Analysis of large bodies of textual data

Information

  • Patent Grant
  • 10318630
  • Patent Number
    10,318,630
  • Date Filed
    Wednesday, August 16, 2017
    7 years ago
  • Date Issued
    Tuesday, June 11, 2019
    5 years ago
Abstract
In various example embodiments, a textual identification system is configured to receive a set of search terms and identify a set of textual data based on the search terms. The textual identification system retrieves a data structure including textual identifications for the set of textual data and processes the data structure to generate a modified data structure. The textual identification system sums rows within the modified data structure and identifies one or more elements of interest. The textual identification system then causes presentation of the elements of interest in a first portion of a graphical user interface and the textual identifications for the set of textual data in a second portion of the graphical user interface.
Description
TECHNICAL FIELD

The subject matter disclosed herein generally relates to machines configured to the technical field of special-purpose machines that facilitate analysis of large bodies of textual data including computerized variants of such special-purpose machines and improvements to such variants, and to the technologies by which such special-purpose machines become improved compared to other special-purpose machines that facilitate analysis of large bodies of textual data. Embodiments of the present disclosure relate generally to searching large sets of data and, more particularly, but not by way of limitation, to a system and method of identifying documents and additional elements of interest based on search terms.


BACKGROUND

Machine learning processes are often useful in making predictions based on data sets. Users may want to explore a large quantity of text or documents as part of a data set. Typically, an individual performs a series of searches, with the help of a search engine or search tool, to target individual specified aspects, things, entities, or people referenced in the documents. The series of searches may provide a separate lists of results from which the user manually identifies relevant documents. However, manual review of results within the list is often time consuming and prohibitive where the list of results is large.





BRIEF DESCRIPTION OF THE DRAWINGS

Various ones of the appended drawings merely illustrate example embodiments of the present disclosure and cannot be considered as limiting its scope.



FIG. 1 is a block diagram illustrating a networked system, according to some example embodiments.



FIG. 2 is a block diagram illustrating various modules of a textual data identification system, according to various example embodiments.



FIG. 3 is a flowchart illustrating individual operations of a method for processing and identifying elements of interest from content within a set of retrieved text sets, according to various example embodiments.



FIG. 4 is a graphical user interface displaying textual identifications and elements of interest in differing portions based on received search terms, according to various example embodiments.



FIG. 5 is a flowchart illustrating operations of a method of processing and identifying elements of interest from content within a set of retrieved text sets, according to various example embodiments.



FIG. 6 is a flowchart illustrating operations of a method of processing and identifying elements of interest from content within a set of retrieved text sets, according to various example embodiments.



FIG. 7 is a flowchart illustrating operations of a method for processing and identifying elements of interest from content within a set of retrieved text sets, according to various example embodiments.



FIG. 8 is a block diagram illustrating an example of a software architecture that may be installed on a machine, according to some example embodiments.



FIG. 9 illustrates a diagrammatic representation of a machine in the form of a computer system within which a set of instructions may be executed for causing the machine to perform any one or more of the methodologies discussed herein, according to an example embodiment.





The headings provided herein are merely for convenience and do not necessarily affect the scope or meaning of the terms used.


DETAILED DESCRIPTION

The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.


Example embodiments described herein disclose a textual identification system configured to identify texts within a set of textual data and elements of interest from within the identified texts. In some instances, the textual identification system provides unique and semantically meaningful elements of interest from within the textual data to expand or focus searches performed on the set of textual data. The identification of elements of interest may eliminate or consolidate deviations within usage, context, and spelling of the elements of interest to improve types, accuracy, and semantically related content of the elements of interest with respect to an initial set of search terms.


For example, in some embodiments, the textual identification system may initially present a graphical user interface at a client device. Upon receiving search terms (e.g., selections from predetermined terms or freely entered term), the textual identification system identifies texts (e.g., text documents, video documents, audio documents, publications, or multimedia documents) from textual data accessible by the textual identification system. Based on the search terms and the identified texts, the textual identification system identifies and presents elements of interest (e.g., additional terms) associated with, or included in, the identified texts. The textual identification system parses the texts within the set of textual data to identify terms contained within the texts, the context in which the terms are used, deviations among usage and form of the terms, and meaningful semantic relationships among two or more terms within the texts. Based on the context, deviations, and meaningful semantic relationships of terms within the identified texts, the textual identification system generates a list of elements of interest and presents the elements of interest along with identifications of the identified texts.


The textual identification system provides technical improvements to previous search suggestion systems by identifying multiple disparate contextual uses and semantically meaningful combinations of terms within identified texts and with respect to the search terms used to identify the texts. Use of the indices, matrices, and data structures described herein may also increase the speed and precision with which additional terms are identified. Further, the textual identification system may better identify additional terms by merging or eliminating presentation of additional terms to remove extraneous terms, merge deviant uses of terms, and merging or separating terms based on contextual or semantically meaningful usage, thereby improving previous suggested search systems.


Examples merely typify possible variations. Unless explicitly stated otherwise, components and functions are optional and may be combined or subdivided, and operations may vary in sequence or be combined or subdivided. In the following description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of example embodiments. It will be evident to one skilled in the art, however, that the present subject matter may be practiced without these specific details.


With reference to FIG. 1, an example embodiment of a high-level client-server-based network architecture 100 is shown. A networked system 102, in the example forms of a network-based recommendation system, provides server-side functionality via a network 104 (e.g., the Internet or wide area network (WAN)) to one or more client devices 110. FIG. 1 illustrates, for example, a web client 112 (e.g., a browser, such as the Internet Explorer® browser developed by Microsoft® Corporation of Redmond, Wash. State), a client application 114, and a programmatic client 116 executing on client device 110.


The client device 110 may comprise, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smart phones, tablets, ultra books, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may utilize to access the networked system 102. In some embodiments, the client device 110 may comprise a display module (not shown) to display information (e.g., in the form of user interfaces). In further embodiments, the client device 110 may comprise one or more of a touch screens, accelerometers, gyroscopes, cameras, microphones, global positioning system (GPS) devices, and so forth. The client device 110 may be a device of a user that is used to perform a transaction involving digital items within the networked system 102. One or more users 106 may be a person, a machine, or other means of interacting with client device 110. In embodiments, the user 106 is not part of the network architecture 100, but may interact with the network architecture 100 via client device 110 or another means. For example, one or more portions of network 104 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, a wireless network, a WiFi network, a WiMax network, another type of network, or a combination of two or more such networks.


Each of the client device 110 may include one or more applications (also referred to as “apps”) such as, but not limited to, a web browser, messaging application, electronic mail (email) application, and the like.


One or more users 106 may be a person, a machine, or other means of interacting with the client device 110. In example embodiments, the user 106 is not part of the network architecture 100, but may interact with the network architecture 100 via the client device 110 or other means. For instance, the user provides input (e.g., touch screen input or alphanumeric input) to the client device 110 and the input is communicated to the networked system 102 via the network 104. In this instance, the networked system 102, in response to receiving the input from the user, communicates information to the client device 110 via the network 104 to be presented to the user. In this way, the user can interact with the networked system 102 using the client device 110.


An application program interface (API) server 120 and a web server 122 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 140. The application servers 140 may host one or more publication systems comprising a textual identification system 150, which may comprise one or more modules or applications and which may be embodied as hardware, software, firmware, or any combination thereof. The application servers 140 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more information storage repositories or database(s) 126. In an example embodiment, the databases 126 are storage devices that store information to be posted (e.g., publications or listings) to the networked system 102. The databases 126 may also store digital item information in accordance with example embodiments.


Additionally, a third-party application 132, executing on third-party server(s) 130, is shown as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 120. For example, the third-party application 132, utilizing information retrieved from the networked system 102, supports one or more features or functions on a website hosted by the third party. The third-party website, for example, provides one or more functions that are supported by the relevant systems or servers of the networked system 102.


The textual identification system 150 provides functionality operable to identify and retrieve documents or data and elements of interest in response to receiving search terms. For example, the textual identification system 150 may access sets of data (e.g., document corpora) stored in a structured format from the databases 126, the third-party servers 130, the client device 110, and other sources. In some example embodiments, the textual identification system 150 analyzes the set of data in order to determine portions of the data associated with the search terms and additional terms (e.g., elements of interest).


Further, while the network architecture 100 shown in FIG. 1 employs a client-server architecture, the present inventive subject matter is of course not limited to such an architecture, and could equally well find application in a distributed, or peer-to-peer, architecture system, for example. The textual identification system 150 could also be implemented as standalone software programs, which do not necessarily have networking capabilities.


Additionally, a third-party application 132, executing on a third-party server(s) 130, is shown as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 120. For example, the third-party application 128, utilizing information retrieved from the networked system 102, may support one or more features or functions on a website hosted by the third party. The third-party website may, for example, provide one or more promotional, marketplace, or payment functions that are supported by the relevant applications of the networked system 102.



FIG. 2 is a block diagram illustrating components of the textual identification system 150. Components of the textual identification system 150 configure the textual identification system 150 to access sets of textual data to identify texts or text sets within the textual data, identify data elements within the texts, and identify elements of interest based on data structures generated from the set of textual data. In some embodiments, the components configure the textual identification system 150 to generate initial data structures and modify the data structures to process the data within the data structure; increase accuracy and efficacy of elements of interest identified from the texts; and increase the speed with which a machine forming all or part of the textual identification system 150 identifies and presents the elements of interest at the machine. In order to perform these operations, the textual identification system 150 comprises an access component 210, a document component 220, a database component 230, an element component 240, a presentation component 250, a context component 260, and the normalization component 270. Any one or more of these components may be implemented using one or more processors and hence may include one or more processors (e.g., by configuring such one or more processors to perform functions described for that component).


The access component 210 accesses or otherwise receives selections of at least one document corpus from a set of document corpora. The access component 210 may access the set of textual corpora by accessing a set of metadata identifying the set of textual corpora. In some instances, the access component 210 accesses the set of textual corpora by accessing one or more database directly or via a network connection. The access component 210 may also access or otherwise receive one or more search terms within a graphical user interface. In some embodiments, the access component 210 retrieves a data structure including textual identifications for a set of textual data and an indication of one or more data elements within one or more texts included in the set of textual data.


The document component 220 identifies a set of textual data based on one or more search terms. The document component 220 may use search algorithms to identify the set of textual data based on an index of keywords associated with the content and metadata of the document. In some embodiments, the document component 220 dynamically partitions the set of textual data to identify a textual, textual component, a text or text set within a textual corpus, or a textual corpus containing the set of documents associated with the one or more search terms. In some instances, the document component 220 partitions a set of textual corpora or merges two or more textual corpora based on search terms received from the access component 210.


The database component 230 generates data structures and modified data structures. In some embodiments, the database component 230 generates data structures including textual identifications for texts within the set of textual data. The data structures may also include indications of one or more data elements within the texts. The data elements may be words, titles, names, addresses, numbers, or any other suitable information contained within a text. The database component 230 may generate modified data structures from the data structures generated to represent texts within the textual data. In some embodiments, the database component 230 generates modified data structures by assigning index numbers to each element, term, combinations of elements, or combination of terms within a data structure. A full index (e.g., the data structure) may be reduced to include texts within the set of textual data identified based on the search terms. The database component 230 may sum rows within the modified data structure. In some instances, the database component 230 also processes counts for the terms using one or more processes to transform the modified data structure and remove or discount popular or common entries adding little value to analysis based on high frequency of occurrence.


The element component 240 identifies elements of interest within modified data structures generated by the database component 230. In some embodiments, the elements of interest are identified, at least in part, based on the summed rows of the modified data structures. The element component 240 may map textual identifications of sets of textual data to rows in transformed or modified data structures generated by the database component 230. In some instances, the element component 240 selects elements of interest by summing values from transformed matrices based on comparison of values associated with the elements to an interest threshold. The element component 240 may also identify element types for each element of interest.


The presentation component 250 causes presentations of graphical user interfaces, visual indicators, portions of texts, and other elements described herein. In some embodiments, the presentation component 250 causes presentation of a graphical user interface including selectable interface elements configured to receive search terms or provide search terms for selection and subsequent query of the set of textual data. The presentation component 250 may cause presentation of elements of interest within the graphical user interface as well as portions of texts accessed or retrieved from the set of textual data based on the search terms provided to the access component 210. In some embodiments, the presentation component 250 causes presentation of unique and tailored graphical user interfaces based on a combination of the texts, the search terms, and the elements of interest. The tailored graphical user interfaces may be presented differently to different users based on the information retrieved by the textual identification system 150, the user performing the search, element relationships or collocations, combinations thereof, and other suitable information. In some instances, portions of the graphical user interface are dynamically generated, such that a portion of the graphical user interface may only appear when information relevant to the portion is retrieved, identified, or generated by the textual identification system 150. In these instances, the graphical user interface may automatically resize, reorient, repartition, or otherwise adjust one or more initially presented portions of the graphical user interface to accommodate addition of a new portion based on the inclusion of additional information from the textual identification system 150.


The context component 260 determines context occurrences for elements of interest within texts of the set of textual data. In some instances, the context component 260 tokenizes the context to provide an index number for terms included in a textual proximate to another term for which context is being determined. The context component 260 may associate index numbers for terms surrounding a specified term and may link instances of a term surrounding a specified term that have a lexical similarity.


The normalization component 270 normalizes elements of interest by removing redundant elements of interest based on the context occurrence of two or more elements of interest. The normalization component 270 may generate a normalized set of elements of interest by identifying deviations among the instances. In some embodiments, normalization of the elements of interest occurs without removing or merging instances of the terms within the data structures described herein. The normalization component 270 may pass the normalized set of elements of interest to the presentation component 250, such that the presentation component 250 presents the elements of interest without duplication of elements of interest having deviating instances.


Any one or more of the components described may be implemented using hardware alone (e.g., one or more of the processors of a machine) or a combination of hardware and software. For example, any component described in the textual identification system 150 may physically include an arrangement of one or more processors (e.g., a subset of or among the one or more processors of the machine) configured to perform the operations described herein for that component. As another example, any component of the textual identification system 150 may include software, hardware, or both, that configure an arrangement of one or more processors (e.g., among the one or more processors of the machine) to perform the operations described herein for that component. Accordingly, different components of the textual identification system 150 may include and configure different arrangements of such processors or a single arrangement of such processors as different points in time. Moreover, any two or more components of the textual identification system 150 may be logically or physically combined into a single component, and the functions described herein for a single component may be subdivided among multiple components. Furthermore, according to various example embodiments, components described herein as being implemented within a single machine, database, or device may be distributed across multiple machines, databases, or devices.



FIG. 3 is a flowchart illustrating operations of the textual identification system 150 in performing a method 300 of processing and identifying elements of interest from content within a set of retrieved documents, according to some example embodiments. Operations of the method 300 may be performed by the modules described above with respect to FIG. 2.


In operation 310, the access component 210 receives a selection of a textual corpus from a set of textual corpora. Each textual corpus of the set of textual corpora contains one or more texts. The texts or text sets may include documents of varying types. For example the document types may include text documents, video documents, audio documents, multimedia documents, and other suitable documents. In the present disclosure, “textual” is used interchangeably with a broad number of document types, publications (e.g., documents published or otherwise accessible directly or by a network connection). Further, although described as texts, text sets, sets of textual data, or textual corpora, it should be understood that one or more terms, such as publication, may be used interchangeably in the present disclosure or embodiments disclosed herein. The set of texts (e.g., set of documents) may be identified from the selected textual corpus (e.g., document corpus).


In some embodiments, the presentation component 250 is activated by a selection of a graphical interface element to initiate presentation of a graphical user interface, as shown in FIG. 4. The graphical user interface includes one or more graphical interface elements representing available selections within the graphical user interface. In some embodiments, the selections made available by the graphical interface elements include search term input, document corpus selection, search result selection, document selection, element of interest selection, and search type selection or entry. The access component 210 may receive the selection of the document corpus from an input device receiving a selection from a set of document corpora represented as discrete selectable graphical interface elements. The set of document corpora may be presented on a display device of a client device accessing one or more document servers.


In operation 320, the access component 210 receives or otherwise accesses one or more search terms displayed within the graphical user interface. In some embodiments, the access component 210 receives the search terms from an input device of a client device on which the graphical user interface is presented. The access component 210 receives the one or more search terms as one or more differing types of user input through the input device. For example, the one or more search terms may be received within a text input field (e.g., a text box presented in the graphical user interface), as a selection from a set of radio buttons, as a selection from a drop down menu, as a selection from a scroll menu, or any other suitable input type.


In operation 330, the document component 220 identifies a set of textual data (e.g., a set of documents or set of publication data) based on the one or more search terms. In some embodiments, the set of documents are identified based on a presence of the one or more search terms within the document or within metadata associated with the document. In some embodiments, once the documents are incorporated into a document corpus, a content of the document and metadata associated with the document may be parsed and indexed to identify keywords. Keywords may include words, named individuals, named entities (e.g., a city name, a project name, an organization name), titles, authors, fields (e.g., From, To, Carbon Copy, and Blind Carbon Copy fields), dates, and other suitable terms. The keywords and the metadata may be extracted from the documents and accompanying data using information extraction and machine learning algorithms. In some embodiments, the document component 220 uses one or more search engine algorithms to identify the set of documents based on the index of the keywords associated with the content and metadata of the document.


In operation 340, the access component 210 retrieves a data structure including textual identifications (e.g., document identifications) for the set of textual data and an indication of the one or more data elements within the documents (e.g., texts within the textual data). In some embodiments, the data structure may be the index of keywords in the content and metadata of the documents identified based on the search terms. The index may include semantically meaningful collocations as well as the keywords from the content and the metadata. In some instances, the index is generated as a table having counts of the terms and semantically meaningful collocations within the document content and metadata. In some embodiments, the counts are a number of instances that a given term or semantically meaningful collocation occurs within the document content or the metadata for the document.


The indexes for the documents within the document corpus include collocations of semantically meaningful n-grams. Semantically meaningful collocations may include frequently occurring compositions of words having semantic meaning. For example, “strong” and “coffee” may occur together more often than a predetermined instance threshold and, when occurring together within a predefined distance, contain a semantic meaning, “strong coffee,” which may not occur in collocations of synonyms of the two terms. In some instances, the semantically meaningful n-grams or collocations may be determined heuristically. The semantically meaningful n-grams or collocations may also be identified using semantic analysis, stochastic semantic analysis, natural language processing, natural language understanding, or any other suitable algorithmic identification of the meaningful semantic relation between collocated terms.


In operation 350, the database component 230 processes the data structure to generate a modified data structure. In some embodiments, to generate the modified data structure, the database component 230 assigns an index number to each term or semantically meaningful n-gram. The index number may be obtained by sorting the textual representations of the terms and semantically meaningful n-grams and associating each with a position in a sort order. For example, “Aardvark” may receive an index number of zero and “Zena” may receive an index number of one thousand.


The modified data structure may be generated by reducing the full index to documents included in the set of documents identified based on the one or more search terms. In some embodiments, the terms, semantically meaningful n-grams, entity names, and the like are provided values within the modified data structure to construct a count matrix. The count matrix may include documents (e.g., documents identified within a specified document corpus or set of document corpora) as rows and elements of interest (e.g., terms and semantically meaningful n-grams) as columns. The documents in the rows may be represented by a document identification (e.g., a numerical value, an alphanumeric combination, or a set of characters). The terms and semantically meaningful collocations may be represented within a cell of the columns by the term or terms and an indication of a term type. The term type may indicate a category for the term. The intersections between the rows and columns may include a value for a number of occurrences of the specified element of interest within the specified document.


In operation 360, the database component 230 sums rows within the modified data structure. The rows include values for data elements included in each of the identified set of documents. In some embodiments, the counts (e.g., values at the intersections of specified rows and columns) are processed using a Term Frequency-Inverse Document Frequency (TF-IDF) transformation. The TF-IDF transformation may discount popular items as less interesting. In some instances, the TF-IDF transformation is a two-step process. First, the database component 230 sums the number of documents in which each item occurs. Second, the database component 230 divides the entries in each of the table rows of the modified data structure by the sum. The database component 230 thereby decreases weights of less informative but more popular or frequent terms. The TF-IDF transformation may generate a transformed data structure. In some embodiments, the transformed data structure is used as the basis for identifying potentially interesting elements or terms.


In operation 370, the element component 240 identifies one or more elements of interest based on the summed rows of the modified data structure. In some embodiments, to extract the one or more elements of interest, the element component 240 maps document identifications of the set of documents identified in operation 330 to rows of the transformed data structure. Using the mapping, the element component 240 creates a smaller matrix (e.g., an element matrix) composed of the document rows returned as query results. In the element matrix, the element component 240 selects terms of interest by summing the values from the transformed matrix and identifying the terms having a summed value above an interest threshold. In some embodiments, the interest threshold is predetermined. In some instances, the interest threshold is dynamic. In these embodiments, the dynamic interest threshold may be set as a function of the summed values for the terms. For example, the dynamic interest threshold may be set, at the time of summing the values for the terms, to select terms and to return a set number of terms (e.g., elements of interest) for each document of the set of documents identified in operation 330.


In operation 380, the presentation component 250 causes presentation of the elements of interest in a first portion of the graphical user interface and the textual identifications for the set of documents in a second portion of the graphical user interface. In some embodiments, the presentation component 250 causes presentation of the elements of interest and the document identifications in the graphical user interface depicted in FIG. 4. A first portion 410, depicted in FIG. 4, displays the elements of interest (e.g., the terms from the transformed matrix). A second portion 420 displays the textual identifications. In some instances, the document identifications include one or more of the values from the transformed matrix, a title of the document, an identifying subset of content of the document, a selectable representation (e.g., a graphical or textual representation) of the document, or any other suitable identifying information for the documents of the set of documents. In some instances, as shown in FIG. 4, the elements of interest in the first portion 410 and the document identifications in the second portion 420 are presented distinctly from one another and without an indication of a relationship between the items included in the first portion 410 and those included in the second portion 420. In some embodiments, the presentation component 250 generates and presents the elements of interest and the document identifications to indicate a relationship between specified elements of interest and specified document identifications. For example, the document identifications may be spaced a distance apart enabling the elements of interest found within each identified document to be presented adjacent to the document identification of the document in which the elements of interest are found.



FIG. 5 is a flowchart illustrating operations of the textual identification system 150 in performing a method 500 of processing and identifying elements of interest from content within a set of retrieved documents, according to some example embodiments. Operations of the method 500 may be performed by the modules described above with respect to FIG. 2. In some example embodiments, one or more operations of the method 500 are performed as part or sub-operations of one or more operations of the method 300. In some instances, the method 500 may include one or more operations of the method 300.


In operation 510, the context component 260 determines a context occurrence for each element of interest within the set of documents. The context occurrence represents a number of related times a term occurs in a document. In some instances, a context around each term may be tokenized. The context component 260, in tokenizing the context, may identify an index number for terms included in the document proximate to the term for which context is being determined. The context component 260 may then associate, in a matrix, one or more index numbers for the terms surrounding the specified term for which the context is being identified. In some embodiments, the context component 260 associates the index numbers of surrounding terms for each instance of a term for which the context is being identified. For example, where the context component 260 is determining context for three instances of the term “cheese,” the context component 260 may identify three sets of terms, with a set of terms surrounding each of the instances of the term “cheese.” The context component 260 may identify the index number for each of the terms within the three sets of terms and associate the index numbers with the instance of the term that they surround.


After the context component 260 identifies and associates the index numbers with instances of the term, the context component 260 determines the context of an instance of the term by comparing the associated index numbers. The context component 260 may link two or more instances of the term for which the surrounding terms are determined to have a lexical similarity. The lexical similarity of surrounding terms may be identified based on an overlap of terms identified within the surrounding terms. Overlap of terms may be identified where the same term occurs in two or more of the surrounding terms. Lexical similarity may also be identified where terms in sets of surrounding terms are synonyms, have similar definitions, or are otherwise semantically related. In some instances, the lexical similarity may be determined based on Jaccard coefficients determined for the sets of surrounding terms defined by a size of set intersection divided by a size of a set union.


In operation 520, the normalization component 270 normalizes the elements of interest by removing redundant elements of interest based on the context occurrence of two or more elements of interest. The normalization component 270 generates a normalized set of elements of interest. The normalization component 270 may normalize instances of an element of interest within a document by identifying one or more deviations among the instances. Deviations may include misspellings, different case usage, partial omissions (e.g., omitting a term forming a linked set of terms such as a full name), or other suitable deviations. In some embodiments, normalizing the elements of interest removes redundant instances of the same element of interest within a list presented at a client device. Removal of the redundant instances may free attention space within the list and remove confusion between similar instances of a term that refer to the same entity. In some instances, the normalization component 270 normalizes the elements of interest for presentation without removing or merging instances of the terms within one or more of the matrices or indices described above. By maintaining separate instances of the element of interest, the normalization component 270 prevents the database component 230 from erroneously reducing a term's likelihood of being deemed important based on overrepresentation due to merged instances.


In operation 530, the presentation component 250 causes presentation of the normalized set of elements of interest in the first portion of the graphical user interface. In some embodiments, the presentation component 250 presents the normalized set of elements of interest similarly to or the same as described above with respect to operation 380. The normalized set of elements may be presented in the first portion of the graphical user interface. In some instances, the elements of the normalized set of elements are presented in an order according to their association with the documents identified based on the search terms. In some embodiments, the normalized set of elements may be presented as an ordered list independent of a relationship to the identified documents presented in the second portion 420.


In operation 540, the element component 240 identifies an element type for each of the elements of interest. In some embodiments, the element component 240 identifies the element type for the elements of interest by determining the elements of interest identified from the set of documents retrieved based on the search terms. The element component 240 may then parse one or more of the matrices or indices described above to identify the element type for each element of interest.


In operation 550, the presentation component 250 causes presentation of a visual indicator differentiating the elements of interest based on the element types. The visual indicator may be a graphical indicator or a textual indicator. In some instances, the visual indicator is coded to indicate the element type without including all of the characters or words for the element type. For example, the presentation component 250 may identify an element type as a city name and abbreviate or otherwise code the element type as “CN.” Although the coding of the visual indicator has been described given a specific example of an abbreviation, it should be understood that the presentation component 250 may code the element type in any suitable manner. Further, in some embodiments, the presentation component may generate and cause presentation of key mapping codes and full names for element types.


In operation 560, the presentation component 250 causes presentation of at least a portion of a document of the set of documents in a third portion of the graphical user interface. In some embodiments, as shown in FIG. 4, the third portion 430 may be positioned proximate to the second portion 420. The portion of the document presented in the third portion 430 may include text from a text, text set, publication, or document selected or otherwise specified in the second portion. For example, where a user selects a graphical interface element representing a document identification in the second portion 420 of the graphical user interface, the presentation component 250 generates and causes presentation of the portion of the selected document in the third portion 430. In some embodiments, where the document or publication retrieved is a video document or an audio document, the third portion 430 of the graphical user interface may include selectable interface elements configured to display or play the video or audio document within the third portion 430 of the graphical user interface. In some instances, the third portion 430 of the graphical user interface includes an instance of an application configured to display or play the audio or video document. In addition to an interface element or an instance of an application, the third portion 430 may also include textual information representing, or included within, the video, audio, or multimedia document.



FIG. 6 is a flowchart illustrating operations of the textual identification system 150 in performing a method 600 of processing and identifying elements of interest from content within a set of retrieved documents, according to some example embodiments. Operations of the method 600 may be performed by the modules described above with respect to FIG. 2. The method 600 may include or be performed as part or sub-operations of one or more operations of the methods 300 or 500.


In operation 610, the context component 260 generates a set of tokens for each element of interest. The set of tokens may represent the context occurrence of a specified element. In some embodiments, operation 610 is performed in response to determining the context of occurrence for each element of interest, as described above with respect to operation 510 of the method 500. The context component 260 may tokenize each element of interest using the index numbers described above or may generate a separate set of context tokens. The tokens may be a numerical value or any other suitable value to identify the term and associate the term with the term for which the context is being identified.


In operation 620, the context component 260 identifies an overlap of two or more elements of interest based on the set of tokens for the two or more elements of interest. The overlap may be determined based on semantic relatedness. For example, the overlap may be determined based on occurrence of a term within two or more sets of tokens for the two or more elements. As described above, with respect to operation 510, the semantic relatedness or lexical similarity may be determined based on Jaccard coefficients determined for the set of tokens.


In operation 630, the context components 260 links the two or more elements of interest. The two or more elements of interest may be linked in one or more of the matrices or indices described above. In some instances, the two or more elements are linked by generating a context matrix for each document within the set of documents identified in relation to the one or more search terms described above with respect to the method 300. The context matrix may include the terms within a document in both rows and columns. A bit or value at an intersection of two terms may indicate a contextual link between the two terms. Although the linking of elements of interest has been described with respect to a matrix, it should be understood that the elements of interest may be linked using metadata, data tables, or any other suitable method.



FIG. 7 is a flowchart illustrating operations of the textual identification system 150 in performing a method 700 of processing and identifying elements of interest from content within a set of retrieved documents, according to some example embodiments. Operations of the method 700 may be performed by the modules described above with respect to FIG. 2. The method 700 may include or be performed as part or sub-operations of one or more operations of the methods 300, 500, or 600.


In operation 710, the access component 210 accesses a set of document corpora. In some embodiments, the set of document corpora includes the selected document corpus of operation 310. In some instances, the set of document corpora is accessed in response to receiving the one or more search terms in operation 320. For example, as shown, operation 710 may occur after operations 310-380. As shown in FIG. 7, in these instances, the set of document corpora is accessed without prior selection of a specified document corpus. The access component 210 may access the set of document corpora by directly accessing one or more databases directly or via a network connection. In some embodiments, the access component 210 accesses the set of document corpora by accessing a set of metadata identifying the set of document corpora.


In operation 720, the document component 220 dynamically partitions the set of document corpora to identify a document corpus containing the set of documents associated with the one or more search terms. In some instances, the document component 220 identifies the document corpus by identifying the search terms among keywords associated with each document corpus of the set of document corpora. In some embodiments, each document corpus may be associated with a distinct database or data source. For example, each distinct database or data source may be associated with or part of a distinct client device. In identifying the document corpus, the document component 220 may select a client device from which the document component may select documents in response to receiving the one or more search terms.


In some embodiments, the document component 220 dynamically partitions the set of document corpora regardless of distribution of the document corpora among multiple client devices. In these instances, the document component 220 identifies the one or more search terms. The document component 220 may compare the one or more search terms with an index or matrix identifying terms associated with individual documents within each document corpus of the set of document corpora. The index or matrix may also identify the document corpus with which each of the documents are associated. The document component 220 may identify one or more document corpora from the index or matrix. The document component 220 may then perform a comparative analysis of the one or more document corpora to identify a single document corpus to search using the one or more search terms. In some instances, the comparative analysis identifies the document corpus having a highest number of occurrences of the search terms, and selects the specified document corpus.


In some instances, the document component 220 combines two or more document corpora to generate a dynamic document corpus. In these embodiments, where several document corpora include a suitable number of instances of occurrences of the search terms, the document component 220 selects the two or more document corpora and searches each of the document corpora for documents including the one or more search terms.


Modules, Components, and Logic


Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied on a machine-readable medium) or hardware modules. A “hardware module” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.


In some embodiments, a hardware module may be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware module may include dedicated circuitry or logic that is permanently configured to perform certain operations. For example, a hardware module may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware module may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware module may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware modules become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the phrase “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. As used herein, “hardware-implemented module” refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where a hardware module comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware modules) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.


Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented module” refers to a hardware module implemented using one or more processors.


Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)).


The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented modules may be distributed across a number of geographic locations.


Machine and Software Architecture


The components, methods, applications and so forth described in conjunction with FIGS. 1-7 are implemented in some embodiments in the context of a machine and an associated software architecture. The sections below describe representative software architecture(s) and machine (e.g., hardware) architecture that are suitable for use with the disclosed embodiments.


Software architectures are used in conjunction with hardware architectures to create devices and machines tailored to particular purposes. For example, a particular hardware architecture coupled with a particular software architecture will create a mobile device, such as a mobile phone, tablet device, or so forth. A slightly different hardware and software architecture may yield a smart device for use in the “internet of things,” while yet another combination produces a server computer for use within a cloud computing architecture. Not all combinations of such software and hardware architectures are presented here as those of skill in the art can readily understand how to implement the subject matter in different contexts from the disclosure contained herein.


Software Architecture



FIG. 8 is a block diagram 800 illustrating a representative software architecture 802, which may be used in conjunction with various hardware architectures herein described. FIG. 8 is merely a non-limiting example of a software architecture and it will be appreciated that many other architectures may be implemented to facilitate the functionality described herein. The software architecture 802 may be executing on hardware such as a machine 900 of FIG. 9 that includes, among other things, processors 910, memory/storage 930, and I/O components 950. A representative hardware layer 804 is illustrated and can represent, for example, the machine 900 of FIG. 9. The representative hardware layer 804 comprises one or more processing units 806 having associated executable instructions 808. The executable instructions 808 represent the executable instructions of the software architecture 802, including implementation of the methods, components and so forth of FIG. 2. Hardware layer 804 also includes memory and/or storage modules 810, which also have executable instructions 808. Hardware layer 804 may also comprise other hardware as indicated by 812 which represents any other hardware of the hardware layer 804, such as the other hardware illustrated as part of machine 1000.


In the example architecture of FIG. 8, the software 802 may be conceptualized as a stack of layers where each layer provides particular functionality. For example, the software 802 may include layers such as an operating system 814, libraries 816, frameworks/middleware 818, applications 820 and presentation layer 844. Operationally, the applications 820 and/or other components within the layers may invoke application programming interface (API) calls 824 through the software stack and receive a response, returned values, and so forth illustrated as messages 826 in response to the API calls 824. The layers illustrated are representative in nature and not all software architectures have all layers. For example, some mobile or special purpose operating systems may not provide a frameworks/middleware layer 818, while others may provide such a layer. Other software architectures may include additional or different layers.


The operating system 814 may manage hardware resources and provide common services. The operating system 814 may include, for example, a kernel 828, services 830, and drivers 832. The kernel 828 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 828 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 830 may provide other common services for the other software layers. The drivers 832 may be responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 832 may include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), WiFi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.


The libraries 816 may provide a common infrastructure that may be utilized by the applications 820 and/or other components and/or layers. The libraries 816 typically provide functionality that allows other software modules to perform tasks in an easier fashion than to interface directly with the underlying operating system 814 functionality (e.g., kernel 828, services 830, and/or drivers 832). The libraries 816 may include system libraries 834 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematic functions, and the like. In addition, the libraries 816 may include API libraries 836 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, JPG, PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D information in a graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 816 may also include a wide variety of other libraries 838 to provide many other APIs to the applications 820 and other software components/modules.


The frameworks 818 (also sometimes referred to as middleware) may provide a higher-level common infrastructure that may be utilized by the applications 820 and/or other software components/modules. For example, the frameworks 818 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks 818 may provide a broad spectrum of other APIs that may be utilized by the applications 820 and/or other software components/modules, some of which may be specific to a particular operating system or platform.


The applications 820 includes built-in applications 840 and/or third-party applications 842. Examples of representative built-in applications 840 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third-party applications 842 may include any of the built-in applications as well as a broad assortment of other applications. In a specific example, the third-party application 842 (e.g., an application developed using the Android™ or iOS™ software development kit (SDK) by an entity other than the vendor of the particular platform) may be mobile software running on a mobile operating system such as iOS™, Android™, Windows® Phone, or other mobile operating systems. In this example, the third-party application 842 may invoke the API calls 824 provided by the mobile operating system such as operating system 814 to facilitate functionality described herein.


The applications 820 may utilize built in operating system functions (e.g., kernel 828, services 830 and/or drivers 832), libraries (e.g., system libraries 834, API libraries 836, and other libraries 838), and frameworks/middleware 818 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as the presentation layer 844. In these systems, the application/module “logic” can be separated from the aspects of the application/module that interact with a user.


Some software architectures utilize virtual machines. In the example of FIG. 8, this is illustrated by a virtual machine 848. A virtual machine creates a software environment where applications/modules can execute as if they were executing on a hardware machine (such as the machine 900 of FIG. 9, for example). A virtual machine is hosted by a host operating system (e.g., operating system 814 in FIG. 9) and typically, although not always, has a virtual machine monitor 846, which manages the operation of the virtual machine as well as the interface with the host operating system (e.g., operating system 814). A software architecture executes within the virtual machine such as an operating system 850, libraries 816, frameworks/middleware 854, applications 856 and/or presentation layer 858. These layers of software architecture executing within the virtual machine 848 can be the same as corresponding layers previously described or may be different.


Example Machine Architecture and Machine-Readable Medium



FIG. 9 is a block diagram illustrating components of a machine 900, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 9 shows a diagrammatic representation of the machine 900 in the example form of a computer system, within which instructions 916 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 900 to perform any one or more of the methodologies discussed herein may be executed. For example, the instructions may cause the machine to execute the flow diagrams of FIGS. 3 and 5-7. Additionally, or alternatively, the instructions may implement in the components or modules of FIG. 2, and so forth. The instructions transform the general, non-programmed machine into a particular (e.g., special purpose) machine programmed to carry out the described and illustrated functions in the manner described. In alternative embodiments, the machine 900 operates as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 900 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 900 may comprise, but is not limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 916, sequentially or otherwise, that specify actions to be taken by machine 900. Further, while only a single machine 900 is illustrated, the term “machine” shall also be taken to include a collection of machines 900 that individually or jointly execute the instructions 916 to perform any one or more of the methodologies discussed herein.


The machine 900 may include processors 910, memory 930, and I/O components 950, which may be configured to communicate with each other such as via a bus 902. In an example embodiment, the processors 910 (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, processor 912 and processor 914 that may execute instructions 916. The term “processor” is intended to include multi-core processor that may comprise two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously. Although FIG. 9 shows multiple processors, the machine 900 may include a single processor with a single core, a single processor with multiple cores (e.g., a multi-core processor), multiple processors with a single core, multiple processors with multiples cores, or any combination thereof.


The memory/storage 930 may include a memory 932, such as a main memory, or other memory storage, and a storage unit 936, both accessible to the processors 910 such as via the bus 902. The storage unit 936 and memory 932 store the instructions 916 embodying any one or more of the methodologies or functions described herein. The instructions 916 may also reside, completely or partially, within the memory 932, within the storage unit 936, within at least one of the processors 910 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 900. Accordingly, the memory 932, the storage unit 936, and the memory of the processors 910 are examples of machine-readable media.


As used herein, “machine-readable medium” means a device able to store instructions and data temporarily or permanently and may include, but is not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store the instructions 916. The term “machine-readable medium” shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., instructions 916) for execution by a machine (e.g., machine 900), such that the instructions, when executed by one or more processors of the machine 900 (e.g., processors 910), cause the machine 900 to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.


The I/O components 950 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 950 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 950 may include many other components that are not shown in FIG. 9. The I/O components 950 are grouped according to functionality merely for simplifying the following discussion and the grouping is in no way limiting. In various example embodiments, the I/O components 950 may include output components 952 and input components 954. The output components 952 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 954 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.


In further example embodiments, the I/O components 950 may include biometric components 956, motion components 958, environmental components 960, or position components 962 among a wide array of other components. For example, the biometric components 956 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), and the like. The motion components 958 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environmental components 960 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometer that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 962 may include location sensor components (e.g., a Global Position System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.


Communication may be implemented using a wide variety of technologies. The I/O components 950 may include communication components 964 operable to couple the machine 900 to a network 980 or devices 970 via coupling 982 and coupling 972 respectively. For example, the communication components 964 may include a network interface component or other suitable device to interface with the network 980. In further examples, communication components 964 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), WiFi® components, and other communication components to provide communication via other modalities. The devices 970 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).


Moreover, the communication components 964 may detect identifiers or include components operable to detect identifiers. For example, the communication components 964 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 964, such as, location via Internet Protocol (IP) geo-location, location via Wi-Fi® signal triangulation, location via detecting a NFC beacon signal that may indicate a particular location, and so forth.


Transmission Medium


In various example embodiments, one or more portions of the network 980 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, the network 980 or a portion of the network 980 may include a wireless or cellular network and the coupling 982 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other type of cellular or wireless coupling. In this example, the coupling 982 may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard setting organizations, other long range protocols, or other data transfer technology.


The instructions 916 may be transmitted or received over the network 980 using a transmission medium via a network interface device (e.g., a network interface component included in the communication components 964) and utilizing any one of a number of well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 916 may be transmitted or received using a transmission medium via the coupling 972 (e.g., a peer-to-peer coupling) to the devices 970. The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding, or carrying the instructions 916 for execution by the machine 900, and includes digital or analog communications signals or other intangible media to facilitate communication of such software.


Language


Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.


Although an overview of the inventive subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or inventive concept if more than one is, in fact, disclosed.


The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.


As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method, comprising: receiving one or more search terms within a graphical user interface;identifying, by one or more processors of a machine, a set of textual data based on the one or more search terms;retrieving a data structure including textual identifications for the set of textual data and an indication of one or more data elements within one or more text sets of the set of textual data;processing, by the one or more processors, the data structure to generate a modified data structure, the modified data structure generated by reducing to text sets included in the set of textual data identified based on the one or more search terms;summing rows, by the one or more processors, within the modified data structure, the rows including values for data elements included in each of the identified set of textual data;identifying, by the one or more processors, one or more elements of interest within the set of textual data based on the summed rows of the modified data structure;determining, by the one or more processors, a context of occurrence for each element of interest;normalizing, by the one or more processors, the elements of interest by removing redundant elements of interest based on the context of occurrence of two or more elements of interest and generating a normalized set of elements of interest; andcausing presentation of the normalized set of elements of interest in a first portion of the graphical user interface and the textual identifications for the set of textual data in a second portion of the graphical user interface.
  • 2. The method of claim 1, wherein causing presentation of the elements of interest and the textual identifications further comprises: causing presentation of at least a portion of a text set of the set of textual data in a third portion of the graphical user interface.
  • 3. The method of claim 1, wherein causing presentation of the elements of interest further comprises: identifying an element type for each of the elements of interest; andcausing presentation of a visual indicator differentiating the elements of interest based on an element type.
  • 4. The method of claim 1, further comprising: in response to determining the context of occurrence for each element of interest, generating a set of tokens for each element of interest, the set of tokens representing the context of occurrence;identifying an overlap of two or more elements of interest based on the set of tokens for the two or more elements of interest; andlinking two or more elements of interest.
  • 5. The method of claim 1 further comprising: receiving a selection of a textual corpus from a set of textual corpora, each textual corpus of the set of textual corpora containing one or more text sets, the set of textual corpora identified from the selected textual corpus.
  • 6. The method of claim 1, wherein identifying the set of textual data further comprises: accessing a set of textual corpora, each textual corpus of the set of textual corpora containing one or more text sets; anddynamically partitioning the set of textual corpora to identify a textual corpus from the set of textual corpora containing the set of text sets associated with the one or more search terms.
  • 7. A computer implemented system, comprising: one or more processors; anda processor-readable storage device comprising processor-executable instructions that, when executed by the one or more processors, cause the one or more processors to perform operations comprising: receiving one or more search terms within a graphical user interface;identifying a set of textual data based on the one or more search terms;retrieving a data structure including textual identifications for the set of textual data and an indication of one or more data elements within one or more text sets of the set of textual data;processing the data structure to generate a modified data structure, the modified data structure generated by reducing to text sets included in the set of textual data identified based on the one or more search terms;summing rows within the modified data structure, the rows including values for data elements included in each of the identified set of textual data;identifying one or more elements of interest within the set of textual data based on the summed rows of the modified data structure;determining a context of occurrence for each element of interest;normalizing the elements of interest by removing redundant elements of interest based on the context of occurrence of two or more elements of interest and generating a normalized set of elements of interest; andcausing presentation of the normalized set of elements of interest in a first portion of the graphical user interface and the textual identifications for the set of textual data in a second portion of the graphical user interface.
  • 8. The system of claim 7, wherein causing presentation of the elements of interest and the textual identifications further comprises: causing presentation of at least a portion of a text set of the set of textual data in a third portion of the graphical user interface.
  • 9. The system of claim 7, wherein causing presentation of the elements of interest further comprises: identifying an element type for each of the elements of interest; andcausing presentation of a visual indicator differentiating the elements of interest based on an element type.
  • 10. The system of claim 7, wherein the operations further comprise: in response to determining the context of occurrence for each element of interest, generating a set of tokens for each element of interest, the set of tokens representing the context of occurrence;identifying an overlap of two or more elements of interest based on the set of tokens for the two or more elements of interest; andlinking two or more elements of interest.
  • 11. The system of claim 7, wherein the operations further comprise: receiving a selection of a textual corpus from a set of textual corpora, each textual corpus of the set of textual corpora containing one or more text sets, the set of textual corpora identified from the selected textual corpus.
  • 12. The system of claim 7, wherein identifying the set of textual data further comprises: accessing a set of textual corpora, each textual corpus of the set of textual corpora containing one or more text sets; anddynamically partitioning the set of textual corpora to identify a textual corpus from the set of textual corpora containing the set of text sets associated with the one or more search terms.
  • 13. A processor-readable storage device comprising instructions that, when executed by one or more processors of a machine, cause the machine to perform operations comprising: receiving one or more search terms within a graphical user interface;identifying a set of textual data based on the one or more search terms;retrieving a data structure including textual identifications for the set of textual data and an indication of one or more data elements within one or more text sets of the set of textual data;processing the data structure to generate a modified data structure, the modified data structure generated by reducing to text sets included in the set of textual data identified based on the one or more search terms;summing rows within the modified data structure, the rows including values for data elements included in each of the identified set of textual data;identifying one or more elements of interest within the set of textual data based on the summed rows of the modified data structure;determining a context of occurrence for each element of interest normalizing the elements of interest by removing redundant elements of interest based on the context of occurrence of two or more elements of interest and generating a normalized set of elements of interest; andcausing presentation of the normalized set of elements of interest in a first portion of the graphical user interface and the textual identifications for the set of textual data in a second portion of the graphical user interface.
  • 14. The processor-readable storage device of claim 13, wherein causing presentation of the elements of interest and the textual identifications further comprises: causing presentation of at least a portion of a text set of the set of textual data in a third portion of the graphical user interface.
  • 15. The processor-readable storage device of claim 13, wherein causing presentation of the elements of interest further comprises: identifying an element type for each of the elements of interest; andcausing presentation of a visual indicator differentiating the elements of interest based on an element type.
  • 16. The processor-readable storage device of claim 13, wherein the operations further comprise: in response to determining the context of occurrence for each element of interest, generating a set of tokens for each element of interest, the set of tokens representing the context of occurrence;identifying an overlap of two or more elements of interest based on the set of tokens for the two or more elements of interest; andlinking two or more elements of interest.
  • 17. The processor-readable storage device of claim 13, wherein identifying the set of textual data further comprises: accessing a set of textual corpora, each textual corpus of the set of textual corpora containing one or more text sets; anddynamically partitioning the set of textual corpora to identify a textual corpus from the set of textual corpora containing the set of text sets associated with the one or more search terms.
PRIORITY APPLICATION

This application claims priority to U.S. Provisional Application Ser. No. 62/424,844, filed Nov. 21, 2016, the disclosure of which is incorporated herein in its entirety by reference.

US Referenced Citations (928)
Number Name Date Kind
5109399 Thompson Apr 1992 A
5329108 Lamoure Jul 1994 A
5632009 Rao et al. May 1997 A
5670987 Doi et al. Sep 1997 A
5724575 Hoover et al. Mar 1998 A
5781704 Rossmo Jul 1998 A
5798769 Chiu et al. Aug 1998 A
5845300 Comer et al. Dec 1998 A
5872973 Mitchell Feb 1999 A
5897636 Kaeser Apr 1999 A
6057757 Arrowsmith et al. May 2000 A
6073129 Levine et al. Jun 2000 A
6091956 Hollenberg Jul 2000 A
6094653 Li et al. Jul 2000 A
6161098 Wallman Dec 2000 A
6167405 Rosensteel, Jr. et al. Dec 2000 A
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6243717 Gordon et al. Jun 2001 B1
6247019 Davies Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6304873 Klein et al. Oct 2001 B1
6341310 Leshem et al. Jan 2002 B1
6366933 Ball et al. Apr 2002 B1
6369835 Lin Apr 2002 B1
6374251 Fayyad et al. Apr 2002 B1
6418438 Campbell Jul 2002 B1
6430305 Decker Aug 2002 B1
6456997 Shukla Sep 2002 B1
6510504 Satyanarayanan Jan 2003 B2
6549752 Tsukamoto Apr 2003 B2
6549944 Weinberg et al. Apr 2003 B1
6560620 Ching May 2003 B1
6567936 Yang et al. May 2003 B1
6574635 Stauber et al. Jun 2003 B2
6581068 Bensoussan et al. Jun 2003 B1
6594672 Lampson et al. Jul 2003 B1
6631496 Li et al. Oct 2003 B1
6642945 Sharpe Nov 2003 B1
6674434 Chojnacki et al. Jan 2004 B1
6714936 Nevin, III Mar 2004 B1
6745382 Zothner Jun 2004 B1
6775675 Nwabueze et al. Aug 2004 B1
6820135 Dingman et al. Nov 2004 B1
6828920 Owen et al. Dec 2004 B2
6839745 Dingari et al. Jan 2005 B1
6877137 Rivette et al. Apr 2005 B1
6976210 Silva et al. Dec 2005 B1
6978419 Kantrowitz Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
6985950 Hanson et al. Jan 2006 B1
7036085 Barros Apr 2006 B2
7043702 Chi et al. May 2006 B2
7055110 Kupka May 2006 B2
7058648 Lightfoot et al. Jun 2006 B1
7111231 Huck et al. Sep 2006 B1
7139800 Bellotti et al. Nov 2006 B2
7158878 Rasmussen Jan 2007 B2
7162475 Ackerman Jan 2007 B2
7168039 Bertram Jan 2007 B2
7171427 Witkowski et al. Jan 2007 B2
7194680 Roy et al. Mar 2007 B1
7269786 Malloy et al. Sep 2007 B1
7278105 Kitts et al. Oct 2007 B1
7290698 Poslinski et al. Nov 2007 B2
7318054 Nomura Jan 2008 B2
7333998 Heckerman et al. Feb 2008 B2
7370047 Gorman May 2008 B2
7373669 Eisen May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7379903 Caballero et al. May 2008 B2
7392249 Harris et al. Jun 2008 B1
7426654 Adams, Jr. et al. Sep 2008 B2
7451397 Weber et al. Nov 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7461077 Greenwood et al. Dec 2008 B1
7461158 Rider et al. Dec 2008 B2
7467375 Tondreau et al. Dec 2008 B2
7487139 Fraleigh et al. Feb 2009 B2
7502786 Liu et al. Mar 2009 B2
7525422 Bishop et al. Apr 2009 B2
7529727 Arning et al. May 2009 B2
7529734 Dirisala May 2009 B2
7558677 Jones Jul 2009 B2
7574409 Patinkin Aug 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7596285 Brown Sep 2009 B2
7614006 Molander Nov 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7620628 Kapur et al. Nov 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7634717 Chamberlain et al. Dec 2009 B2
7703021 Flam Apr 2010 B1
7706817 Bamrah et al. Apr 2010 B2
7712049 Williams et al. May 2010 B2
7716077 Mikurak et al. May 2010 B1
7725530 Sah et al. May 2010 B2
7725547 Albertson et al. May 2010 B2
7725728 Ama et al. May 2010 B2
7730082 Sah et al. Jun 2010 B2
7730109 Rohrs et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7761407 Stern Jul 2010 B1
7770100 Chamberlain et al. Aug 2010 B2
7783658 Bayliss Aug 2010 B1
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7814084 Hallett et al. Oct 2010 B2
7814102 Miller Oct 2010 B2
7818658 Chen Oct 2010 B2
7870493 Pall et al. Jan 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7899796 Borthwick et al. Mar 2011 B1
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7933862 Chamberlain et al. Apr 2011 B2
7941321 Greenstein et al. May 2011 B2
7962281 Rasmussen et al. Jun 2011 B2
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
7971150 Raskutti et al. Jun 2011 B2
7979457 Garman Jul 2011 B1
7984374 Caro et al. Jul 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010545 Stefik et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8036632 Cona et al. Oct 2011 B1
8036971 Aymeloglu et al. Oct 2011 B2
8037046 Udezue et al. Oct 2011 B2
8041714 Aymeloglu et al. Oct 2011 B2
8046283 Burns et al. Oct 2011 B2
8046362 Bayliss Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8095582 Cramer Jan 2012 B2
8103543 Zwicky Jan 2012 B1
8112425 Baum et al. Feb 2012 B2
8126848 Wagner Feb 2012 B2
8134457 Velipasalar et al. Mar 2012 B2
8135679 Bayliss Mar 2012 B2
8135719 Bayliss Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8185819 Sah et al. May 2012 B2
8196184 Amirov et al. Jun 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214490 Vos et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8225201 Michael Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8266168 Bayliss Sep 2012 B2
8271461 Pike et al. Sep 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8290838 Thakur et al. Oct 2012 B1
8290926 Ozzie et al. Oct 2012 B2
8290942 Jones et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8301904 Gryaznov Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8312367 Foster Nov 2012 B2
8312546 Alme Nov 2012 B2
8321943 Walters et al. Nov 2012 B1
8347398 Weber Jan 2013 B1
8352881 Champion et al. Jan 2013 B2
8368695 Howell et al. Feb 2013 B2
8386377 Xiong et al. Feb 2013 B1
8392394 Kumar et al. Mar 2013 B1
8397171 Klassen et al. Mar 2013 B2
8412707 Mianji Apr 2013 B1
8447674 Choudhuri et al. May 2013 B2
8447722 Ahuja et al. May 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8484168 Bayliss Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489623 Jain et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8495077 Bayliss Jul 2013 B2
8498969 Bayliss Jul 2013 B2
8498984 Hwang et al. Jul 2013 B1
8504542 Chang et al. Aug 2013 B2
8510743 Hackborn et al. Aug 2013 B2
8514082 Cova et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8554579 Tribble et al. Oct 2013 B2
8554653 Falkenborg et al. Oct 2013 B2
8554709 Goodson et al. Oct 2013 B2
8560413 Quarterman Oct 2013 B1
8577911 Stepinski et al. Nov 2013 B1
8589273 Creeden et al. Nov 2013 B2
8595234 Siripurapu et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639757 Zang et al. Jan 2014 B1
8646080 Williamson et al. Feb 2014 B2
8676857 Adams et al. Mar 2014 B1
8682812 Ranjan Mar 2014 B1
8688573 Rukonic et al. Apr 2014 B1
8689108 Duffield et al. Apr 2014 B1
8700643 Gossweiler, III Apr 2014 B1
8713467 Goldenberg et al. Apr 2014 B1
8726379 Stiansen et al. May 2014 B1
8739278 Varghese May 2014 B2
8742934 Sarpy, Sr. et al. Jun 2014 B1
8744890 Bernier et al. Jun 2014 B1
8745516 Mason et al. Jun 2014 B2
8781169 Jackson et al. Jul 2014 B2
8786605 Curtis et al. Jul 2014 B1
8787939 Papakipos et al. Jul 2014 B2
8788405 Sprague et al. Jul 2014 B1
8788407 Singh et al. Jul 2014 B1
8799799 Cervelli et al. Aug 2014 B1
8806355 Twiss et al. Aug 2014 B2
8812960 Sun et al. Aug 2014 B1
8818892 Sprague et al. Aug 2014 B1
8830322 Nerayoff et al. Sep 2014 B2
8832594 Thompson et al. Sep 2014 B1
8868537 Colgrove et al. Oct 2014 B1
8898184 Garman Nov 2014 B1
8917274 Ma et al. Dec 2014 B2
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8924872 Bogomolov et al. Dec 2014 B1
8930331 McGrew et al. Jan 2015 B2
8937619 Sharma et al. Jan 2015 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
8954410 Chang et al. Feb 2015 B2
9009171 Grossman et al. Apr 2015 B1
9009827 Albertson et al. Apr 2015 B1
9021260 Falk et al. Apr 2015 B1
9021384 Beard et al. Apr 2015 B1
9043696 Meiklejohn et al. May 2015 B1
9043894 Dennison et al. May 2015 B1
9069842 Melby Jun 2015 B2
9092482 Harris et al. Jul 2015 B2
9100428 Visbal Aug 2015 B1
9111281 Stibel et al. Aug 2015 B2
9116975 Shankar et al. Aug 2015 B2
9129219 Robertson et al. Sep 2015 B1
9135658 Sprague et al. Sep 2015 B2
9146954 Boe et al. Sep 2015 B1
9165299 Stowe et al. Oct 2015 B1
9177344 Singh et al. Nov 2015 B1
9171334 Visbal et al. Dec 2015 B1
9202249 Cohen et al. Dec 2015 B1
9208159 Stowe et al. Dec 2015 B2
9229952 Meacham et al. Jan 2016 B1
9230280 Maag et al. Jan 2016 B1
9256664 Chakerian et al. Feb 2016 B2
9280532 Cicerone et al. Mar 2016 B2
9348920 Kesin Mar 2016 B1
9344447 Cohen et al. May 2016 B2
9367872 Visbal et al. Jun 2016 B1
9535974 Kesin et al. Jan 2017 B1
9547693 Sheasby et al. Jan 2017 B1
9619557 Kesin et al. Apr 2017 B2
20010021936 Bertram Sep 2001 A1
20010051949 Carey et al. Dec 2001 A1
20010056522 Satyanarayana Dec 2001 A1
20020013781 Petersen Jan 2002 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020065708 Senay et al. May 2002 A1
20020083039 Ferrari et al. Jun 2002 A1
20020091694 Hrle et al. Jul 2002 A1
20020091707 Keller et al. Jul 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman et al. Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020130907 Chi et al. Sep 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20020169759 Kraft et al. Nov 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20020194119 Wright et al. Dec 2002 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030033228 Bosworth-Davies Feb 2003 A1
20030036848 Sheha et al. Feb 2003 A1
20030039948 Donahue Feb 2003 A1
20030074368 Schuetze et al. Apr 2003 A1
20030097330 Hillmer et al. May 2003 A1
20030105759 Bess et al. Jun 2003 A1
20030115481 Baird et al. Jun 2003 A1
20030120675 Stauber et al. Jun 2003 A1
20030126102 Borthwick Jul 2003 A1
20030130993 Mendelevitch et al. Jul 2003 A1
20030140106 Raguseo Jul 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030154044 Lundstedt et al. Aug 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030172014 Quackenbush et al. Sep 2003 A1
20030200217 Ackerman Oct 2003 A1
20030212718 Tester Nov 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20030229848 Arend et al. Dec 2003 A1
20040032432 Baynger Feb 2004 A1
20040034570 Davis Feb 2004 A1
20040064256 Barinek et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040111480 Yue Jun 2004 A1
20040117345 Bamford et al. Jun 2004 A1
20040117387 Civetta et al. Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143796 Lerner et al. Jul 2004 A1
20040148301 McKay et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040160309 Stilp Aug 2004 A1
20040163039 Gorman Aug 2004 A1
20040181554 Heckerman et al. Sep 2004 A1
20040193600 Kaasten et al. Sep 2004 A1
20040205524 Richter et al. Oct 2004 A1
20040221223 Yu et al. Nov 2004 A1
20040236688 Bozeman Nov 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20040267746 Marcjan et al. Dec 2004 A1
20050010472 Quatse et al. Jan 2005 A1
20050027705 Sadri et al. Feb 2005 A1
20050028094 Allyn Feb 2005 A1
20050039119 Parks et al. Feb 2005 A1
20050065811 Chu et al. Mar 2005 A1
20050078858 Yao et al. Apr 2005 A1
20050080769 Gemmell et al. Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050097441 Herbach et al. May 2005 A1
20050108063 Madill, Jr. et al. May 2005 A1
20050108231 Findleton et al. May 2005 A1
20050114763 Nonomura et al. May 2005 A1
20050125715 Di Franco et al. Jun 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050166144 Gross Jul 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050210409 Jou Sep 2005 A1
20050222928 Steier et al. Oct 2005 A1
20050246327 Yeung et al. Nov 2005 A1
20050251786 Citron et al. Nov 2005 A1
20050289524 McGinnes Dec 2005 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060045470 Poslinski et al. Mar 2006 A1
20060059139 Robinson Mar 2006 A1
20060074866 Chamberlain et al. Apr 2006 A1
20060074881 Vembu et al. Apr 2006 A1
20060080283 Shipman Apr 2006 A1
20060080316 Gilmore et al. Apr 2006 A1
20060080616 Vogel et al. Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060093222 Saffer et al. May 2006 A1
20060095521 Patinkin May 2006 A1
20060106847 Eckardt, III et al. May 2006 A1
20060116991 Calderwood Jun 2006 A1
20060129746 Porter Jun 2006 A1
20060136402 Lee Jun 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel et al. Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060161558 Tamma et al. Jul 2006 A1
20060184889 Molander Aug 2006 A1
20060203337 White Sep 2006 A1
20060209085 Wong et al. Sep 2006 A1
20060218206 Bourbonnais et al. Sep 2006 A1
20060218405 Ama et al. Sep 2006 A1
20060218491 Grossman et al. Sep 2006 A1
20060218637 Thomas et al. Sep 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060242040 Rader Oct 2006 A1
20060242630 Koike et al. Oct 2006 A1
20060253502 Raman et al. Nov 2006 A1
20060265397 Bryan et al. Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070011150 Frank Jan 2007 A1
20070011304 Error Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070038646 Thota Feb 2007 A1
20070038962 Fuchs et al. Feb 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070078832 Ott, IV et al. Apr 2007 A1
20070083541 Fraleigh et al. Apr 2007 A1
20070094389 Nussey et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070130206 Zhou et al. Jun 2007 A1
20070143253 Kostamaa et al. Jun 2007 A1
20070150369 Zivin Jun 2007 A1
20070150801 Chidlovskii et al. Jun 2007 A1
20070050429 Goldring et al. Jul 2007 A1
20070156673 Maga et al. Jul 2007 A1
20070162454 D'Albora et al. Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070185850 Walters et al. Aug 2007 A1
20070185867 Maga et al. Aug 2007 A1
20070192122 Routson et al. Aug 2007 A1
20070192265 Chopin et al. Aug 2007 A1
20070198571 Ferguson et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208736 Tanigawa et al. Sep 2007 A1
20070233709 Abnous et al. Oct 2007 A1
20070233756 D'Souza et al. Oct 2007 A1
20070240062 Christena et al. Oct 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070271317 Carmel Nov 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070294200 Au Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20080015970 Brookfield et al. Jan 2008 A1
20080016216 Worley et al. Jan 2008 A1
20080040275 Paulsen et al. Feb 2008 A1
20080040684 Crump et al. Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052142 Bailey et al. Feb 2008 A1
20080065655 Chakravarthy et al. Mar 2008 A1
20080071731 Ma et al. Mar 2008 A1
20080072180 Chevalier Mar 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone Mar 2008 A1
20080082486 Lermant et al. Apr 2008 A1
20080104019 Nath May 2008 A1
20080104060 Abhyankar et al. May 2008 A1
20080126951 Sood et al. May 2008 A1
20080133567 Ames et al. Jun 2008 A1
20080148398 Mezack et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080162616 Gross et al. Jul 2008 A1
20080104149 Vishniac et al. Aug 2008 A1
20080195417 Surpin Aug 2008 A1
20080195608 Clover Aug 2008 A1
20080195672 Hamel et al. Aug 2008 A1
20080201339 McGrew et al. Aug 2008 A1
20080208735 Balet et al. Aug 2008 A1
20080215546 Baum et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080270316 Guidotti et al. Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080288425 Posse et al. Nov 2008 A1
20080294663 Heinley et al. Nov 2008 A1
20080301378 Carrie Dec 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20090002492 Velipasalar et al. Jan 2009 A1
20090018940 Wang et al. Jan 2009 A1
20090024505 Patel et al. Jan 2009 A1
20090024589 Sood et al. Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090030915 Winter et al. Jan 2009 A1
20090031247 Walter et al. Jan 2009 A1
20090037417 Shankar et al. Feb 2009 A1
20090044279 Crawford et al. Feb 2009 A1
20090055251 Shah et al. Feb 2009 A1
20090076845 Bellin et al. Mar 2009 A1
20090082997 Tokman et al. Mar 2009 A1
20090083184 Eisen Mar 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090094270 Alirez et al. Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090106308 Killian et al. Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090119309 Gibson et al. May 2009 A1
20090125359 Knapic et al. May 2009 A1
20090125369 Kloostra et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed, Jr. et al. May 2009 A1
20090143052 Bates et al. Jun 2009 A1
20090144262 White et al. Jun 2009 A1
20090144274 Fraleigh et al. Jun 2009 A1
20090150854 Elaasar et al. Jun 2009 A1
20090157732 Hao et al. Jun 2009 A1
20090164387 Armstrong et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090172669 Bobak et al. Jul 2009 A1
20090172821 Daira et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090187546 Hamilton Whyte Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090192957 Subramanian et al. Jul 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090222759 Drieschner Sep 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090234720 George et al. Sep 2009 A1
20090240664 Dinker et al. Sep 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254842 Leacock et al. Oct 2009 A1
20090254970 Agarwal et al. Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090271359 Bayliss Oct 2009 A1
20090271435 Yako et al. Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090292626 Oxford et al. Nov 2009 A1
20090300589 Watters et al. Dec 2009 A1
20090307049 Elliott, Jr. et al. Dec 2009 A1
20090313223 Rantanen et al. Dec 2009 A1
20090313311 Hoffmann et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090318775 Michelson et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20090319891 MacKinlay et al. Dec 2009 A1
20090327208 Bittner et al. Dec 2009 A1
20100011282 Dollard et al. Jan 2010 A1
20100030722 Goodson et al. Feb 2010 A1
20100031141 Summers et al. Feb 2010 A1
20100036831 Vemuri et al. Feb 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057622 Faith Mar 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100070489 Aymeloglu et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100076939 Iwaki et al. Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100077483 Stolfo et al. Mar 2010 A1
20100082541 Kottomtharayil Apr 2010 A1
20100098318 Anderson Apr 2010 A1
20100100963 Mahaffey Apr 2010 A1
20100103124 Kruzeniski et al. Apr 2010 A1
20100106611 Paulsen et al. Apr 2010 A1
20100106752 Eckardt, III et al. Apr 2010 A1
20100114817 Broeder et al. May 2010 A1
20100114831 Gilbert et al. May 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100125546 Barrett et al. May 2010 A1
20100131457 Heimendinger May 2010 A1
20100131502 Fordham May 2010 A1
20100138842 Balko et al. Jun 2010 A1
20100145909 Ngo Jun 2010 A1
20100161565 Lee et al. Jun 2010 A1
20100161688 Kesselman et al. Jun 2010 A1
20100161735 Sharma Jun 2010 A1
20100162176 Dunton Jun 2010 A1
20100169237 Howard Jul 2010 A1
20100185691 Irmak et al. Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100191884 Holenstein et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100211535 Rosenberger Aug 2010 A1
20100211550 Daniello et al. Aug 2010 A1
20100211618 Anderson et al. Aug 2010 A1
20100228812 Uomini Sep 2010 A1
20100235606 Oreland et al. Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100250412 Wagner Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280857 Liu et al. Nov 2010 A1
20100283787 Hamedi et al. Nov 2010 A1
20100293174 Bennett Nov 2010 A1
20100306029 Jolley Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100312837 Bodapati et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100318838 Katano et al. Dec 2010 A1
20100318924 Frankel et al. Dec 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20100325526 Ellis et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20100330801 Rouh Dec 2010 A1
20110004498 Readshaw Jan 2011 A1
20110016118 Edala Jan 2011 A1
20110029498 Ferguson et al. Feb 2011 A1
20110029526 Knight Feb 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110047540 Williams et al. Feb 2011 A1
20110055140 Roychowdhury Mar 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110066933 Ludwig Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110078055 Faribault et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110087519 Fordyce, III et al. Apr 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110117878 Barash et al. May 2011 A1
20110119100 Ruhl et al. May 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110131547 Elaasar Jun 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110153592 DeMarcken Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110161132 Goel et al. Jun 2011 A1
20110161137 Ubalde et al. Jun 2011 A1
20110167054 Bailey et al. Jul 2011 A1
20110167105 Ramakrishnan et al. Jul 2011 A1
20110167493 Song et al. Jul 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173032 Payne et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110173619 Fish Jul 2011 A1
20110178842 Rane et al. Jul 2011 A1
20110181598 O'Neall et al. Jul 2011 A1
20110184813 Barnes et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110196737 Vadlamani et al. Aug 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110213655 Henkin et al. Sep 2011 A1
20110218934 Elser Sep 2011 A1
20110218955 Tang et al. Sep 2011 A1
20110219321 Gonzalez Veron et al. Sep 2011 A1
20110219450 Mcdougal et al. Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110225650 Margolies et al. Sep 2011 A1
20110231223 Winters Sep 2011 A1
20110238413 Wu et al. Sep 2011 A1
20110238495 Kang Sep 2011 A1
20110238510 Rowen et al. Sep 2011 A1
20110238553 Raj et al. Sep 2011 A1
20110238570 Li et al. Sep 2011 A1
20110246229 Pacha Oct 2011 A1
20110251951 Kolkowitz et al. Oct 2011 A1
20110258158 Resende, Jr. et al. Oct 2011 A1
20110258190 Chen et al. Oct 2011 A1
20110258242 Eidson et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270705 Parker Nov 2011 A1
20110270812 Ruby et al. Nov 2011 A1
20110270834 Sokolan et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110289407 Naik et al. Nov 2011 A1
20110289420 Morioka Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110295649 Fine et al. Dec 2011 A1
20110307382 Siegel Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20110314024 Chang et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120004904 Shin et al. Jan 2012 A1
20120005581 Turner Jan 2012 A1
20120011238 Rathod Jan 2012 A1
20120011245 Gillette et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120036013 Neuhaus et al. Feb 2012 A1
20120036434 Oberstein Feb 2012 A1
20120050293 Carlhian et al. Mar 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120072825 Sherkin et al. Mar 2012 A1
20120075324 Cardno et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120084135 Nissan et al. Apr 2012 A1
20120084287 Lakshminarayan et al. Apr 2012 A1
20120084866 Stolfo Apr 2012 A1
20120106801 Jackson May 2012 A1
20120116828 Shannon May 2012 A1
20120117082 Koperda et al. May 2012 A1
20120123989 Yu et al. May 2012 A1
20120124179 Cappio et al. May 2012 A1
20120131107 Yost May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120136804 Lucia et al. May 2012 A1
20120137235 Ts et al. May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120150791 Willson Jun 2012 A1
20120158527 Cannelongo et al. Jun 2012 A1
20120158626 Zhu et al. Jun 2012 A1
20120159307 Chung et al. Jun 2012 A1
20120159312 Mital et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159399 Bastide et al. Jun 2012 A1
20120170847 Tsukidate Jul 2012 A1
20120173381 Smith Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120180002 Campbell et al. Jul 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120197651 Robinson et al. Aug 2012 A1
20120203584 Mishor et al. Aug 2012 A1
20120203708 Psota et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120215898 Shah et al. Aug 2012 A1
20120221511 Gibson et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120226523 Weiss et al. Sep 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120254129 Wheeler et al. Oct 2012 A1
20120266245 McDougal et al. Oct 2012 A1
20120278273 Fang Nov 2012 A1
20120284345 Costenaro et al. Nov 2012 A1
20120290879 Shibuya et al. Nov 2012 A1
20120296907 Long et al. Nov 2012 A1
20120304244 Xie et al. Nov 2012 A1
20120310831 Harris et al. Dec 2012 A1
20120310838 Harris et al. Dec 2012 A1
20120311684 Paulsen et al. Dec 2012 A1
20120323829 Stokes Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330801 Mcdougal et al. Dec 2012 A1
20120330908 Stowe et al. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006426 Healey et al. Jan 2013 A1
20130006655 Van Arkel et al. Jan 2013 A1
20130006668 Van Arkel et al. Jan 2013 A1
20130006725 Simanek et al. Jan 2013 A1
20130006916 Mcbride et al. Jan 2013 A1
20130016106 Yip et al. Jan 2013 A1
20130018796 Kolhatkar et al. Jan 2013 A1
20130024268 Manickavelu Jan 2013 A1
20130024307 Fuerstenberg et al. Jan 2013 A1
20130024339 Choudhuri et al. Jan 2013 A1
20130036346 Cicerone Feb 2013 A1
20130046635 Grigg et al. Feb 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130050217 Armitage Feb 2013 A1
20130054306 Bhalla et al. Feb 2013 A1
20130055145 Antony et al. Feb 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060742 Chang et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130061169 Pearcy Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073454 Busch Mar 2013 A1
20130078943 Biage et al. Mar 2013 A1
20130086482 Parsons Apr 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130097130 Bingol et al. Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130110746 Ahn May 2013 A1
20130110822 Ikeda et al. May 2013 A1
20130110877 Bonham et al. May 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117011 Ahmed et al. May 2013 A1
20130117651 Waldman et al. May 2013 A1
20130132381 Chakrabarti et al. May 2013 A1
20130150004 Rosen Jun 2013 A1
20130151148 Parundekar et al. Jun 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130157234 Gulli et al. Jun 2013 A1
20130159340 Blanco et al. Jun 2013 A1
20130160120 Malaviya et al. Jun 2013 A1
20130166348 Scotto Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130166550 Buchmann et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130185245 Anderson et al. Jul 2013 A1
20130185307 El-yaniv et al. Jul 2013 A1
20130185320 Iwasaki et al. Jul 2013 A1
20130197925 Blue Aug 2013 A1
20130211985 Clark et al. Aug 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130225212 Khan Aug 2013 A1
20130226318 Procyk et al. Aug 2013 A1
20130226953 Markovich et al. Aug 2013 A1
20130232045 Tai et al. Sep 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130246597 Iizawa et al. Sep 2013 A1
20130251233 Yang et al. Sep 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130267207 Hao et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130276799 Davidson et al. Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130297619 Chandrasekaran et al. Nov 2013 A1
20130304770 Boero et al. Nov 2013 A1
20130311375 Priebatsch Nov 2013 A1
20130318060 Chang et al. Nov 2013 A1
20130318594 Hoy et al. Nov 2013 A1
20130318604 Coates et al. Nov 2013 A1
20130339218 Subramanian et al. Dec 2013 A1
20130339514 Crank et al. Dec 2013 A1
20140006109 Callioni et al. Jan 2014 A1
20140012796 Petersen et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140047319 Eberlein Feb 2014 A1
20140047357 Alfaro et al. Feb 2014 A1
20140058763 Zizzamia et al. Feb 2014 A1
20140058914 Song et al. Feb 2014 A1
20140059038 Mcpherson et al. Feb 2014 A1
20140067611 Adachi et al. Mar 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140074855 Zhao et al. Mar 2014 A1
20140081652 Klindworth Mar 2014 A1
20140095273 Tang et al. Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140108068 Williams Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129261 Bothwell et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140149130 Getchius May 2014 A1
20140149272 Hirani et al. May 2014 A1
20140149436 Bahrami et al. May 2014 A1
20140156484 Chan et al. Jun 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140181833 Bird et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140189870 Singla et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140195887 Ellis et al. Jul 2014 A1
20140214579 Shen et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140229554 Grunin et al. Aug 2014 A1
20140244388 Manouchehri et al. Aug 2014 A1
20140258246 Lo Faro et al. Sep 2014 A1
20140267294 Ma et al. Sep 2014 A1
20140267295 Sharma et al. Sep 2014 A1
20140279824 Tamayo Sep 2014 A1
20140283067 Call et al. Sep 2014 A1
20140310266 Greenfield Oct 2014 A1
20140310282 Sprague et al. Oct 2014 A1
20140316911 Gross Oct 2014 A1
20140324876 Konik et al. Oct 2014 A1
20140330845 Feldschuh Nov 2014 A1
20140331119 Dixon et al. Nov 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140344231 Stowe et al. Nov 2014 A1
20140351070 Christner et al. Nov 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20140379755 Kuriakose et al. Dec 2014 A1
20140379812 Bastide, II et al. Dec 2014 A1
20150019394 Unser et al. Jan 2015 A1
20150039886 Kajol et al. Feb 2015 A1
20150046870 Goldenberg et al. Feb 2015 A1
20150067533 Volach Mar 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150073954 Braff Mar 2015 A1
20150089353 Folkening Mar 2015 A1
20150089424 Duffield et al. Mar 2015 A1
20150095773 Gonsalves et al. Apr 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106170 Bonica Apr 2015 A1
20150106347 McGrew et al. Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150112956 Chang et al. Apr 2015 A1
20150134599 Banerjee et al. May 2015 A1
20150134666 Gattiker et al. May 2015 A1
20150135256 Hoy et al. May 2015 A1
20150169709 Kara et al. Jun 2015 A1
20150169726 Kara et al. Jun 2015 A1
20150170077 Kara et al. Jun 2015 A1
20150178825 Huerta et al. Jun 2015 A1
20150178877 Bogomolov et al. Jun 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150188872 White Jul 2015 A1
20150212663 Papale et al. Jul 2015 A1
20150213043 Ishii et al. Jul 2015 A1
20150213134 Nie et al. Jul 2015 A1
20150227295 Meiklejohn et al. Aug 2015 A1
20150235334 Wang et al. Aug 2015 A1
20150242397 Zhuang Aug 2015 A1
20150242401 Liu Aug 2015 A1
20150261817 Harris et al. Sep 2015 A1
20150309719 Ma et al. Oct 2015 A1
20150317342 Grossman et al. Nov 2015 A1
20150324868 Kaftan et al. Nov 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150341467 Lim et al. Nov 2015 A1
20150347903 Saxena et al. Dec 2015 A1
20150378996 Keisin et al. Dec 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160004667 Chakerian Jan 2016 A1
20160004764 Chakerian et al. Jan 2016 A1
20160034470 Sprague et al. Feb 2016 A1
20160034545 Shankar et al. Feb 2016 A1
20160034555 Rahut et al. Feb 2016 A1
20160048937 Mathura et al. Feb 2016 A1
20160062555 Ward et al. Mar 2016 A1
20160098173 Slawinski et al. Apr 2016 A1
20160147730 Cicerone May 2016 A1
20160180451 Visbal et al. Jun 2016 A1
20160180557 Yousaf et al. Jun 2016 A1
20160210195 Sinha Jul 2016 A1
20170046349 Shankar et al. Feb 2017 A1
20170277780 Kesin et al. Sep 2017 A1
Foreign Referenced Citations (65)
Number Date Country
2014206155 Dec 2015 AU
2014250678 Feb 2016 AU
102546446 Jul 2012 CN
103167093 Jun 2013 CN
102054015 May 2014 CN
102014103482 Sep 2014 DE
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102014215621 Feb 2015 DE
0652513 May 1995 EP
1191463 Mar 2002 EP
1672527 Jun 2006 EP
2487610 Aug 2012 EP
2551799 Jan 2013 EP
2555126 Feb 2013 EP
2555153 Feb 2013 EP
2560134 Feb 2013 EP
2778977 Sep 2014 EP
2835745 Feb 2015 EP
2835770 Feb 2015 EP
2838039 Feb 2015 EP
2846241 Mar 2015 EP
2851852 Mar 2015 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2863326 Apr 2015 EP
2863346 Apr 2015 EP
2869211 May 2015 EP
2884439 Jun 2015 EP
2884440 Jun 2015 EP
2889814 Jul 2015 EP
2891992 Jul 2015 EP
2892197 Jul 2015 EP
2911078 Aug 2015 EP
2911100 Aug 2015 EP
2940603 Nov 2015 EP
2940609 Nov 2015 EP
2963577 Jan 2016 EP
2963595 Jan 2016 EP
2985729 Feb 2016 EP
3018879 May 2016 EP
3037991 Jun 2016 EP
3038046 Jun 2016 EP
2513247 Oct 2014 GB
2516155 Jan 2015 GB
2518745 Apr 2015 GB
2012778 Nov 2014 NL
2013306 Feb 2015 NL
624557 Aug 2014 NZ
WO-2000009529 Feb 2000 WO
WO-2002065353 Aug 2002 WO
WO-2005104736 Nov 2005 WO
WO-2005116851 Dec 2005 WO
WO-2008011728 Jan 2008 WO
WO-2008064207 May 2008 WO
WO-2008113059 Sep 2008 WO
WO-2009061501 May 2009 WO
WO-2010000014 Jan 2010 WO
WO-2010030913 Mar 2010 WO
WO-2010098958 Sep 2010 WO
WO-2012025915 Mar 2012 WO
WO-2013010157 Jan 2013 WO
WO-2013102892 Jul 2013 WO
WO-2013126281 Aug 2013 WO
Non-Patent Literature Citations (132)
Entry
US 8,712,906 B1, 04/2014, Sprague et al. (withdrawn)
“5 Great Tools for Visualizing your Twitter Followers”, Amnet Blog, http://www.amnetblog.com/component/content/article/115-5-great-tools-for-visualizing-your-twitter-followers.html, (Aug. 4, 2010), 1-5.
“A First Look: Predicting Market Demand for Food Retails using a Huff Analysis”, TRF Policy Solutions, CDFI Fund, Capacity Building Initiative, (Jul. 2012), 1-30.
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL”, UniProt Consortium, Ongoing and future developments at the Universal Protein Resource, (Sep. 2011), 1-2.
“About 80 Minutes: Palantir in a number of parts—Part 6—Graph”, http://about80minutes.blogspot.com/2013/03/palantir-in-number-of-parts-part-6-graph.html, (Mar. 21, 2013), 1-7.
“About connecting shapes”, Microsoft Office—Visio, [Online] retrieved from the internet: <http://office.microsoft.com/enus/visio-help/about-connecting-shapes-HP085050369.aspx>, (Aug. 4, 2011), 6 pgs.
“About OWA”, Open Web Analytics, [Online]. Retrieved from the Internet: <URL: http://www.openwebanalytics.com/?page jd=2>, (Accessed: Jul. 19, 2013), 5 pgs.
“Add and glue connectors with the Connector tool”, Microsoft Office—Visio,, [Online] retrieved from the internet: <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT =1 >, (Aug. 4, 2011), 1 pg.
“An Introduction to KeyLines and Network Visualization”, Keylines.com, [Online]. Retrieved from the Internet: <URL: http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf>, (Mar. 2014), 8 pgs.
“Analytics for Data Driven Startups”, Trak.io, [Online]. Retrieved from the Internet: <URL: http://trak.io/>, (Accessed: Jul. 18, 2013), 3 pgs.
“Apache HBase”, Webpage; Apache HBase Overview page, (Sep. 9, 2011), 1.
“Beta Testing on the Fly”, TestFlight, [Online]. Retrieved from the Internet: <URL: https://testflightapp. com/>, (Accessed: Jul. 18, 2013), 3 pgs.
“Bug 18726—[feature] Long-click means of invoking contextual menus not supported”, Bugzilla@Mozilla, [Online] retrieved from the internet: <http://bugzilla.mozilla.org/show_bug.cgi?id=18726>, (Jun. 13, 2013), 11 pgs.
“Chapter 2: IBM InfoSphere DataStage stages”, IBM Corp; Modification 0 of IBM Information Server, Version 8, Release 1, 1st Edition, (2008), 35-137.
“Countly”, Countly Mobile Analytics, [Online]. Retrieved from the Internet: <URL: http://count.ly/products/screenshots, (accessed Jul. 18, 2013), 9 pgs.
“Data Powered Mobile Advertising”, Free Mobile App Analytics and various analytics related screen shots, (Jul. 18, 2013), 8 pgs.
“DISTIMO—App Analytics”, [Online]. Retrieved from the Internet: <URL: http://www.distimo.com/app-analytics, (accessed Jul. 18, 2013), 5 pgs.
“E-security begins with sound security policies”, Symantec Corporation, Announcement Symantec, XP002265695, (Jun. 14, 2001), 1,9.
“Federated Database System”, From Wikipedia, (Sep. 7, 2013), 1-6.
“Flurry Analytics”, [Online]. Retrieved from the Internet: <URL: http://www.flurry.com/, (accessed Jul. 18, 2013), 14 pgs.
“Getting Started with VBA in Word 2010”, Microsoft-Developer Network,, [Online] retrieved from the internet: <http://msdn.microsoft.com/en-us/library/ff604039%28v=office. 14%29.aspx>, (Apr. 4, 2014), 17 pgs.
“GIS-NET 3 Public-Department of Regional Planning”, Planning & Zoning Information for Unincorporated LA County, [Online] retrieved from the internet: <http://qis.planning.lacounty.gov/GIS-NET3 Public/Viewer.html>, (Oct. 2, 2013).
“Google Analytics Official Website—Web Analytics & Reporting”, [Online]. Retrieved from the Internet: <URL: http://www.google.com/ analytics/index.html, (accessed Jul. 18, 2013), 22 pgs.
“Hunchlab: Heat Map and Kernel Density Calculation for Crime Analysis”, Azavea Journal, [Online]. Retrieved from the Internet: <www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab>, (Sep. 9, 2014), 2 pgs.
“Identify—Defintion”, Downloaded Jan. 22, 2015, (Jan. 22, 2015), 1 pg.
“KeyLines Datasheet”, Keylines.com, [Online]. Retrieved from the Internet: <URL: http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf>, (Mar. 2014), 2 pgs.
“Map Builder: Rapid Mashup Development Tool for Google and Yahoo Maps!”, http://web.archive.org/web/20090626224734/http://www.mapbuilder.net/, (Jul. 20, 2012), 2 pgs.
“Map of San Jose, CA”, Bing, [Online] retrieved from the internet: <http://maps.bing.com>, (Oct. 2, 2013), 1 pg.
“Map of San Jose, CA”, Google, [Online] retrieved from the internet: <http://maps.google.com>, (Oct. 2, 2013), 1 pg.
“Map of San Jose, CA”, Yahoo, [Online] retrieved from the internet: <http://maps.yahoo.com>, (Oct. 2, 2013), 1 pg.
“Mixpanel: Actions speak louder than page views”, Mobile Analytics, [Online]. Retrieved from the Internet: <URL: https://mixpanel.com/>, (Accessed: Jul. 18, 2013), 13 pgs.
“Mobile App Marketing & Analytics”, Localytics, [Online]. Retrieved from the Internet: <URL: http://www.localytics.com/>, (Accessed: Jul. 18, 2013), 12 pgs.
“Mobile Web”, Wikipedia:, [Online] retrieved from the internet:https://en.wikipedia.org/w/index.php?title=Mobile Web&oldid=643800164, (Jan. 23, 2015), 6 pgs.
“More than android analytics”, UserMetrix, [Online]. Retrieved from the Internet: <URL: http://usermetrix.com/android-analytics>, (Accessed: Jul. 18, 2013), 3 pgs.
“More Than Mobile Analytics”, Kontagent, [Online]. Retrieved from the Internet: <URL: http://www. kontagent. com/>, (Accessed: Jul. 18, 2013), 9 pgs.
“Multimap”, Wikipedia, [Online]. Retrieved from the Internet: <URL: https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748>, (Jan. 1, 2013), 2 pgs.
“Overlay—Definition”, Downloaded Jan. 22, 2015, (Jan. 22, 2015), 1.
“Palantir Labs—Timeline”, https://www.youtube.com/watch?v=JCgDW5bru9M, (Oct. 2010), 1 pg.
“Piwik—Free Web Analytics Software”, Piwik, [Online]. Retrieved from the Internet: <URL: http://piwik.org/>, (Accessed: Jul. 19, 2013), 18 pgs.
“Potential Money Laundering Warning Signs”, [Online] Retrieved from the internet: <https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%2OLAUNDERING%20TRAINING%20GUIDES.pdf>, (Accessed 2003), 6 pgs.
“Realtime Constant Customer Touchpoint”, Capptain—Pilot your apps, [Online] retrieved from the internet: <http://www.capptain.com>, (accessed Jul. 18, 2013), 6 pgs.
“Refresh CSS ellipsis when resizing container”, Stack Overflow, [Online]. Retrieved from the Internet: <URL: http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container>, Accessed: May 18, 2015, (Jul. 31, 2013), 1 pg.
“Smart Thinking for Super Apps”, [Online]. Retrieved from the Internet: <http://www.appacts.com>, (Jul. 18, 2013), 4 pgs.
“The Apache Cassandra Project” 3 pgs, 2015.
“The FASTA Program Package”, fasta-36.3.4, (Mar. 25, 2011), 1-29.
“Toad for Oracle 11.6, Guide to Using Toad”, Quest Software, (2012), 1-162.
“Visualizing Threats: Improved Cyber Security Through Network Visualization”, Keylines.com, [Online] retrieved from the internet: <http:/ /keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf>, (May 12, 2014), 10 pgs.
“Welcome to StatCounter—Visitor Analysis for Your Website”, StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, [Online]. Retrieved from the Internet: <URL: http://statcounter.com/>, (Accessed: Jul. 19, 2013), 17 pgs.
“White Papers: Resources Center”, Quartet FS, [Online]. [Archived Oct. 16, 2014]. Retrieved from the Internet: <URL: https://web.archive.org/web/20141016044306/http://quartetfs.com/resource-center/white-papers>, (Archived: Oct. 16, 2014), 7 pgs.
“White Papper: Managing Business Performance and Detecting Outliers in Financial Services”, Quartet FS, [Online]. Retrieved from the Internet: <URL: https://quartetfs.com/images/pdf/white-papers/Quartet_FS_White_Paper_-_ActivePivot_Sentinel.pdf>, (Accessed: Oct. 10, 2016), 15 pgs.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Office Word 2003”, (Dec. 24, 2003), 15-18, 34-41, 308-316.
Alfred, Rayner, “Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques”, Journal of Computer Science 6 (7), (2010), 775-784.
Ananiev, et al., “The New Modality API”, Sun Developer Network (SDN), [Online] retrieved from the internet: <http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicaiArticles/J2SE/Desktop/javase6/modality/>, (Jan. 21, 2006), 12 pgs.
Anjewierden, et al., “Automatic Indexing of PDF Documents with Ontologies”, Social Science Informatics, University of Amsterdam, The Netherlands, (Jun. 11, 2011), 8 pgs.
Antoshenkov, Gennady, “Dictionary-based order-preserving string compression”, The VLDB Journal, #6, (1997), 1-14.
Baker, David W., et al., “The Development of a Common Enumeration of Vulnerabilities and Exposures”, Presented at the Second International Workshop on Recent Advances in Intrusion Detection, (Sep. 1999), 1-35.
Baker, Jason, et al., “Megastore: Providing Scalable, Highly Available Storage for Interactive Services”, 5th Biennial Conference on Innovative Data Systems Research (CIDR '11) Jan. 9-12, 2011, Asilomar, California, USA., (Jan. 2011), 223-234.
Bernstein, Philip, et al., “Hyder—A Transactional Record Manager for Shared Flash”, 5th Biennial Conference on Innovative Data Systems Research (CIDR '11) Jan. 9-12, 2011, Asilomar, California, USA, (Jan. 2011), 9-20.
Bhosale, Safal V, “Holy Grail of Outlier Detection Technique: A Macro Level Take on the State of the Art”, International Journal of Computer Science and Information Technologies, vol. 5(4), (2014), 5872-5874.
Bluttman, et al., “Excel Formulas and Functions for Dummies”, Wiley Publishing, Inc.,, (2005), 280, 284-286.
Boyce, Jim, “Microsoft Outlook 2010 Inside Out”, https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside_out.pdf, (Aug. 1, 2010), 1-1111.
Canese, Kathi, et al., “Chapter 2: PubMed: The Bibliographic Database”, The NCBI Handbook, (Oct. 2002), 1-10.
Celik, T, “CSS Basic User Interface Module Level 3 (CSS3 UI)”, Section 8; Resizing and Overflow, [Online] retrieved from the Internet: <http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow>, (Jan. 17, 2012), 1-58.
Chang, et al., “A new multi-search engine for querying data through an Internet search service on CORBA”, Computer Networks, vol. 34, Issue 3, (Sep. 2000), 467-480.
Chang, Fay, et al., “Bigtable: A Distributed Storage System for Structured Data”, Google, Inc., (Jun. 2, 2008), 1-14.
Chaudhuri, Surajit, et al., “An Overview of Business Intelligence Technology”, Communications of the ACM, vol. 54, No. 8., (Aug. 2011), 88-98.
Chen, et al., “Bringing Order to the Web: Automatically Categorizing Search Results”, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, The Haque, The Netherlands, (2000), 145-152.
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases”, Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, (Jan. 1, 1990), 70-80.
Cohn, David, et al., “Semi-supervised Clustering with User Feedback”, Cornell University, (2003), 9 pgs.
Conner, Nancy, “Google Apps: The Missing Manual”, (May 1, 2008), 15 pgs.
Delcher, Arthur, et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer”, BioInformatics, vol. 23, No. 6, (2007), 673-679.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model”, Directions Magazine,, [Online] retrieved from the internet: <http://www.directionsmag.com/articles/retail-trade-area-analysis-usinq-the-huff-model/123411>, (Jul. 2, 2005), 10 pgs.
Dreyer, Werner, et al., “An Object-Oriented Data Model for a Time Series Management System”, IEEE—Proceedings of the 7th International Working Conference on Scientific and Statistical Datablse Management; Charlottesvlle, Virginia USA,, (1994), 12 pgs.
Elmasri, Ramez, et al., “Fundamentals of Database Systems”, Fourth Edition—Chapter 14—Indexing Structures for Files, (2004), 455-491.
Gesher, Ari, “Palantir screenshots in the wild: Swing Sightings”, [Online] Retrieved from the internet: <https://www.palantir.com/2007/09/palantir-screenshots/>, (Sep. 11, 2007), 1-12.
Golmohammadi, et al., “Data Mining Applications for Fraud Detection in Securities Market”, Intelligence and Security Informatics Conference (EISIC) 2012 European, IEEE,, (Aug. 22, 2012), 107-114.
Gorr, et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, (May 6, 2002), 37 pgs.
Goswami, Gautam, “Quite Writely Said!”, Blog: One Brick a Time, [Online]. Retrieved from the Internet: <URL: http://gautamg.wordpress.com/2006/08/21/quite-writely-said/>, (Aug. 2005), 7 pgs.
Griffith, Daniel A, et al., “A Generalized Huff Model”, Geographical Analysis, vol. 14, No. 2, (Apr. 1982), 135-144.
Gu, et al., “BotMiner: Clustering Analysis of Network Traffice for Protocol-and-Structure-Independent Botnet Detection”, USENIX Security Symposium, (2008), 17 pgs.
Gu, Lifang, et al., “Record Linkage: Current Practice and Future Directions”, (Jan. 15, 2004), 32 pgs.
Hansen, D., et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164,, (Sep. 2010), 53-67; 143-164.
Hardesty, Larry, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata”, MIT News on Campus and Around the World, MIT News Office, (Jan. 29, 2015), 1-3.
Hibbert, et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework”, (Mar. 18, 2011), 16 pgs.
Hodge, et al., “A Survey of Outlier Detection Methodologies”, Artificial Intelligence Review, vol. 22, No. 2, (Oct. 1, 2004).
Hogue, Andrew, et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web”, 14th International Conference on World Wide Web, WWW 2005, (May 2005), 42 pgs.
Hua, Yu, et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, (2006), 277-288.
Huang, Da Wei, et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources”, Nature Protocols, 4.1, (Dec. 2008), 44-57.
Huff, et al., “Calibrating the Huff Model Using ArcGIS Business Analyst”, ESRI, (Sep. 2008), 33 pgs.
Huff, David L, “Parameter Estimation in the Huff Model”, ESRI, ArcUser, (2003), 34-36.
Jelen, Bill, “Excel 2013 in Depth, Video Enhanced Edition”, (Jan. 25, 2013), 20 pgs.
Kahan, J., et al., “Annotea: an open RDF Infrastructure for Shared Web Annotations”, Computer Networks vol. 39, No. 5, (2002), 589-608.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process”, The NCBI Handbook, (Oct. 2002), 1-21.
Klemmer, Scott R, et al., “Where Do Web Sites Come From? Capturing and Interacting with Design History”, Association for Computing Machinery, CHI 2002, (Apr. 2002), 1-8.
Kokossis, A, et al., “D7-Dynamic Ontology Managment system (Design)”, h-TechSight Consortium Oct. 2002, (Oct. 2002), 27 pgs.
Levi, Micheal, “Money Laundering Risks and E-Gaming: A European Overview and Assessment”, [Online]. Retrieved from the Internet: <URL: http://www.egba.eu/pdf/Levi_Final_Money_Laundering_Risks_egaming%20280909.pdf>, (2009), 30 pgs.
Li, H., et al., “Interactive Multimodal Visual Search on Mobile Device”, IEEE Transactions on Multimedia, vol. 15, No. 3, (Apr. 1, 2013), 594-607.
Li, Shing-Han, et al., “Identifying the signs of fraudulent accounts using data mining techniques”, Computers in Human Behavior, vol. 28, (2012), 1002-1013.
Liu, T., “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA”, Papers in Resource Analysis, 2012, vol. 14, (2012), 8 pgs.
Madden, “Chapter 16: BLAST Sequence Analysis Tool”, The NCBI Handbook, (Oct. 2002), 1-15.
Manno, et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture”, (2010), 10 pgs.
Manske, “File Saving Dialogs”, [Online] retrieved from the internet: <http://www.mozilla.org/editor/ui specs/FileSaveDialogs.html>, (Jan. 20, 1999), 7 pgs.
Mentzas, G., et al., “An Architecture for Intelligent Assistance in the Forecasting Process”, Proceedings of the 28th Annual Hawaii International Conference on System Sciences, (1995), 167-176.
Miklau, Gerome, et al., “Securing history: Privacy and accountability in database systems”, 3rd Biennial Conference on Innovative Data Systems Research (CIDR), (2007), 387-396.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nucleotide Sequence Database”, The NCBI Handbook, (Oct. 2002), 1-14.
Ngai, E.W.T., et al., “The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature”, Decision Support Systems 50 (2011), (2011), 559-569.
Niepert, M., et al., “A Dynamic Ontology for a Dynamic Reference Work”, JCDL '07 Proceedings, ACM, (Jun. 2007), 10.
Nierman, Andrew, et al., “Evaluating Structural Similarity in XML Documents”, U of Michigan, (2002), 1-6.
Nolan, Richard, et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework”, Homeland Security, 2012 IEEE Conference, (2012), 13-17.
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility”, Retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/, (May 15, 2013), 1-6.
Palmas, et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates”, IEEE Pacific Visualization Symposium, (2014), 57-64.
Peng, Daniel, et al., “Large-scale Incremental Processing Using Distributied Transactions and Notifications”, OSDI, (2010), 1-15.
Perdisci, Roberto, et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces”, USENIX, (Mar. 18, 2010), 1-14.
Rouse, Margaret, “OLAP Cube”, [Online] retrieved from the internet: <http://searchdatamanagement.techtarget.com/definition/OLAP-cube>, (Apr. 28, 2012), 15 pgs.
Shah, Chintan, “Periodic Connections to Control Server Offer New Way to Detect Botnets”, McAfee Labs, [Online]. Retrieved from the Internet: <URL: blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets>, (Oct. 24, 2013), 6 pgs.
Shi, Liang, et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors”, 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, (Oct. 10, 2013), 59-66.
Sigrist, Christian, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation”, Nucleic Acids Research, vol. 38, (2010), D161-D166.
Sirotkin, Karl, et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI”, The NCBI Handbook, (Oct. 2002), 1-11.
Thompson, Mick, “Getting Started with GEO”, (Jul. 26, 2011), 3 pgs.
Thomson, Alexander, et al., “The Case for Determinism in Database Systems”, Proceedings of the VLDB Endowment, 3(1), (Sep. 2010), 70-80.
Umagandhi, R., et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs”, International Journal of Computer Applications, vol. 80, No. 10, (Oct. 1, 2013), 7-18.
Valentini, Giorgio, et al., “Ensembles of Learning Machines”, Lecture Notes in Computer Science: Neural Nets, Springer Berlin Heidelberg, (Sep. 26, 2002), 3-20.
Wang, Guohua, et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter”, IEEE, (2010), 5 pgs.
Wiggerts, T. A, et al., “Using Clustering Algorithms in Legacy Systems Remodularization”, Proceedings of the Fourth Working Conference on Reverse Engineering, (1997), 33-43.
Wollrath, Ann, et al., “A Distributed Object Model for the Java System”, Proceedings of the 2nd Conference on USENEX, Conference on Object-Orients Technologies and Systems, (Jun. 1996), 219-231.
Wright, Brandon, et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing”, (Oct. 29, 2010), 10 pgs.
Xiv, Golem, “A word about banks and the laundering of drug money”, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/, (Aug. 18, 2012), 1-21.
Yang, et al., “Retroactive Answering of Search Queries”, WWW 2006 Edinburgh, Scotland, (May 23-26, 2006), 457-466.
Yang, Yudong, “HTML Page Analysis Based on Visual Cues”, 2001 IEEE, (2001), 859-864.
“BackTult—JD Edwards One World Version Control System”, eKin Systems, Inc., (Accessed Jul. 23, 2007), 1 pg.
Butkovic, Asmir, et al., “Using Whois Based Geolocation and Google Maps API for support cybercrime investigations”, Recent Advances in Telecommunications and Circuits:Proceedings of the 11th International Conference on Applied Electromagnetics, Wireless and Optical Communications (Electroscience '13),, Proceedings of the 2nd International Conference on Circuits, Systems, Communications, Computers and Applications (CSCCA '13), ) :Dubrovnik, Croatia, Jun. 25-27, 2013, pp. 194-200, 2013, (2013), 194-200.
Devanbu, Prem, et al., “Authentic Third-party Data Publication”, [Online] Retrieved from the internet<http://www.cs.ucdavis.edu/˜devanbu/authdbpub.pdf>, (Accessed Feb. 6, 2012), 19 pgs.
Provisional Applications (1)
Number Date Country
62424844 Nov 2016 US