 | Adachi et al. | Mar 2014 | A1 |
20140068487 | Steiger et al. | Mar 2014 | A1 |
20140074855 | Zhao et al. | Mar 2014 | A1 |
20140081652 | Klindworth | Mar 2014 | A1 |
20140095273 | Tang et al. | Apr 2014 | A1 |
20140095509 | Patton | Apr 2014 | A1 |
20140108068 | Williams | Apr 2014 | A1 |
20140108380 | Gotz et al. | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140123279 | Bishop et al. | May 2014 | A1 |
20140129261 | Bothwell et al. | May 2014 | A1 |
20140136285 | Carvalho | May 2014 | A1 |
20140143009 | Brice et al. | May 2014 | A1 |
20140149130 | Getchius | May 2014 | A1 |
20140149272 | Hirani et al. | May 2014 | A1 |
20140149436 | Bahrami et al. | May 2014 | A1 |
20140156484 | Chan et al. | Jun 2014 | A1 |
20140156527 | Grigg et al. | Jun 2014 | A1 |
20140157172 | Peery et al. | Jun 2014 | A1 |
20140164502 | Khodorenko et al. | Jun 2014 | A1 |
20140181833 | Bird et al. | Jun 2014 | A1 |
20140189536 | Lange et al. | Jul 2014 | A1 |
20140189870 | Singla et al. | Jul 2014 | A1 |
20140195515 | Baker et al. | Jul 2014 | A1 |
20140195887 | Ellis et al. | Jul 2014 | A1 |
20140214579 | Shen et al. | Jul 2014 | A1 |
20140222521 | Chait | Aug 2014 | A1 |
20140222793 | Sadkin et al. | Aug 2014 | A1 |
20140229554 | Grunin et al. | Aug 2014 | A1 |
20140244388 | Manouchehri et al. | Aug 2014 | A1 |
20140258246 | Lo Faro et al. | Sep 2014 | A1 |
20140267294 | Ma et al. | Sep 2014 | A1 |
20140267295 | Sharma et al. | Sep 2014 | A1 |
20140279824 | Tamayo | Sep 2014 | A1 |
20140283067 | Call et al. | Sep 2014 | A1 |
20140310266 | Greenfield | Oct 2014 | A1 |
20140310282 | Sprague et al. | Oct 2014 | A1 |
20140316911 | Gross | Oct 2014 | A1 |
20140324876 | Konik et al. | Oct 2014 | A1 |
20140330845 | Feldschuh | Nov 2014 | A1 |
20140331119 | Dixon et al. | Nov 2014 | A1 |
20140333651 | Cervelli et al. | Nov 2014 | A1 |
20140337772 | Cervelli et al. | Nov 2014 | A1 |
20140344230 | Krause et al. | Nov 2014 | A1 |
20140344231 | Stowe et al. | Nov 2014 | A1 |
20140351070 | Christner et al. | Nov 2014 | A1 |
20140358829 | Hurwitz | Dec 2014 | A1 |
20140366132 | Stiansen et al. | Dec 2014 | A1 |
20140379755 | Kuriakose et al. | Dec 2014 | A1 |
20140379812 | Bastide, II et al. | Dec 2014 | A1 |
20150019394 | Unser et al. | Jan 2015 | A1 |
20150039886 | Kajol et al. | Feb 2015 | A1 |
20150046870 | Goldenberg et al. | Feb 2015 | A1 |
20150067533 | Volach | Mar 2015 | A1 |
20150073929 | Psota et al. | Mar 2015 | A1 |
20150073954 | Braff | Mar 2015 | A1 |
20150089353 | Folkening | Mar 2015 | A1 |
20150089424 | Duffield et al. | Mar 2015 | A1 |
20150095773 | Gonsalves et al. | Apr 2015 | A1 |
20150100897 | Sun et al. | Apr 2015 | A1 |
20150100907 | Erenrich et al. | Apr 2015 | A1 |
20150106170 | Bonica | Apr 2015 | A1 |
20150106347 | McGrew et al. | Apr 2015 | A1 |
20150106379 | Elliot et al. | Apr 2015 | A1 |
20150112956 | Chang et al. | Apr 2015 | A1 |
20150134599 | Banerjee et al. | May 2015 | A1 |
20150134666 | Gattiker et al. | May 2015 | A1 |
20150135256 | Hoy et al. | May 2015 | A1 |
20150169709 | Kara et al. | Jun 2015 | A1 |
20150169726 | Kara et al. | Jun 2015 | A1 |
20150170077 | Kara et al. | Jun 2015 | A1 |
20150178825 | Huerta et al. | Jun 2015 | A1 |
20150178877 | Bogomolov et al. | Jun 2015 | A1 |
20150186821 | Wang et al. | Jul 2015 | A1 |
20150187036 | Wang et al. | Jul 2015 | A1 |
20150188872 | White | Jul 2015 | A1 |
20150212663 | Papale et al. | Jul 2015 | A1 |
20150213043 | Ishii et al. | Jul 2015 | A1 |
20150213134 | Nie et al. | Jul 2015 | A1 |
20150227295 | Meiklejohn et al. | Aug 2015 | A1 |
20150235334 | Wang et al. | Aug 2015 | A1 |
20150242397 | Zhuang | Aug 2015 | A1 |
20150242401 | Liu | Aug 2015 | A1 |
20150261817 | Harris et al. | Sep 2015 | A1 |
20150309719 | Ma et al. | Oct 2015 | A1 |
20150317342 | Grossman et al. | Nov 2015 | A1 |
20150324868 | Kaftan et al. | Nov 2015 | A1 |
20150338233 | Cervelli et al. | Nov 2015 | A1 |
20150341467 | Lim et al. | Nov 2015 | A1 |
20150347903 | Saxena et al. | Dec 2015 | A1 |
20150378996 | Keisin et al. | Dec 2015 | A1 |
20150379413 | Robertson et al. | Dec 2015 | A1 |
20160004667 | Chakerian | Jan 2016 | A1 |
20160004764 | Chakerian et al. | Jan 2016 | A1 |
20160034470 | Sprague et al. | Feb 2016 | A1 |
20160034545 | Shankar et al. | Feb 2016 | A1 |
20160034555 | Rahut et al. | Feb 2016 | A1 |
20160048937 | Mathura et al. | Feb 2016 | A1 |
20160062555 | Ward et al. | Mar 2016 | A1 |
20160098173 | Slawinski et al. | Apr 2016 | A1 |
20160147730 | Cicerone | May 2016 | A1 |
20160180451 | Visbal et al. | Jun 2016 | A1 |
20160180557 | Yousaf et al. | Jun 2016 | A1 |
20160210195 | Sinha | Jul 2016 | A1 |
20170046349 | Shankar et al. | Feb 2017 | A1 |
20170277780 | Kesin et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
2014206155 | Dec 2015 | AU |
2014250678 | Feb 2016 | AU |
102546446 | Jul 2012 | CN |
103167093 | Jun 2013 | CN |
102054015 | May 2014 | CN |
102014103482 | Sep 2014 | DE |
102014204827 | Sep 2014 | DE |
102014204830 | Sep 2014 | DE |
102014204834 | Sep 2014 | DE |
102014215621 | Feb 2015 | DE |
0652513 | May 1995 | EP |
1191463 | Mar 2002 | EP |
1672527 | Jun 2006 | EP |
2487610 | Aug 2012 | EP |
2551799 | Jan 2013 | EP |
2555126 | Feb 2013 | EP |
2555153 | Feb 2013 | EP |
2560134 | Feb 2013 | EP |
2778977 | Sep 2014 | EP |
2835745 | Feb 2015 | EP |
2835770 | Feb 2015 | EP |
2838039 | Feb 2015 | EP |
2846241 | Mar 2015 | EP |
2851852 | Mar 2015 | EP |
2858014 | Apr 2015 | EP |
2858018 | Apr 2015 | EP |
2863326 | Apr 2015 | EP |
2863346 | Apr 2015 | EP |
2869211 | May 2015 | EP |
2884439 | Jun 2015 | EP |
2884440 | Jun 2015 | EP |
2889814 | Jul 2015 | EP |
2891992 | Jul 2015 | EP |
2892197 | Jul 2015 | EP |
2911078 | Aug 2015 | EP |
2911100 | Aug 2015 | EP |
2940603 | Nov 2015 | EP |
2940609 | Nov 2015 | EP |
2963577 | Jan 2016 | EP |
2963595 | Jan 2016 | EP |
2985729 | Feb 2016 | EP |
3018879 | May 2016 | EP |
3037991 | Jun 2016 | EP |
3038046 | Jun 2016 | EP |
2513247 | Oct 2014 | GB |
2516155 | Jan 2015 | GB |
2518745 | Apr 2015 | GB |
2012778 | Nov 2014 | NL |
2013306 | Feb 2015 | NL |
624557 | Aug 2014 | NZ |
WO-2000009529 | Feb 2000 | WO |
WO-2002065353 | Aug 2002 | WO |
WO-2005104736 | Nov 2005 | WO |
WO-2005116851 | Dec 2005 | WO |
WO-2008011728 | Jan 2008 | WO |
WO-2008064207 | May 2008 | WO |
WO-2008113059 | Sep 2008 | WO |
WO-2009061501 | May 2009 | WO |
WO-2010000014 | Jan 2010 | WO |
WO-2010030913 | Mar 2010 | WO |
WO-2010098958 | Sep 2010 | WO |
WO-2012025915 | Mar 2012 | WO |
WO-2013010157 | Jan 2013 | WO |
WO-2013102892 | Jul 2013 | WO |
WO-2013126281 | Aug 2013 | WO |
Entry |
---|
US 8,712,906 B1, 04/2014, Sprague et al. (withdrawn) |
“5 Great Tools for Visualizing your Twitter Followers”, Amnet Blog, http://www.amnetblog.com/component/content/article/115-5-great-tools-for-visualizing-your-twitter-followers.html, (Aug. 4, 2010), 1-5. |
“A First Look: Predicting Market Demand for Food Retails using a Huff Analysis”, TRF Policy Solutions, CDFI Fund, Capacity Building Initiative, (Jul. 2012), 1-30. |
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL”, UniProt Consortium, Ongoing and future developments at the Universal Protein Resource, (Sep. 2011), 1-2. |
“About 80 Minutes: Palantir in a number of parts—Part 6—Graph”, http://about80minutes.blogspot.com/2013/03/palantir-in-number-of-parts-part-6-graph.html, (Mar. 21, 2013), 1-7. |
“About connecting shapes”, Microsoft Office—Visio, [Online] retrieved from the internet: <http://office.microsoft.com/enus/visio-help/about-connecting-shapes-HP085050369.aspx>, (Aug. 4, 2011), 6 pgs. |
“About OWA”, Open Web Analytics, [Online]. Retrieved from the Internet: <URL: http://www.openwebanalytics.com/?page jd=2>, (Accessed: Jul. 19, 2013), 5 pgs. |
“Add and glue connectors with the Connector tool”, Microsoft Office—Visio,, [Online] retrieved from the internet: <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT =1 >, (Aug. 4, 2011), 1 pg. |
“An Introduction to KeyLines and Network Visualization”, Keylines.com, [Online]. Retrieved from the Internet: <URL: http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf>, (Mar. 2014), 8 pgs. |
“Analytics for Data Driven Startups”, Trak.io, [Online]. Retrieved from the Internet: <URL: http://trak.io/>, (Accessed: Jul. 18, 2013), 3 pgs. |
“Apache HBase”, Webpage; Apache HBase Overview page, (Sep. 9, 2011), 1. |
“Beta Testing on the Fly”, TestFlight, [Online]. Retrieved from the Internet: <URL: https://testflightapp. com/>, (Accessed: Jul. 18, 2013), 3 pgs. |
“Bug 18726—[feature] Long-click means of invoking contextual menus not supported”, Bugzilla@Mozilla, [Online] retrieved from the internet: <http://bugzilla.mozilla.org/show_bug.cgi?id=18726>, (Jun. 13, 2013), 11 pgs. |
“Chapter 2: IBM InfoSphere DataStage stages”, IBM Corp; Modification 0 of IBM Information Server, Version 8, Release 1, 1st Edition, (2008), 35-137. |
“Countly”, Countly Mobile Analytics, [Online]. Retrieved from the Internet: <URL: http://count.ly/products/screenshots, (accessed Jul. 18, 2013), 9 pgs. |
“Data Powered Mobile Advertising”, Free Mobile App Analytics and various analytics related screen shots, (Jul. 18, 2013), 8 pgs. |
“DISTIMO—App Analytics”, [Online]. Retrieved from the Internet: <URL: http://www.distimo.com/app-analytics, (accessed Jul. 18, 2013), 5 pgs. |
“E-security begins with sound security policies”, Symantec Corporation, Announcement Symantec, XP002265695, (Jun. 14, 2001), 1,9. |
“Federated Database System”, From Wikipedia, (Sep. 7, 2013), 1-6. |
“Flurry Analytics”, [Online]. Retrieved from the Internet: <URL: http://www.flurry.com/, (accessed Jul. 18, 2013), 14 pgs. |
“Getting Started with VBA in Word 2010”, Microsoft-Developer Network,, [Online] retrieved from the internet: <http://msdn.microsoft.com/en-us/library/ff604039%28v=office. 14%29.aspx>, (Apr. 4, 2014), 17 pgs. |
“GIS-NET 3 Public-Department of Regional Planning”, Planning & Zoning Information for Unincorporated LA County, [Online] retrieved from the internet: <http://qis.planning.lacounty.gov/GIS-NET3 Public/Viewer.html>, (Oct. 2, 2013). |
“Google Analytics Official Website—Web Analytics & Reporting”, [Online]. Retrieved from the Internet: <URL: http://www.google.com/ analytics/index.html, (accessed Jul. 18, 2013), 22 pgs. |
“Hunchlab: Heat Map and Kernel Density Calculation for Crime Analysis”, Azavea Journal, [Online]. Retrieved from the Internet: <www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab>, (Sep. 9, 2014), 2 pgs. |
“Identify—Defintion”, Downloaded Jan. 22, 2015, (Jan. 22, 2015), 1 pg. |
“KeyLines Datasheet”, Keylines.com, [Online]. Retrieved from the Internet: <URL: http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf>, (Mar. 2014), 2 pgs. |
“Map Builder: Rapid Mashup Development Tool for Google and Yahoo Maps!”, http://web.archive.org/web/20090626224734/http://www.mapbuilder.net/, (Jul. 20, 2012), 2 pgs. |
“Map of San Jose, CA”, Bing, [Online] retrieved from the internet: <http://maps.bing.com>, (Oct. 2, 2013), 1 pg. |
“Map of San Jose, CA”, Google, [Online] retrieved from the internet: <http://maps.google.com>, (Oct. 2, 2013), 1 pg. |
“Map of San Jose, CA”, Yahoo, [Online] retrieved from the internet: <http://maps.yahoo.com>, (Oct. 2, 2013), 1 pg. |
“Mixpanel: Actions speak louder than page views”, Mobile Analytics, [Online]. Retrieved from the Internet: <URL: https://mixpanel.com/>, (Accessed: Jul. 18, 2013), 13 pgs. |
“Mobile App Marketing & Analytics”, Localytics, [Online]. Retrieved from the Internet: <URL: http://www.localytics.com/>, (Accessed: Jul. 18, 2013), 12 pgs. |
“Mobile Web”, Wikipedia:, [Online] retrieved from the internet:https://en.wikipedia.org/w/index.php?title=Mobile Web&oldid=643800164, (Jan. 23, 2015), 6 pgs. |
“More than android analytics”, UserMetrix, [Online]. Retrieved from the Internet: <URL: http://usermetrix.com/android-analytics>, (Accessed: Jul. 18, 2013), 3 pgs. |
“More Than Mobile Analytics”, Kontagent, [Online]. Retrieved from the Internet: <URL: http://www. kontagent. com/>, (Accessed: Jul. 18, 2013), 9 pgs. |
“Multimap”, Wikipedia, [Online]. Retrieved from the Internet: <URL: https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748>, (Jan. 1, 2013), 2 pgs. |
“Overlay—Definition”, Downloaded Jan. 22, 2015, (Jan. 22, 2015), 1. |
“Palantir Labs—Timeline”, https://www.youtube.com/watch?v=JCgDW5bru9M, (Oct. 2010), 1 pg. |
“Piwik—Free Web Analytics Software”, Piwik, [Online]. Retrieved from the Internet: <URL: http://piwik.org/>, (Accessed: Jul. 19, 2013), 18 pgs. |
“Potential Money Laundering Warning Signs”, [Online] Retrieved from the internet: <https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%2OLAUNDERING%20TRAINING%20GUIDES.pdf>, (Accessed 2003), 6 pgs. |
“Realtime Constant Customer Touchpoint”, Capptain—Pilot your apps, [Online] retrieved from the internet: <http://www.capptain.com>, (accessed Jul. 18, 2013), 6 pgs. |
“Refresh CSS ellipsis when resizing container”, Stack Overflow, [Online]. Retrieved from the Internet: <URL: http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container>, Accessed: May 18, 2015, (Jul. 31, 2013), 1 pg. |
“Smart Thinking for Super Apps”, [Online]. Retrieved from the Internet: <http://www.appacts.com>, (Jul. 18, 2013), 4 pgs. |
“The Apache Cassandra Project” 3 pgs, 2015. |
“The FASTA Program Package”, fasta-36.3.4, (Mar. 25, 2011), 1-29. |
“Toad for Oracle 11.6, Guide to Using Toad”, Quest Software, (2012), 1-162. |
“Visualizing Threats: Improved Cyber Security Through Network Visualization”, Keylines.com, [Online] retrieved from the internet: <http:/ /keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf>, (May 12, 2014), 10 pgs. |
“Welcome to StatCounter—Visitor Analysis for Your Website”, StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, [Online]. Retrieved from the Internet: <URL: http://statcounter.com/>, (Accessed: Jul. 19, 2013), 17 pgs. |
“White Papers: Resources Center”, Quartet FS, [Online]. [Archived Oct. 16, 2014]. Retrieved from the Internet: <URL: https://web.archive.org/web/20141016044306/http://quartetfs.com/resource-center/white-papers>, (Archived: Oct. 16, 2014), 7 pgs. |
“White Papper: Managing Business Performance and Detecting Outliers in Financial Services”, Quartet FS, [Online]. Retrieved from the Internet: <URL: https://quartetfs.com/images/pdf/white-papers/Quartet_FS_White_Paper_-_ActivePivot_Sentinel.pdf>, (Accessed: Oct. 10, 2016), 15 pgs. |
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Office Word 2003”, (Dec. 24, 2003), 15-18, 34-41, 308-316. |
Alfred, Rayner, “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, Journal of Computer Science 6 (7), (2010), 775-784. |
Ananiev, et al., “The New Modality API”, Sun Developer Network (SDN), [Online] retrieved from the internet: <http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicaiArticles/J2SE/Desktop/javase6/modality/>, (Jan. 21, 2006), 12 pgs. |
Anjewierden, et al., “Automatic Indexing of PDF Documents with Ontologies”, Social Science Informatics, University of Amsterdam, The Netherlands, (Jun. 11, 2011), 8 pgs. |
Antoshenkov, Gennady, “Dictionary-based order-preserving string compression”, The VLDB Journal, #6, (1997), 1-14. |
Baker, David W., et al., “The Development of a Common Enumeration of Vulnerabilities and Exposures”, Presented at the Second International Workshop on Recent Advances in Intrusion Detection, (Sep. 1999), 1-35. |
Baker, Jason, et al., “Megastore: Providing Scalable, Highly Available Storage for Interactive Services”, 5th Biennial Conference on Innovative Data Systems Research (CIDR '11) Jan. 9-12, 2011, Asilomar, California, USA., (Jan. 2011), 223-234. |
Bernstein, Philip, et al., “Hyder—A Transactional Record Manager for Shared Flash”, 5th Biennial Conference on Innovative Data Systems Research (CIDR '11) Jan. 9-12, 2011, Asilomar, California, USA, (Jan. 2011), 9-20. |
Bhosale, Safal V, “Holy Grail of Outlier Detection Technique: A Macro Level Take on the State of the Art”, International Journal of Computer Science and Information Technologies, vol. 5(4), (2014), 5872-5874. |
Bluttman, et al., “Excel Formulas and Functions for Dummies”, Wiley Publishing, Inc.,, (2005), 280, 284-286. |
Boyce, Jim, “Microsoft Outlook 2010 Inside Out”, https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf, (Aug. 1, 2010), 1-1111. |
Canese, Kathi, et al., “Chapter 2: PubMed: The Bibliographic Database”, The NCBI Handbook, (Oct. 2002), 1-10. |
Celik, T, “CSS Basic User Interface Module Level 3 (CSS3 UI)”, Section 8; Resizing and Overflow, [Online] retrieved from the Internet: <http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow>, (Jan. 17, 2012), 1-58. |
Chang, et al., “A new multi-search engine for querying data through an Internet search service on CORBA”, Computer Networks, vol. 34, Issue 3, (Sep. 2000), 467-480. |
Chang, Fay, et al., “Bigtable: A Distributed Storage System for Structured Data”, Google, Inc., (Jun. 2, 2008), 1-14. |
Chaudhuri, Surajit, et al., “An Overview of Business Intelligence Technology”, Communications of the ACM, vol. 54, No. 8., (Aug. 2011), 88-98. |
Chen, et al., “Bringing Order to the Web: Automatically Categorizing Search Results”, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, The Haque, The Netherlands, (2000), 145-152. |
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases”, Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, (Jan. 1, 1990), 70-80. |
Cohn, David, et al., “Semi-supervised Clustering with User Feedback”, Cornell University, (2003), 9 pgs. |
Conner, Nancy, “Google Apps: The Missing Manual”, (May 1, 2008), 15 pgs. |
Delcher, Arthur, et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer”, BioInformatics, vol. 23, No. 6, (2007), 673-679. |
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model”, Directions Magazine,, [Online] retrieved from the internet: <http://www.directionsmag.com/articles/retail-trade-area-analysis-usinq-the-huff-model/123411>, (Jul. 2, 2005), 10 pgs. |
Dreyer, Werner, et al., “An Object-Oriented Data Model for a Time Series Management System”, IEEE—Proceedings of the 7th International Working Conference on Scientific and Statistical Datablse Management; Charlottesvlle, Virginia USA,, (1994), 12 pgs. |
Elmasri, Ramez, et al., “Fundamentals of Database Systems”, Fourth Edition—Chapter 14—Indexing Structures for Files, (2004), 455-491. |
Gesher, Ari, “Palantir screenshots in the wild: Swing Sightings”, [Online] Retrieved from the internet: <https://www.palantir.com/2007/09/palantir-screenshots/>, (Sep. 11, 2007), 1-12. |
Golmohammadi, et al., “Data Mining Applications for Fraud Detection in Securities Market”, Intelligence and Security Informatics Conference (EISIC) 2012 European, IEEE,, (Aug. 22, 2012), 107-114. |
Gorr, et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, (May 6, 2002), 37 pgs. |
Goswami, Gautam, “Quite Writely Said!”, Blog: One Brick a Time, [Online]. Retrieved from the Internet: <URL: http://gautamg.wordpress.com/2006/08/21/quite-writely-said/>, (Aug. 2005), 7 pgs. |
Griffith, Daniel A, et al., “A Generalized Huff Model”, Geographical Analysis, vol. 14, No. 2, (Apr. 1982), 135-144. |
Gu, et al., “BotMiner: Clustering Analysis of Network Traffice for Protocol-and-Structure-Independent Botnet Detection”, USENIX Security Symposium, (2008), 17 pgs. |
Gu, Lifang, et al., “Record Linkage: Current Practice and Future Directions”, (Jan. 15, 2004), 32 pgs. |
Hansen, D., et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164,, (Sep. 2010), 53-67; 143-164. |
Hardesty, Larry, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata”, MIT News on Campus and Around the World, MIT News Office, (Jan. 29, 2015), 1-3. |
Hibbert, et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework”, (Mar. 18, 2011), 16 pgs. |
Hodge, et al., “A Survey of Outlier Detection Methodologies”, Artificial Intelligence Review, vol. 22, No. 2, (Oct. 1, 2004). |
Hogue, Andrew, et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web”, 14th International Conference on World Wide Web, WWW 2005, (May 2005), 42 pgs. |
Hua, Yu, et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, (2006), 277-288. |
Huang, Da Wei, et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources”, Nature Protocols, 4.1, (Dec. 2008), 44-57. |
Huff, et al., “Calibrating the Huff Model Using ArcGIS Business Analyst”, ESRI, (Sep. 2008), 33 pgs. |
Huff, David L, “Parameter Estimation in the Huff Model”, ESRI, ArcUser, (2003), 34-36. |
Jelen, Bill, “Excel 2013 in Depth, Video Enhanced Edition”, (Jan. 25, 2013), 20 pgs. |
Kahan, J., et al., “Annotea: an open RDF Infrastructure for Shared Web Annotations”, Computer Networks vol. 39, No. 5, (2002), 589-608. |
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process”, The NCBI Handbook, (Oct. 2002), 1-21. |
Klemmer, Scott R, et al., “Where Do Web Sites Come From? Capturing and Interacting with Design History”, Association for Computing Machinery, CHI 2002, (Apr. 2002), 1-8. |
Kokossis, A, et al., “D7-Dynamic Ontology Managment system (Design)”, h-TechSight Consortium Oct. 2002, (Oct. 2002), 27 pgs. |
Levi, Micheal, “Money Laundering Risks and E-Gaming: A European Overview and Assessment”, [Online]. Retrieved from the Internet: <URL: http://www.egba.eu/pdf/Levi_Final_Money_Laundering_Risks_egaming%20280909.pdf>, (2009), 30 pgs. |
Li, H., et al., “Interactive Multimodal Visual Search on Mobile Device”, IEEE Transactions on Multimedia, vol. 15, No. 3, (Apr. 1, 2013), 594-607. |
Li, Shing-Han, et al., “Identifying the signs of fraudulent accounts using data mining techniques”, Computers in Human Behavior, vol. 28, (2012), 1002-1013. |
Liu, T., “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA”, Papers in Resource Analysis, 2012, vol. 14, (2012), 8 pgs. |
Madden, “Chapter 16: BLAST Sequence Analysis Tool”, The NCBI Handbook, (Oct. 2002), 1-15. |
Manno, et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture”, (2010), 10 pgs. |
Manske, “File Saving Dialogs”, [Online] retrieved from the internet: <http://www.mozilla.org/editor/ui specs/FileSaveDialogs.html>, (Jan. 20, 1999), 7 pgs. |
Mentzas, G., et al., “An Architecture for Intelligent Assistance in the Forecasting Process”, Proceedings of the 28th Annual Hawaii International Conference on System Sciences, (1995), 167-176. |
Miklau, Gerome, et al., “Securing history: Privacy and accountability in database systems”, 3rd Biennial Conference on Innovative Data Systems Research (CIDR), (2007), 387-396. |
Mizrachi, Ilene, “Chapter 1: GenBank: The Nucleotide Sequence Database”, The NCBI Handbook, (Oct. 2002), 1-14. |
Ngai, E.W.T., et al., “The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature”, Decision Support Systems 50 (2011), (2011), 559-569. |
Niepert, M., et al., “A Dynamic Ontology for a Dynamic Reference Work”, JCDL '07 Proceedings, ACM, (Jun. 2007), 10. |
Nierman, Andrew, et al., “Evaluating Structural Similarity in XML Documents”, U of Michigan, (2002), 1-6. |
Nolan, Richard, et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework”, Homeland Security, 2012 IEEE Conference, (2012), 13-17. |
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility”, Retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/, (May 15, 2013), 1-6. |
Palmas, et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates”, IEEE Pacific Visualization Symposium, (2014), 57-64. |
Peng, Daniel, et al., “Large-scale Incremental Processing Using Distributied Transactions and Notifications”, OSDI, (2010), 1-15. |
Perdisci, Roberto, et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces”, USENIX, (Mar. 18, 2010), 1-14. |
Rouse, Margaret, “OLAP Cube”, [Online] retrieved from the internet: <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, (Apr. 28, 2012), 15 pgs. |
Shah, Chintan, “Periodic Connections to Control Server Offer New Way to Detect Botnets”, McAfee Labs, [Online]. Retrieved from the Internet: <URL: blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets>, (Oct. 24, 2013), 6 pgs. |
Shi, Liang, et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors”, 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, (Oct. 10, 2013), 59-66. |
Sigrist, Christian, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation”, Nucleic Acids Research, vol. 38, (2010), D161-D166. |
Sirotkin, Karl, et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI”, The NCBI Handbook, (Oct. 2002), 1-11. |
Thompson, Mick, “Getting Started with GEO”, (Jul. 26, 2011), 3 pgs. |
Thomson, Alexander, et al., “The Case for Determinism in Database Systems”, Proceedings of the VLDB Endowment, 3(1), (Sep. 2010), 70-80. |
Umagandhi, R., et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs”, International Journal of Computer Applications, vol. 80, No. 10, (Oct. 1, 2013), 7-18. |
Valentini, Giorgio, et al., “Ensembles of Learning Machines”, Lecture Notes in Computer Science: Neural Nets, Springer Berlin Heidelberg, (Sep. 26, 2002), 3-20. |
Wang, Guohua, et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter”, IEEE, (2010), 5 pgs. |
Wiggerts, T. A, et al., “Using Clustering Algorithms in Legacy Systems Remodularization”, Proceedings of the Fourth Working Conference on Reverse Engineering, (1997), 33-43. |
Wollrath, Ann, et al., “A Distributed Object Model for the Java System”, Proceedings of the 2nd Conference on USENEX, Conference on Object-Orients Technologies and Systems, (Jun. 1996), 219-231. |
Wright, Brandon, et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing”, (Oct. 29, 2010), 10 pgs. |
Xiv, Golem, “A word about banks and the laundering of drug money”, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/, (Aug. 18, 2012), 1-21. |
Yang, et al., “Retroactive Answering of Search Queries”, WWW 2006 Edinburgh, Scotland, (May 23-26, 2006), 457-466. |
Yang, Yudong, “HTML Page Analysis Based on Visual Cues”, 2001 IEEE, (2001), 859-864. |
“BackTult—JD Edwards One World Version Control System”, eKin Systems, Inc., (Accessed Jul. 23, 2007), 1 pg. |
Butkovic, Asmir, et al., “Using Whois Based Geolocation and Google Maps API for support cybercrime investigations”, Recent Advances in Telecommunications and Circuits:Proceedings of the 11th International Conference on Applied Electromagnetics, Wireless and Optical Communications (Electroscience '13),, Proceedings of the 2nd International Conference on Circuits, Systems, Communications, Computers and Applications (CSCCA '13), ) :Dubrovnik, Croatia, Jun. 25-27, 2013, pp. 194-200, 2013, (2013), 194-200. |
Devanbu, Prem, et al., “Authentic Third-party Data Publication”, [Online] Retrieved from the internet<http://www.cs.ucdavis.edu/˜devanbu/authdbpub.pdf>, (Accessed Feb. 6, 2012), 19 pgs. |
Number | Date | Country | |
---|---|---|---|
62424844 | Nov 2016 | US |