This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2010-106790, filed on May 6, 2010, the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are related to leak current analysis of a semiconductor integrated circuit.
With the miniaturization of semiconductor integrated circuits, fluctuation of leak current consequent to processing has increased. Leak current is current that flows through a place where the current is not supposed to flow. Leak current aggravates power consumption and heat emission of a circuit, lowering the performance of the circuit. Thus, it is important to correctly estimate leak current when the circuit is designed and to take measures against leak current.
One method for estimating leak current taking account of fluctuation of the leak current is statistical leak current analysis. Statistical leak current analysis creates a model for leak current fluctuation of devices in the circuit. A fluctuation distribution of leak current over the entire circuit is calculated as the sum of fluctuation of leak current from each device in the circuit. As a prior art reference, refer to Japanese Laid-Open Patent Publication No. 2009-164241.
However, according to the conventional technique, a huge number of devices (for example, tens of millions to hundreds of millions devices) are calculated to yield the sum of fluctuation of leak current as a fluctuation distribution of leak current over the entire circuit. Consequently, the processing time for the statistical leak current analysis has increased and the designing period has been lengthened.
According to an aspect of an embodiment, a computer-readable, non-transitory medium stores a program causing a computer to execute a process that includes acquiring a unique coefficient that is unique to a device in a circuit under test and is included in a function expressing fluctuation of leak current of the device; detecting as a group and based on the unique coefficient, devices having an identical or similar characteristic; converting first random variables into a single second random variable, the first random variables expressing fluctuation of leak current unique to each of the detected devices; yielding a function that expresses fluctuation of leak current of the detected devices, using the second random variable; and outputting the yielded function.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
Preferred embodiments of the present invention will be explained with reference to the accompanying drawings.
One example of an analysis support method is explained. A circuit under test is a semiconductor integrated circuit (for example, a processor) that is analyzed for leak current when the circuit is designed. A cell is a device such as a NOT gate, an AND gate, a NAND gate, an OR gate, wiring, a buffer, an inverter (INV), and a FF that are included in the circuit under test.
Fluctuation of leak current of cells in the circuit under test includes a first fluctuation that is unique to each cell, and a second fluctuation that is common to all cells. Therefore, the fluctuation of the leak current can be expressed as a function of fluctuation parameters based on a gate length, a gate width, etc. of a transistor in a cell as shown in equation (1) below.
lc denotes fluctuation of leak current of a cell. α denotes a first fluctuation parameter concerning the first fluctuation. β denotes a second fluctuation parameter concerning the second fluctuation. α and β are random variables and follow, for example, a standard normal distribution having expected value of zero and variance of one. a, b, and c are coefficients unique to each cell.
lc=exp(a+b×α+c×β) (1)
With reference to
In this case, the fluctuation of leak current of the circuit under test 100 is expressed as the sum of fluctuation of leak current of cells C1 to C3 as shown in equation (2) where L denotes the fluctuation of leak current of the circuit under test 100, lC1 denotes fluctuation of leak current of cell C1, lC2 denotes fluctuation of leak current of cell C2, and lC3 denotes fluctuation of leak current of cell C3.
L=lC1+lC2+lC3=exp(a1+b1×α1+c1×β)+exp(a2+b2×α2+c2×β)+exp(a3+b3×α3+c3×β) (2)
Cells C1 to C3 form a cell group having an identical or similar characteristic. For example, cells C1 to C3 are NAND gates having identical driving capability. A cell group having an identical characteristic indicates, for example, a cell group where types (functions) of cells are identical and the driving capability of cells is identical. A cell group having a similar characteristic indicates, for example, a cell group where types of cells are identical and the difference in the driving capability of cells falls within a given range.
Cells having an identical or similar characteristic have identical or nearly identical coefficients a, b, and c. As an example, coefficients a1 to a3 are identical, coefficients b1 to b3 are identical, and coefficients c1 to c3 are identical in equation (2).
(i) In this method, coefficients a1 to a3, b1 to b3, and c1 to c3 are replaced with coefficients a, b, and c where a=a1=a2=a3, b=b1=b2=b3, and c=c1=c2=c3. As a result, equation (2) is written as equation (3) below.
L=exp(a+b×α1+c×β)+exp(a+b×α2+c×β)+exp(a+b×α3+c×β)=exp(a)×{exp (b×α1)+exp(b×α2)+exp(b×α3)}×exp(c×β) (3)
(ii) In this method, the first fluctuation parameters α1, α2, and α3 included in equation (3) are converted into one first fluctuation parameter α. For example, by a mathematical approximation scheme, terms including α1, α2, and α3 are converted as shown in equation (4) below where A is defined by equation (5) and B2 is defined by equation (6).
exp(b×α1)+exp(b×α2)+exp(b×α3)≈exp(A+B×α) (4)
A=(½)×log [33exp(b2)/{exp(b2)+3−1}] (5)
B2=log {(exp(b2)+3−1)/3} (6)
(iii) In this method, a function expressing the fluctuation of leak current of the circuit under test 100 (cells C1 to C3) is acquired using the first fluctuation parameter α in which multiple first fluctuation parameters α1, α2, and α3 are reflected. As a result, equation (3) is written as equation (7).
L=exp(a)×exp(A+B×α)×exp(c×β)=exp(a+A+B×α+c×β) (7)
According to the method explained above, cells in the circuit under test are classified into cell groups based on identical or similar characteristics; whereby the number of terms in the function (polynomial) that expresses fluctuation of leak current is reduced. As a result, the processing time consumed for the statistical leak current analysis of the circuit under test can be shortened. In the example of the conversion from equation (3) to equation (7), three terms concerning an exponential function are reduced to one term.
A hardware configuration of an analysis support apparatus 200 according to the embodiments is explained.
The CPU 201 governs overall control of the analysis support apparatus 200. The ROM 202 stores therein programs such as a boot program. The RAM 203 is used as a work area of the CPU 201. The magnetic disk drive 204, under the control of the CPU 201, controls reading/writing of data from or to the magnetic disk 205. The magnetic disk 205 stores therein the data written under the control of the magnetic disk drive 204.
The optical disk drive 206, under the control of the CPU 201, controls the reading and writing of data with respect to the optical disk 207. The optical disk 207 stores therein the data written under the control of the optical disk drive 206, the data being read by the computer.
The display 208 displays a cursor, an icon, or a toolbox as well as data such as documents, images, and information on functions. The display 208 may be, for example, a cathode ray tube (CRT), a thin-film-transistor (TFT) liquid crystal display, or a plasma display.
The I/F 209 is connected to a network 214 such as the Local Area Network (LAN), the Wide Area Network (WAN), and the Internet through a telecommunication line and is connected to other devices by way of the network 214. The I/F 209 manages the network 214 and an internal interface, and controls the input and output of data from or to external devices. The I/F 209 may be, for example, a modem or a LAN adapter.
The keyboard 210 is equipped with keys for the input of characters, numerals, and various instructions, and data is entered through the keyboard 210. The keyboard 210 may be a touch-panel input pad or a numeric keypad. The mouse 211 performs cursor movement, range selection, and movement, size change, etc., of a window. The mouse 211 may be a trackball or a joystick provided the trackball or joystick has similar functions as a pointing device.
The scanner 212 optically reads an image and takes in the image data into the analysis support apparatus 200. The scanner 212 may have an optical character recognition (OCR) function as well. The printer 213 prints image data and document data. The printer 213 may be, for example, a laser printer or an ink jet printer.
The contents of a cell fluctuation data table 300 used by an analysis support apparatus 200 is explained. The cell fluctuation data table 300 is implemented by, for example, a storage device such as the RAM 203, the magnetic disk 205, and the optical disk 207 depicted in
The cell ID is an identifier for cell Ci in the circuit under test (i=1, 2, . . . , n). Coefficients a, b, and c form a coefficient group included in equation (1). Cell Ci as an example has a coefficient group {a(i), b(i), c(i)}.
A functional configuration of the analysis support apparatus 200 is explained.
Each functional unit (acquiring unit 401 to output unit 408) is implemented by the CPU 201 executing a program stored in a storage device such as the ROM 202, the RAM 203, the magnetic disk 205, and the optical disk 207, or implemented by the I/F 209. Output from each functional unit (acquiring unit 401 to output unit 408) are stored to a storage device such as the RAM 203, the magnetic disk 205, and the optical disk 207 except as otherwise specifically explained.
The acquiring unit 401 acquires, for each cell Ci in the circuit under test, coefficients unique to the cell Ci included in a function expressing fluctuation of leak current of cell Ci. The function expressing fluctuation of leak current of cell Ci is, for example, a probability density function expressed by equation (1) above. Coefficients unique to a cell Ci are coefficient group {a, b, c} included in equation (1) above.
For example, the acquiring unit 401 acquires cell fluctuation data 300-1 to 300-n through a user input operation via the keyboard 210 or the mouse 211. The acquiring unit 401 may acquire the cell fluctuation data 300-1 to 300-n by extracting the data from a database or library (not depicted). The acquired data 300-1 to 300-n are stored in, for example, the cell fluctuation data table 300 depicted in
The detecting unit 402, from among cells C1 to Cn in the circuit under test and based on coefficients unique to acquire cell Ci, detects a cell group having an identical or similar characteristic. The characteristic is, for example, determined by the type or driving capability of cell Ci such as a NOT gate, an AND gate, a wiring, a buffer, an INV, and a FF.
Cells having an identical or a similar characteristic have identical or nearly identical coefficients. The detecting unit 402 detects, from among cells C1 to Cn, a cell group having identical or similar coefficients unique to cell Ci as a cell group in which characteristics of cells are identical or similar. With reference to
The dividing unit 403 divides an interval from the minimum to the maximum of coefficients a, b, and c based on dividing number Na, Nb, and Nc. The dividing number Na is a number indicating how many segments an interval between the minimum to the maximum of coefficient a is divided into. The dividing number Nb is a number indicating how many segments an interval between the minimum and the maximum of coefficient b is divided into. The dividing number Nc is a number indicating how many segments an interval between the minimum to the maximum of coefficient c is divided into.
The dividing numbers Na, Nb, and Nc are set beforehand and stored in a storage device such as the ROM 202, the RAM 203, the magnetic disk 205, and the optical disk 207. The acquiring unit 401 may acquire the dividing numbers Na, Nb, and Nc through a user input operation via the keyboard 210 or the mouse 211.
However, a tradeoff exists in that as the dividing numbers Na, Nb, and Nc become larger, leak current can be acquired more accurately but the processing time for analysis becomes longer. Consequently, the user appropriately sets the dividing numbers Na, Nb, and Nc in light of, for example, the time period for designing the circuit under test.
The dividing unit 403 equally divides an interval between the minimum and the maximum of coefficients a to c according to the dividing numbers Na, Nb, and Nc. As a result, each axis (a-axis, b-axis, c-axis) is divided into multiple segments. In this case, lengths (hereinafter “mesh width”) of each segment of a- to c-axes are expressed by equations (8) to (10) below.
ha, hb, and hc are mesh widths of a-axis, b-axis, and c-axis. amax and amin are the maximal value and the minimal value of coefficients a(1) to a(n) of cells C1 to Cn. bmax and bmin are the maximal value and the minimal value of coefficients b(1) to b(n) of cells C1 to Cn. cmax and cmin are the maximal value and the minimal value of coefficients c(1) to c(n) of cells C1 to Cn. Na, Nb, and Nc are dividing numbers.
ha=(amax−amin)/Na (8)
hb=(bmax−bmin)/Nb (9)
hc=(cmax−Cmin)/Nc (10)
For example, consider a case where Na=2, Nb=3, and Nc=2. In this case, an interval between amin and amax on a-axis is divided equally into two segments. An interval between bmin and bmax on b-axis is divided equally into three segments. An interval between cmin and cmax on c-axis is divided equally into two segments.
In the abc coordinate system 500, a space 510 having vertices t1 to t8 is considered (hexahedron enclosed by heavy line in
The space 510 is divided by a plane that includes a dividing point on a-axis and is parallel with a plane formed by b-axis and c-axis. The space 510 is divided by a plane that includes a dividing point on b-axis and is parallel with a plane formed by a-axis and c-axis. The space 510 is divided by a plane that includes a dividing point on c-axis and is parallel with a plane formed by a-axis and b-axis.
As a result, the space 510 is divided into multiple cubes or cuboids (hereinafter “mesh space M1 to Mm”) in the abc coordinate system 500. In the example of
Coordinates of a mesh space Mj (j=1, 2, . . . , m) in the abc coordinate system 500 is expressed as equation (11) below where ra represents an a-coordinate in the mesh space Mj (the range of coefficient a), rb represents a b-coordinate in the mesh space Mj (the range of coefficient b), and rc represents a c-coordinate in the mesh space Mj (the range of coefficient c). ra, rb, and rc are natural numbers including zero (0, 1, 2, . . . ).
[ra, rb, rc]=[amin+ra×ha≦a<amin+(ra+1)×ha, bmin+rb×hb≦b<bmin+(rb+1)×hb, cmin−rc×hc≦c<cmin+(rc+1)×hc] (11)
For example, the coordinates of the mesh space M1 is expressed as [0, 0, 0]=[amin≦a<amin+ha, bmin≦b<bmin+hb, cmin≦c<cmin+hc]. The coordinates of the mesh space M8 is expressed as [1, 0, 1]=[amin+ha≦a<amin+2ha, bmin≦b<bmin+hb, cmin+hcc<cmin+2hc].
The detecting unit 402 detects, as a cell group having an identical or similar characteristic, cells that are included in a mesh space Mj when cells Ci are plotted in the abc coordinate system 500, based on coefficients a, b, and c. In other words, a cell group having an identical or similar characteristic is detected as a mesh space since those having nearly equal values of coefficients a, b, and c belong to the same mesh space Mj.
As an example, for the mesh space M8, the detecting unit 402 detects from among cells C1 to Cn, a cell group that satisfies equation (12) below for coefficient a, satisfies equation (13) below for coefficient b, and satisfies equation (14) below for coefficient c. In the example of
amin+ha≦a<amin+2ha (12)
bmin≦b<bmin+hb (13)
cmin+hc≦c<cmin2hc (14)
Results of the detection are stored in, for example, a mesh fluctuation data table 600 depicted in
The mesh space ID is an identifier for mesh space Mj (j=1, 2, . . . , m). Coordinates indicate coordinates of mesh space Mj in the abc coordinate system 500. The cell ID is an identifier for cell Ci included in the mesh space Mj. In the explanation below, cell Ci included in the mesh space Mj is expressed as “cell p[1], cell p[2], . . . , cell p[X]”.
The number of cells indicates the number of cells X included in the mesh space Mj. Coefficients A, B, and C are coefficients included in equation (23) below that expresses fluctuation of leak current of cells p[1] to p[X] in the mesh space Mj. A detailed explanation of coefficient A, coefficient B, and coefficient C will be given later.
For example, it is assumed that the detecting unit 402 has detected cells C3, C5, C7, and C9 in the mesh space M8. In this case, cell IDs for “C3, C5, C7, C9” are set in the “cell ID” field of the mesh space M8 in the mesh fluctuation data table 600, and “4” is set in the “the number of cells” field.
Explanation returns to
ga(j) denotes a value of coefficient a common to cells p[1] to p[X] in the mesh space Mj. gb(j) denotes a value of coefficient b common to cells p[1] to p[X] in the mesh space Mj. gc(j) denotes a value of coefficient c common to cells p[1] to p[X] in the mesh space M.
X denotes the number of cells included in the mesh space Mj. pa[1] to pa[X] denote values of coefficient a of each cell p[1] to p[X]. pb[1] to pb[X] denote values of coefficient b of each cell p[1] to p[X]. pc[1] to pc[X] denote values of coefficient c of each cell p[1] to p[X].
ga(j)=(pa[1]+pa[2]+ . . . +pa[X])/X (15)
gb(j)=(pb[1]+pb[2]+ . . . +pb[X])/X (16)
gc(j)=(pc[1]+pc[2]+ . . . +pc[X])/X (17)
In the example of the mesh space M8, the value of coefficient a common to cells C3, C5, C7, and C9 included in the mesh space M8 is given by “ga(8)={a(3)+a(5)+a(7)+a(9)}/4”. The value of coefficient b common to cells C3, C5, C7, and C9 included in the mesh space M8 is given by “gb(8)={b(3)+b(5)+b(7)+b(9)}/4”. The value of coefficient c common to cells C3, C5, C7, and C9 included in the mesh space M8 is given by “gc(8)={c(3)+c(5)+c(7)+c(9)}/4”.
In other words, the average of the coefficients a, b, and c (centroid of mesh space Mj) is used as values of coefficients a, b, and c common to cells p[1] to p[X]. However, coordinates of the center of the mesh space Mj or coordinates of an arbitrary point in the mesh space Mj may be set to the values of coefficients a, b, and c common to cells p[1] to p[X]. When the mesh space Mj includes no cell Ci, coefficients ga(j), gb(j), gc(j) are not calculated.
The converting unit 405 converts random variables denoting fluctuation of leak current unique to each cell Ci of the detected cells into one random variable. For example, the converting unit 405 converts coefficients pa[1] to pa[X], pb[1] to pb[X], pc[1] to pc[X] unique to each cell p[1] to p[X] into coefficients ga(j), gb(i), gc(j) common to cells p[1] to p[X].
The fluctuation of leak current of cells p[1] to p[X] in the mesh space Mj is expressed by equation (18) below where lMj denotes fluctuation of leak current of cells p[1] to p[X] in the mesh space Mj. α[x] denotes a first fluctuation parameter unique to cell p[x] (x=1, 2, . . . , X). β denotes a second fluctuation parameter common to all cells C1 to Cn in the circuit under test.
lMj=exp(pa[1]+pb[1]×α[1]+pc[1]×β)+exp(pa[2]+pb[2]×α[2]+pc[2]×β)+ . . . +exp(pa[X]+pb[X]×α[x]+pc[X]×β) (18)
As a result, when the converting unit 405 converts pa[x], pb[x], pc[x] into ga(j), gb(j), gc(j), equation (18) is converted into equation (19) below.
lMj=exp(ga(j)) ×{exp(gb(j)×α[1])+exp(gb(j)×α[2])+ . . . +exp(gb(j)×α[X])}×exp(gc(j)×β) (19)
The converting unit 405 converts X first fluctuation parameters α[1] to α[x] in equation (19) into one first fluctuation parameter αj. For example, the converting unit 405 converts terms including the first fluctuation parameters α[1] to α[x] in equation (19) into equation (20) below using Wilkinson's approximation where A(j) is defined as equation (21) and B(j)2 is defined in equation (22). A detailed explanation of Wilkinson's approximation will be given later.
exp(gb(j)×α[1])+exp(gb(j)×α[2])+ . . . +exp(gb(j)×α[x])≈exp{A(j)+B(j)×αj} (20)
A(j)=ga(j)+(½)×log [N(j)3×exp(gb(j)2)/{exp(gb(j)2)+N(j)−1}] (21)
B(j)2=log {(exp(gb(j)2)+N(j)−1)/N(j)} (22)
Results of the conversion are, for example, stored in the mesh fluctuation data table 600 depicted in
The function yielding unit 406 yields a function that expresses fluctuation of leak current of cells, using converted random variables. For example, the function yielding unit 406 yields equation (23) below that expresses fluctuation of leak current of cells p[1] to p[X], using the first fluctuation parameter αj. C(j) can also be written as gc(j). β is the second fluctuation parameter common to all cells C1 to Cn in the circuit under test.
lMj=exp{A(j)+B(j)×αj+C(j)×β} (23)
C(j) in equation (23) is set in the “coefficient C” field of the mesh space Mj in the mesh fluctuation data table 600.
The leak calculating unit 407 calculates leak current of the circuit under test based on the function acquired. For example, the leak calculating unit 407 performs statistical leak current analysis based on the mesh fluctuation data 600-1 to 600-m in the mesh fluctuation data table 600.
The leak calculating unit 407 may transfer the mesh fluctuation data 600-1 to 600-m to a simulator (not depicted) to perform the statistical leak current analysis. In this case, the leak calculating unit 407 acquires a result of the analysis from an external simulator.
For example, the leak calculating unit 407 performs a Monte Carlo simulation based on the mesh fluctuation data 600-1 to 600-m. In the calculation, since coefficient terms of cells having an identical or similar characteristic are reduced to fewer terms, a great amount of calculation for generation of random numbers, calculation of exponents, multiplication, addition, etc. is reduced and the processing time is shortened.
The output unit 408 outputs calculated leak current of the circuit under test. For example, the output unit 408 may output an analysis result 700 of the statistical leak current analysis depicted in
The output unit 408 may output a function that has been yielded at the function yielding unit 406 and expresses fluctuation of leak current of cells. For example, the output unit 408 outputs the mesh fluctuation data 600-1 to 600-m in the mesh fluctuation data table 600. Once the data is output, an external simulator can perform the statistical leak current analysis at any time.
In the above explanation, the dividing unit 403 divides an interval between the minimum and the maximum of each of coefficients a, b, and c by the dividing numbers Na, Nb, and Nc equally but the embodiment is not limited to this example. For example, the dividing unit 403 may divide an interval between the minimum and the maximum of coefficient a by the dividing number Na so that a typical value of leak current is divided equally according to the dividing number Na.
A typical value of leak current indicates leak current of cell Ci where a fluctuation component of leak current is removed. In other words, the typical value of leak current indicates leak current of equation (1) in which α=β=0. As a result, a typical value ltyp of leak current of cell Ci is given by equation (24) below.
ltyp=exp(a) (24)
The dividing unit 403 divides, with respect to coefficient a, an interval between the minimum (exp(amin)) and the maximum (exp(amax)) of the typical value equally by the dividing number Na. With respect to coefficients b and c, the dividing unit 403 divides an interval between the minimum and the maximum of each of coefficients b and c equally by the dividing numbers Nb and Nc. In this case, the mesh width ha of a-axis is expressed by equation (25) below and the coordinates of the mesh space Mj are written as equation (26).
ha={exp(amax)−exp(amin)}/Na (25)
[ra,rb,rc]=[log {exp(amin)}+ra×ha]≦a<[log {exp(amin)}+(ra+1)×ha], bmin+rb×hb≦b<bmin+(rb+1)×hb,cmin+rc×hc≦c<cmin+(rc+1)×hc] (26)
By dividing an interval of a typical value of leak current into equal lengths, cells having identical or similar values of leak current can be detected as a cell group having an identical or similar characteristic in comparison with a case where an interval between the minimum and the maximum of coefficient a is divided into identical lengths. As a result, leak current can be detected more accurately.
In the above explanation, coefficients a, b, and c unique to each cell Ci are focused on to detect cells having an identical or similar characteristic but the embodiment is not limited hereto. For example, the detecting unit 402 may detect a cell group in which values of one of coefficients a, b, and c are identical or nearly identical as a cell group having an identical or similar characteristic. For example, the dividing unit 403 divides an interval between the minimum and the maximum of coefficient a unique to each cell Ci by the dividing number Na. The detecting unit 402 detects cells having coefficients a falling within the same segment as a cell group having an identical or similar characteristic.
Wilkinson's approximation is explained here. In Wilkinson's approximation, the sum of independent log-normal random variables is approximated by one log-normal random variable ez (z: normal random variable). More specifically, according to Wilkinson's approximation, the average and the standard deviation of Z in equation (27) below is determined such that the averages and the standard deviations of both sides of equation (27) are equal. Yi (i=1, 2, . . . , n) are independent normal random variables.
eY
New notation is introduced here: mi expresses the average of normal random variable Yi, and σi the standard deviation. The average of the left hand side of equation (27) is written as equation (28) and the deviation as equation (29), where M denotes the average of a distribution on the left hand side of equation (27) and V denotes the deviation of a distribution on the left hand side of equation (27).
Further new notation is introduced: m(Z) denotes the average of a normal random variable Z, and σ(Z) the standard deviation. The average of a distribution on the right hand side of equation (27) is written as equation (30) and the deviation as equation (31).
In Wilkinson's approximation, equation (28) is deemed equal to equation (30), and equation (29) is deemed equal to equation (31) so that the average m(Z) and the standard deviation σ(Z) are calculated. The solutions of such equations are given by equation (32) and (33). M is given by equation (34) and V is given by equation (35).
Equation (4) can be transformed into equation (36) below with Wilkinson's approximation, where α1 to α3 are independent normal random variables.
ebα
The average and the standard deviation of normal random variable Z included in equation (36) are written as equation (37) and (38) below in light of equation (32) and (33), where m is the average of normal random variable Z and σ is the standard deviation of normal random variable Z. M is expressed with equation (39) below and V is expressed with equation (40) below.
From the discussion above, an equation “ez=em+σα” is obtained; whereby multiple first fluctuation parameters α1, α2, and α3 can be converted into one first fluctuation parameter α as shown in equation (4).
A process of an analysis support of the analysis support apparatus 200 is explained.
The process waits until the acquiring unit 401 acquires cell fluctuation data 300-1 to 300-n (step S801: NO). When the cell fluctuation data 300-1 to 300-n are acquired (step S801: YES), the dividing unit 403 divides an interval between the minimum and the maximum of each of coefficients a, b, and c equally according to the dividing number Na, Nb, and Nc (step S802).
The detecting unit 402 sets “j” of the mesh space Mj as “j=1” (step S803). The detecting unit 402 sets the coordinates of the mesh space Mj as “ra=0” (step S804), “rb=0” (step S805), and “rc=0” (step S806).
The detecting unit 402 detects cells p[1] to p[X] in the mesh space Mj (step S807). The detecting unit 402 increments rc (step S808) and determines whether rc>Nc (step S809).
If rc≦Nc (step S809: NO), the detecting unit 402 increments j (step S810) and the process returns to step S807. If rc>Nc (step S809: YES), the detecting unit 402 increments rb (step S811) and determines whether rb>Nb (step S812).
If rb≦Nb (step S812: NO), the detecting unit 402 increments j (step S813) and the process returns to step S806. If rb>Nb (step S812: YES), the detecting unit 402 increments ra (step S814) and determines whether ra>Na (step S815).
If ra≦Na (step S815: NO), the detecting unit 402 increments j (step S816) and the process returns to step S805. If ra>Na. (step S815: YES), the process goes to step S817 depicted in
According to the flowchart of
The coefficient calculating unit 404 calculates coefficient gb(j) common to cells p[1] to p[X] in the mesh space Mj using equation (16) (step S819). The coefficient calculating unit 404 calculates coefficient gc(j) common to cells p[1] to p[X] in the mesh space Mj using equation (17) (step S820).
The converting unit 405 converts coefficients pa[x], pb[x], pc[x] in equation (18) into coefficients ga(j), gb(j), gc(i) (step S821). As a result, equation (18) is converted into equation (19).
The converting unit 405 converts first fluctuation parameters α[1] to α[x] into one first fluctuation parameter αj using Wilkinson's approximation (step S822). As a result, equation (19) is converted into equation (20). A(j) and B(j) in equation (20) are set in the “coefficient A” field and the “coefficient B” field for the mesh space Mj in the mesh fluctuation data table 600.
The converting unit 405, using the first fluctuation parameter αj, yields a function that expresses fluctuation of leak current of cells p[1] to p[X] (step S823). As a result, equation (23) is obtained. C(j) in equation (23) is set in the “coefficient C” field for the mesh space Mj in the mesh fluctuation data table 600.
The coefficient calculating unit 404 increments j (step S824) and determines whether j>m (step S825). If j≦m (step S825: NO), the process returns to step S818.
If j>m (step S825: YES), the output unit 408 outputs the mesh fluctuation data 600-1 to 600-m of the mesh fluctuation data table 600 (step S826) and the process ends.
In this way, cells C1 to Cn in the circuit under test are classified into cell groups each having an identical or similar characteristic, and terms in a function (polynomial) that expresses fluctuation of leak current in a cell group can be reduced.
A process of leak current calculation at the leak calculating unit 407 is explained.
According to the flowchart of
The leak calculating unit 407 sets iteration k as k=1 (step S1002) and leak current L(k) of the circuit under test as L(k)=0 (step S1003). The leak calculating unit 407 generates a standard normal random number β (average=0, standard deviation=1) (step S1004). β is a second fluctuation parameter common to all cells C1 to Cn in the circuit under test.
The leak calculating unit 407 sets j of the mesh space Mj as j=1 (step S1005). With reference to the mesh fluctuation data table 600, the leak calculating unit 407 determines whether the number of cells N(j)=0 (step S1006).
If N(j)=0 (step S1006: YES), the process goes to step S1009. If N(j)≠0 (step S1006: NO), the leak calculating unit 407 generates a standard normal random number αj (step S1007). αj is a first fluctuation parameter unique to cells p[1] to p[X] in the mesh space Mj.
With reference to the mesh fluctuation data table 600, the leak calculating unit 407 calculates L(k), using equation (23), as L (k)=L (k)+exp{A(j)+B(j)×αj+C(j)×β (step S1008).
The leak calculating unit 407 increments j (step S1009) and determines whether j>m (step S1010). If j≦m (step S1010: NO), the process returns to step S1006.
If j>m (step S1010: YES), the leak calculating unit 407 increments k (step S1011) and determines whether k>K (step S1012). If (step S1012: NO), the process returns to step S1003.
If k>K (step S1012: YES), the leak calculating unit 407 sorts L(1) to L(K) in ascending order (step S1013).
The leak calculating unit 407 set k as k=1 (step S1014) and calculates cumulative probability P(k)=k/K (step S1015).
The leak calculating unit 407 increments k (step S1016) and determines whether k>K (step S1017). If k≦K (step S1017: NO), the process returns to step S1015.
If k>K (step S1017: YES), the output unit 408 outputs the analysis result 700 that associates leak current L(k) with cumulative probability P(k) (step S1018) and the process ends.
In this way, a cumulative probability density distribution concerning leak current of the circuit under test (for example, the analysis result 700) can be obtained.
Further, since leak current of a cell group having an identical or similar characteristic is expressed with collective fluctuation, the amount of calculation for random number generation, exponent calculation, multiplication, addition, etc. can be reduced. In addition, since the mesh space Mj of “N(j)=0” is excluded at step S1006, the amount of calculation for random number generation, exponent calculation, multiplication, addition, etc. can be reduced even further.
As explained above, according to the embodiments, cells having identical or nearly identical coefficients a, b, and c that are unique to each cell Ci are detected as a cell group having an identical or similar characteristic. Furthermore, according to the embodiments, random variables that express fluctuation of leak current unique to each cell Ci of the cell group are converted into one random variable so that a function expressing fluctuation of leak current in the cell group can be obtained. Consequently, the number of terms in a function expressing fluctuation of leak current in the circuit under test can be reduced.
According to the embodiments, coefficients ga(j) to gc(j) common to all cells in the mesh space Mj are calculated so that random variables expressing fluctuation of leak current unique to cell p[x] in the mesh space Mj can be converted into one random variable.
According to the embodiments, with a function (equation (20)) expressing fluctuation of leak current for a unit in the mesh space, leak current of the circuit under test is calculated so that the processing time for statistical leak current analysis can be reduced. More specifically, by classifying cells having an identical or similar characteristic by units of the mesh space, the number of terms in a function expressing fluctuation of leak current in the circuit under test can be reduced from n terms (equal to the number of cells) to m terms (equal to the number of mesh space). As a result, the processing speed becomes about n/m times faster.
When the leak current analysis of the circuit under test is performed, mesh space Mj that does not include a single cell Ci is excluded from the analysis so that the number of terms in a function expressing leak current fluctuation can be reduced further. For example, when cells Ci have thousands of identical or similar characteristics, terms corresponding to tens million or hundreds million cells can be reduced to three orders of magnitude corresponding to the number of mesh space. As result, the processing time for leak current analysis of the circuit under test can be shortened further.
The method explained in the present embodiment can be implemented by a computer, such as a personal computer and a workstation, executing a program that is prepared in advance. The program is recorded on a computer-readable, non-transitory medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read out from the recording medium by a computer. The program can be a transmission medium that can be distributed through a network such as the Internet.
The analysis support apparatus 200 described in the present embodiments can be realized by an application specific integrated circuit (ASIC) such as a standard cell or a structured ASIC, or a programmable logic device (PLD) such as a field-programmable gate array (FPGA). Specifically, for example, functional units (acquiring unit 401 to output unit 408) of the analysis support apparatus 200 are defined in hardware description language (HDL), which is logically synthesized and applied to the ASIC, the PLD, etc., thereby enabling manufacture of the analysis support apparatus 200.
As set forth above, according to the embodiments, the processing time for the leak current analysis of the circuit under test can be shortened.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiment(s) of the present inventions have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-106790 | May 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7917451 | Barnett et al. | Mar 2011 | B2 |
20070106966 | Inoue et al. | May 2007 | A1 |
20090031268 | Miranda et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
2009-164241 | Jul 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20110276286 A1 | Nov 2011 | US |