Introduction and management of insulin therapy to a patient with Type 2 diabetes can be overwhelming to the patient and a burden to the provider due to the complexity of conventional methods and devices for doing so. Significant training of the patient may be necessary. The patient may need to learn, for example, various concepts and actions including hypoglycemia management, injections and the proper use insulin administration devices, as well as the mechanical, electronic, and software aspects of using a blood glucose meter. In addition, the patient must learn to follow the doctor's instructions in starting and adjusting insulin dosages on a regular basis (e.g. per meal, daily, 2× weekly, or weekly basis).
Detailed instructions as to the prescribed blood glucose testing and insulin titration protocol are typically written out by the health care professional or checked off on a piece of paper. Patients often keep handwritten logs in order to comply.
After getting onto insulin therapy, a patient often times presents in a physician's office with poor glycemic control and the care provider (i.e., physician) can be left guessing as to whether the poor glycemic control is due to, for example, noncompliance, or whether increased intensification of insulin therapy is required, or a combination thereof.
Applicants have recognized the shortcomings and have therefore provided for an invention to resolve these shortcomings. In one embodiment, a diabetes management system is provided that includes an analyte measurement device and a therapeutic agent delivery device. The measurement device has a housing, processor and memory disposed in the housing. The measurement device includes a measurement unit, display, and first wireless module. The measurement unit is in communication with the processor to provide a numerical value representing generally an amount of analyte in body fluids. The display is in communication with the processor to display information relating to analyte and the therapeutic agent. The first wireless module is coupled to the processor and memory to store data received by the first wireless module in the memory. The therapeutic agent delivery device has a delivery device housing, delivery mechanism disposed in the housing that delivers a dosage of the agent to the user upon actuation by the user or health care provider, and a second wireless module. The second wireless module is disposed in the housing and configured so that the second wireless module automatically, without prompting from an user or any active input or action by the user, transmits a signal to the first wireless module indicative of: (a) type of therapeutic agent delivered; and (b) amount of therapeutic agent delivered to the user; or (c) type of therapeutic agent device from which the therapeutic agent was administered.
In yet another embodiment, a diabetes management system is provided that includes an analyte measurement device, a therapeutic agent delivery device, and a healthcare provider's computer. The measurement device has a housing, processor and memory disposed in the housing. The measurement device includes a measurement unit, display, and first wireless module. The measurement unit is in communication with the processor to provide a numerical value representing generally an amount of analyte in body fluids. The display is in communication with the processor to display information relating to analyte and the therapeutic agent. The first wireless module is coupled to the processor and memory to store data received by the first wireless module in the memory. The therapeutic agent delivery device has a delivery device housing, delivery mechanism disposed in the housing that delivers a dosage of the agent to the user upon actuation by the user or health care provider, and a second wireless module. The second wireless module is disposed in the housing and coupled to the delivery mechanism, the second wireless module, upon prompting or by an action from a user, transmits a signal to the first wireless module indicative of: (a) type of therapeutic agent delivered; and (b) amount of therapeutic agent delivered to the user; or (c) type of therapeutic agent device from which the therapeutic agent was administered. The health care provider computer is in communication with the device to prescribe one of a plurality of therapeutic agent titration protocols to the memory of the device.
In a further embodiment, a diabetes management device is provided. The diabetes management device includes a housing, processor, memory, measurement unit and a display. The processor and memory are disposed in the housing, the memory includes a plurality of therapeutic administration protocols loaded into the memory from an external source that relates a dosage administration to one or more analyte amount. The measurement unit is in communication with the processor to provide a numerical value representing generally an amount of analyte in body fluids. The display is in communication with the processor to display information relating to measured amount of analyte and the therapeutic agent.
In another embodiment, a method of managing diabetes is provided. The method can be achieved by selecting a therapeutic administration protocol in accordance with therapeutic requirements of the diabetic user transferring the therapeutic administration protocol to an analyte measurement device assigned to the user; confirming delivery of therapeutic agent to the user in accordance with the therapeutic administration protocol; and generating a plurality of prompts to the user including:
(a) a reminder to measure analyte at a specified time; (b) a reminder to administer a recommended dosage of therapeutic agent within a specified time frame; and (c) a report of compliance of the user to the therapeutic administration protocol. In this method, the selecting may include entering a set up mode; selecting one of a plurality of therapeutic administration protocols, and upon selection of: (a) a long acting protocol, selecting a body weight range and confirming a starting dosage, maximum dosage, fasting measurement and specified time for delivery of the therapeutic agent; (b) a mixture protocol, selecting a frequency of delivery of therapeutic agent and confirming the frequency and specified time for delivery of the therapeutic agent; or (c) a multiple daily administration protocol, selecting a largest meal during a specified time duration and confirming the dosage of a long acting therapeutic agent at a specified time and a rapid acting therapeutic agent at a different specified time. Further, in this method, the generating includes displaying at least one of: (a) a result of the analyte measurement; (b) the dosage specified; or (c) a summary of the dosage administered at one or more specified time slots.
In yet another embodiment, a method of operating an analyte measurement device is provided. The device has a plurality of therapeutic administration protocols stored in a memory of the device. The memory is in communication with a processor, the processor configured to interface with user inputs and provide various output information. The method can be achieved by: accessing a selection menu generated by the processor with protocols loaded into the memory from an external source; selecting one therapeutic administration protocol from the plurality of therapeutic administration protocols; and outputting dosage information for therapeutic agent to be administered to a user based on one or multiple analyte amounts or concentration values stored in the memory.
These and other embodiments, features and advantages will become apparent to those skilled in the art when taken with reference to the following more detailed description of the invention in conjunction with the accompanying drawings that are first briefly described.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention (wherein like numerals represent like elements), of which:
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention. As used herein, the conjunctive “or” is not intended to have the same meaning as the logical operator or exclusive operator but is intended to include the conjunctive “and.” Furthermore, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. In addition, as used herein, the terms “user”, “patient”, “host” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.
Embodiments described and illustrated herein provide an analyte (e.g., blood glucose) measurement and management devices, systems, and associated methods that simplify training and guide a patient regarding when to measure an analyte (i.e., to “test”) and how much and when to administer a therapeutic agent (such as insulin) in a simple and convenient manner and with a minimum of devices. Embodiments of the analyte measurement and management device and system are also beneficial to care providers (for example, physicians) by gathering, organizing and storing information that provides insight into how effective a patient is in following a prescribed analyte management regimen.
Analyte measurement device 100 may include user interface buttons (106, 108, 110) for entry of data, navigation of menus, and execution of commands. Data can include values representative of analyte concentration, and/or information, which are related to the everyday lifestyle of an individual. Information, which is related to the everyday lifestyle, can include food intake, medication use, the occurrence of health check-ups and general health condition and exercise levels of an individual. Analyte measurement device 100 also may include display 104. Display 104 can be used to report measured glucose levels, and to facilitate entry of lifestyle related information.
Analyte measurement device 100 may include first user interface button 106, second user interface button 108, and third user interface button 110. User interface buttons 106, 108, and 110 facilitate entry and analysis of data stored in the testing device, enabling a user to navigate through the user interface displayed on display 104. User interface buttons 106, 108, and 110 include first marking 107, second marking 109, and third marking 111, which help in correlating user interface buttons to characters on display 104.
Analyte measurement device 100 can be turned on by inserting a test strip 10 into data port 112, by pressing and briefly holding first user interface button 106, or when data traffic is detected across data port 113. Analyte measurement device 100 can be switched off by removing the test strip 10, pressing and briefly holding first user interface button 106, navigating to and selecting a meter off option from a main menu screen, or by not pressing any buttons for a predetermined time. Display 104 can optionally include a backlight.
Data port 113 accepts a suitable connector attached to a connecting lead, thereby allowing analyte measurement device 100 to be linked to an external device such as a personal computer. Data port 113 can be any port that allows for transmission of data (serial or parallel) such as, for example, serial or parallel port in wired or wireless form. A personal computer, running appropriate software, allows entry and modification of set-up information (e.g. the current time, date, and language), and can perform analysis of data collected by analyte measurement device 100. In addition, the personal computer may be able to perform advanced analysis functions, and/or transmit data to other computers (i.e. over the internet) for improved diagnosis and treatment. Connecting analyte measurement device 100 with a local or remote computer facilitates improved treatment by health care providers.
Referring to
Referring to
In the preferred embodiments, analyte measurement device 100 may include an Application Specific Integrated Circuit (ASIC) 204, providing electronic circuitry used in measurements of glucose level in blood that has been applied to a test strip 10 inserted into strip port 112. Analog voltages can pass to and from ASIC 204 by way of analog interface 205. Analog signals from analog interface 205 can be converted to digital signals by A/D converter 216. Processor 200 may further include core 208, ROM 210 (containing computer code), RAM 212, and clock 218. Additionally, the processor 200 is configured (or programmed) to disable all of the user interface buttons except for a single button upon a display of an analyte value by the display unit such as, for example, during a time period after an analyte measurement. In an alternative embodiment, the processor 200 is configured (or programmed) to ignore any input from all of the user interface buttons except for a single button upon a display of an analyte value by the display unit.
In the preferred embodiments, analyte measurement device 100 may include a Radio Frequency Identification (RFID) Reader/Interrogator 220. Additionally, the reader/interrogator communicates with a passive RFID tag to identify the therapeutic agent delivery device. In an alternative embodiment the reader/interrogator communicates with a passive RFID tag within the therapeutic agent delivery device to detect administration of the therapeutic agent.
In these embodiments, the therapeutic agent is long acting insulin and the time window is in the early morning upon awakening or the late evening before bedtime. Further, the therapeutic agents include both long acting and rapid acting insulins and the time window for administering the long acting insulin is in the early morning or the late evening and the time window for administering the rapid acting insulin is premeal. Additionally, the therapeutic agent is one of an oral antidiabetic agent, a GLP-1 agent, insulin and insulin mixes, or a combination thereof. Further, the therapeutic agent is medication for metabolic management, hormonal therapies, oncology, pain management, regenerative medicine, or a combination thereof. Further, the therapeutic agent is a medication used in the management of diabetes.
In these embodiments, the analyte measurement device automatically displays the recommended therapeutic agent dosage after taking a blood glucose measurement, or after turning the analyte measurement device on. Additionally, the recommended therapeutic agent dosage can be a function of at least one previous analyte measurement value if the measurement analyte value is greater than or less than preset thresholds. For example, if a blood glucose measurement is high the recommended insulin dosage may be increased, whereas if a blood glucose measurement is low the insulin dosage may be decreased. Further, the analyte measuring device queries a user and upon user acceptance displays the recommended therapeutic agent dosage. The query can be in the form of a user interface prompt displayed on the analyte measurement device. User acceptance can include pressing a specific user interface button. Further, the recommended therapeutic agent dosage is displayed in the form of units of insulin.
In these embodiments, the recommended therapeutic agent dosage is displayed to a user in the format of user button pushes on the associated user-activated therapeutic agent delivery device. For example, such button pushes can be used to actuate the delivery of a predetermined amount of therapeutic agent by displacement from the user-activated therapeutic agent delivery device. A non-limiting example of such a user-activated therapeutic delivery device is described in the aforementioned U.S. Provisional Patent Application No. 61/040,024 (tentatively identified by Attorney Docket No. LFS-5180).
In these embodiments, a user can toggle between displaying the recommended therapeutic agent dosage in the form of insulin units or button pushes. Toggling between insulin units and button pushes can be accomplished by way of the analyte measurement device user interface. Additionally, the recommended therapeutic agent dosage is displayed in graphical form. Graphical forms can include column, bar, line, pie, circles, and lights. Further, the recommended therapeutic agent dosage is presented to a user in audio form by an audio module of the testing device. Further, the recommended therapeutic agent dosage does not exceed a preset maximum daily dosage. For example, a maximum daily dosage of insulin may be entered into the analyte measurement device, and subsequently limit the daily recommended therapeutic agent dosage. Additionally, a time stamp for the analyte measurement is used to determine if the measurement is pre-breakfast, pre-lunch, pre-dinner, or pre-snack. For example, if the analyte measurement is performed at 7:00 am, it could be considered to be pre-breakfast, while a test performed at 5:00 pm could be considered to be pre-dinner. Further, the method may further include prompting a user to confirm that the measurement is pre-breakfast, pre-lunch, pre-dinner, or pre-snack. Further, the method may further include prompting a user to confirm that the measurement is pre-breakfast, pre-lunch, pre-dinner, or pre-snack; and, prompting the user to enter a start time of the most recent meal or snack if the meal was not pre-breakfast, pre-lunch, or pre-dinner. For example, if a measurement occurs outside the preset windows for breakfast, lunch, dinner, than the specific start time of a snack can be entered.
In these embodiments, the method may further include retrieving the recommended therapeutic agent dosage from the memory of the analyte measurement device; displaying the recommended therapeutic agent dosage and the recommended time for administration of the recommended therapeutic agent dosage on the display of the analyte measurement device; prompting a user to confirm administration of the recommended therapeutic agent if the current time and date is approximately equal to the recommended time for administration of the recommended therapeutic agent dosage; pressing at least one of the user interface buttons to confirm administration of therapeutic agent; and storing a record of the administration of therapeutic agent in the memory of the analyte measurement device. Further, the analyte measurement device is a blood glucose meter, the therapeutic agent is insulin, the administration is performed with an insulin dosage device, and the dosage is confirmed by pressing a user interface button on the blood glucose meter. Further, the method may further include prompting a user to enter the amount of therapeutic agent administered if the amount of therapeutic agent administered differs from the recommended therapeutic agent dosage. For example, if the recommended dosage is 4 units and only 3 units are injected, than the user would enter 3 units. Further, the method may further include prompting a user to enter the amount of therapeutic agent administered if the amount of therapeutic agent administered differs from the recommended therapeutic agent dosage; and, prompting the user to confirm the amount of therapeutic agent administered. Confirming the actual dosage increases the accuracy of dosage recommendations. Further, the method may further include prompting a user to enter the amount of therapeutic agent administered if the amount of therapeutic agent administered differs from the recommended therapeutic agent dosage; prompting the user to confirm the amount of therapeutic agent administered; and, storing the amount of therapeutic agent administered in the memory of the analyte measurement device. As mentioned previously, the memory of the analyte measurement device may include a removable portion, such as a SIMM card. Further, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages; and displaying the percentages. Reporting summaries are useful in accessing conformance to recommended protocols, and are particularly useful in communicating with health care practitioners. Further, the method may further include calculating and displaying an analyte measurement average for a weekly, monthly, quarterly, yearly, or 6 week time period. Further, the method may further include calculating a percentage of out-of-range high and out-of-range low analyte measurements over a period of time, and displaying the percentage of out-of-range high and out-of-range low analyte measurements and time period. High and low ranges can be preset on the measurement device or set by the user or a health care practitioner, and are useful in managing conditions such as diabetes. Further, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages over a period of time; and displaying the percentages and period of time. Additionally, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages; activating a downloading function; downloading data and reports from the analyte measurement device; confirming completion of the download; and storing the downloaded data and reports in the memory of an external device. External devices include personal computers, network computer systems, external removable memory readers, PDAs, and mobile phones. Further, the method may further include uploading the downloaded data into a database linked to insurance incentives, disease management, or motivational programs. Further, the method may further include uploading the downloaded data into a database linked to pay-for-performance programs. Further, insurance incentives, motivational programs, and pay-for-performance programs can be accessed via the Internet. Further, the method may further include uploading the downloaded data into a database linked to clinical data registries.
In these embodiments, the method may further include receiving at least one signal from a dosage device confirming administration of therapeutic agent; and storing a record of the administration of therapeutic agent in the memory of the analyte measurement device. Furthermore, methods according to the present invention can include steps of retrieving a recommended therapeutic agent dosage and associated recommended administration time from the memory (also referred to herein as a memory module), and displaying such a retrieved recommended therapeutic agent dosage and administration time to user on the visual display of the analyte measurement device. Additionally, the signal is a wireless signal such as Bluetooth or radio-frequency identification (RFID). Further, the dosage device is a pump or a pen. Further, the RFID component in the dosage device is passive and the RFID component in the analyte measurement device is active. Further, the RFID component in the dosage device is powered by receiving signals from the analyte measurement device. Further, the dosage device includes a passive, active, or semi-passive radio-frequency tag. Additionally, the method may further include storing the amount of therapeutic agent remaining in the dosage device in the memory of the analyte measurement device. Additionally, the method may further include alerting a user if the amount of therapeutic agent remaining in the dosage device is less than the amount required for a preset number of dosages or expected daily dosage. Further, the method may further include displaying the amount of therapeutic agent remaining in the dosage device in the form of units, days, or graphs. Further, the signal can include information related to therapeutic agent type, cartridge type, cartridge volume, and type of dosage device. For example, an insulin pump could send a signal to the analyte measurement device that includes information in respect to type of insulin being used, the type of pump cartridge, the volume of the pump cartridge, the type of pump, and the associated bolus increment per button push (for example 1 button push is equivalent to 3 units). Additionally, the method may further include of using the associated bolus increment per button push as input into the protocol algorithm. Additionally, the method may further include displaying the amount of therapeutic agent remaining in the dosage device after receiving the signal. Additionally, the method may further include of displaying the remaining number of button pushes necessary to complete the recommended dosage. Additionally, the method may further include sending a signal from the analyte measurement device to the dosage device to lock down the dosage device if the amount of therapeutic agent delivered exceeds a preset maximum for a preset time window. For example, if the daily maximum dosage is exceeded, a signal can be sent from the analyte measurement device to the pump to stop delivering insulin until the next day. Additionally, the method may further include sending a signal from the analyte measurement device to multiple dosage devices to stop delivering therapeutic agent if the amount of therapeutic agent delivered exceeds a preset maximum for a preset time window. Additionally, the analyte measurement device can determine which form of therapeutic agent dosage units to display based upon the signal from the dosage device. Further, the analyte measurement device can provide an alarm if a signal is received from a dosage device outside a preset time window. Further, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages; and displaying the percentages. Additionally, the method may further include calculating and displaying an analyte measurement average for a weekly, monthly, quarterly, yearly, or 6 week time period. Additionally, the method may further include calculating a percentage of out-of-range high and out-of-range low analyte measurements over a period of time; and, displaying the percentage of out-of-range high and out-of-range low analyte measurements and time period. Further, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages over a period of time; and displaying the percentages and period of time. Further, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages; activating a downloading function; downloading data and reports from the analyte measurement device; confirming completion of the download; and storing the downloaded data and reports in the memory of an external device. Additionally, the method may further include uploading the downloaded data into a database linked to insurance incentives, disease management, or motivational programs. Additionally, the method may further include uploading the downloaded data into a database linked to pay-for-performance programs. Additionally, the method may further include uploading the downloaded data into a database linked to clinical data registries.
In these embodiments, the administration protocol may include one or more initiation, titration, and testing regimens. In these embodiments, the method may further include selecting a time zone on the analyte measurement device. In these embodiments, the method may further include confirming a recommended not-to-exceed daily dosage of therapeutic agent. In these embodiments, the method may further include entering a time zone and approximate time windows for meals, snacks, wake-up, and bedtime; and, storing the time zone and approximate time windows for meals, snacks, wake-up, and bedtime in the memory of the analyte measurement device. In these embodiments, the method may further include accepting or modifying the time zone and approximate time windows for meals, snacks, wake-up, and bedtime; and, storing the time zone and approximate time windows for meals, snacks, wake-up, and bedtime in the memory of the analyte measurement device. In these embodiments, the method may further include initiating an administration protocol updating function, downloading an updated administration protocol; confirming completion of the download, selecting the updated administration protocol, displaying a summary of the updated administration protocol, and storing the updated administration protocol in the memory of the analyte measurement device. Updates ensure the use of the most up-to-date protocols and regimens. In these embodiments, the downloading can occur wirelessly, through a USB or other physical connection, or through connection to a removable memory card inserted into the analyte measurement device. In these embodiments, the analyte measurement device can be linked electronically to a network computer and be identified by a software code unique to the analyte measurement device. In these embodiments, initiating administration protocol updating occurs automatically or when activated by a user. For example, updating can occur automatically when connecting the analyte measurement device to a network, or can be manually activated by way of the user interface. In these embodiments, a user confirms initiation of the administration protocol updating function.
In these embodiments, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages; and displaying the percentages. In these embodiments, the method may further include calculating and displaying an analyte measurement average for a weekly, monthly, quarterly, yearly, or 6 week time period. In these embodiments, the method may further include calculating a percentage of out-of-range high and out-of-range low analyte measurements over a period of time; and, displaying the percentage of out-of-range high and out-of-range low analyte measurements and time period.
In these embodiments, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages over a period of time; and displaying the percentages and period of time. In these embodiments, the method may further include activating a reporting summary; calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages; activating a downloading function; downloading data and reports from the analyte measurement device; confirming completion of the download; and storing the downloaded data and reports in the memory of an external device. In these embodiments, the method may further include uploading the downloaded data into a database linked to insurance incentives, disease management or motivational programs. In these embodiments, the method may further include uploading the downloaded data into a database linked to pay-for-performance programs. In these embodiments, the method may further include uploading the downloaded data into a database linked to clinical data registries.
In these embodiments, the method may further include calculating and displaying an analyte measurement average for a weekly, monthly, quarterly, yearly, or 6 week time period. In these embodiments, the method may further include calculating a percentage of out-of-range high and out-of-range low analyte measurements over a period of time; and, displaying the percentage of out-of-range high and out-of-range low analyte measurements and time period. In these embodiments, the method may further include activating a reporting summary, calculating the percentage of actual versus recommended analyte measurements and the percentage of actual versus recommended therapeutic agent dosages over a period of time; and displaying the percentages and period of time. In these embodiments, the method may further include activating a reporting summary, calculating a percentage of actual versus recommended analyte measurements and a percentage of actual versus recommended therapeutic agent dosages, activating a downloading function; downloading data and reports from the analyte measurement device, confirming completion of the download, and storing the downloaded data and reports in the memory of an external device. In these embodiments, the method may further include uploading the downloaded data into a database linked to insurance incentives, disease management or motivational programs. In these embodiments, the method may further include uploading the downloaded data into a database linked to pay-for-performance programs. In these embodiments, the method may further include uploading the downloaded data into a database linked to clinical data registries.
In these embodiments, the intensification administration protocol includes switching from long acting insulin to premixed insulin. In these embodiments, the intensification administration protocol includes switching from premixed insulin to short acting insulin and long acting insulin. In these embodiments, the intensification administration protocol includes switching from one therapeutic agent to another. In these embodiments, the intensification administration protocol includes the use of one or more therapeutic agents. In these embodiments, the method may further include notifying the user that a new intensification administration protocol has been implemented; and, displaying times to conduct analyte measurements, times to administer therapeutic agent, and type of therapeutic agent to administer. In these embodiments, the method may further include querying the user as to whether reminders or alarms should be displayed if analyte testing or therapeutic agent administration does not occur as specified in the intensification administration protocol. In these embodiments, the method may further include displaying post-meal analyte measurement reminders at 1, 2, 3, and 4 hours after meals. In these embodiments, reminders or alarms can be automatically or manually disabled. In these embodiments, the method may further include displaying a report summarizing the data related to the intensification administration protocol and at least one previous administration protocol.
In these embodiments, the method may further include initiating an intensification administration protocol updating function, downloading an updated intensification administration protocol, confirming completion of the download, selecting the updated intensification administration protocol, displaying a summary of the updated intensification administration protocol, and storing the updated intensification administration protocol in the memory of the analyte measurement device. In these embodiments, the downloading can occur wirelessly, through a USB or other physical connection, or through connection to a memory card inserted into the analyte measurement device. In these embodiments, the analyte measurement device can be linked electronically to a network computer and be identified by a software code unique to the analyte measurement device. In these embodiments, initiating administration protocol updating occurs automatically or when activated by a user. In these embodiments, a user confirms initiation of the administration protocol updating function. In these embodiments, the method may further include activating a reporting summary function of the device, calculating a percentage of actual versus recommended analyte measurements and a percentage of actual versus recommended therapeutic agent dosages, and calculating average premeal and 2 hr postmeal analyte values by mealtime (like breakfast, lunch and dinner).
Step 708 includes reinitializing the recommended administration protocol. Step 710 includes storing a record of reinitiation of the recommended administration protocol in the memory of the analyte measurement device. In these embodiments, the method may further include prompting the user to enter a reason for noncompliance. In these embodiments, the method may further include suggesting to the user that they contact a healthcare provider prior to reinitializing the recommended administration protocol if the reason for noncompliance is illness. In these embodiments, a healthcare provider can preset compliance limits. In these embodiments, the analyte measurement device can automatically reinitialize the recommended administration protocol if the user is noncompliant in respect to analyte measurements or therapeutic agent dosages. In these embodiments, the analyte measurement device can automatically reinitialize the recommended administration protocol if the user was noncompliant for a preset time period.
In these embodiments, the analyte measurement device can automatically continue the recommended administration protocol if the user was noncompliant for less than a preset time period. In these embodiments, the analyte measurement device can automatically disable the recommended administration protocol upon noncompliance. In these embodiments, the recommended administration protocol can be restarted. In these embodiments, the method may further include sending an alert to a health care practitioner that non-compliance has occurred.
Memory module 1704 is configured for storing at least one therapeutic administration protocol while processor module 1706 is configured to calculate a recommended therapeutic agent dosage and recommended administration time for user-activated delivery of the recommended therapeutic agent dosage. Such calculations use the therapeutic administration protocol stored in memory module 1704.
In addition, visual display module 1708 is configured to display the recommended therapeutic agent dosage and recommended administration time to a user and user interface 1712 is configured for accepting user input to analyte measurement and management device 1700 via, for example, user-operated interface buttons (not shown in
Delivery device communication module 1710 is configured to detect user-activated administration (i.e., delivery) of the therapeutic agent by the user-activated therapeutic agent delivery device 1799 and communicate such detection to the processor module 1706 and/or memory module 1702. Moreover, the analyte measurement module, memory module, processor module, visual display, user interface and delivery device communication module of analyte measurement and management device 1700 are integrated as a single hand-held unit such as, without limitation, the unit illustrated in
Once apprised of the present disclosure, one of skill in the art will recognize that analyte measurement and management device 1700 can be modified to perform any of the functions described above with respect to
Method 1800 also includes measuring the analyte in the bodily fluid sample using an analyte measurement module of the device (see step 1820 of
Method 1800 further includes displaying the recommended therapeutic agent dosage and administration time to a user on a visual display of the device as noted in step 1840, delivering a therapeutic agent dosage to the user via a user-activated therapeutic agent delivery device (see step 1850), and detecting the user-activated administration (delivery) of the therapeutic agent using a delivery device communication module of the device (refer to step 1860 of
Moreover, at step 1870, method 1800 further includes communicating the aforementioned detection to the processor module and/or memory module using the delivery device communication module. It should be noted that the method employs analyte measurement, memory, processor, and delivery device modules, as well as a visual display, and user interface, that are integrated as a single hand-held unit (such as the unit depicted as element 100 in
Once apprised of the present disclosure, one of skill in the art will recognize that method 1800 can be augmented to include performance of any of the functions described above with respect to
Embodiments of the current invention are beneficial in significantly reducing obstacles associated with initiating, maintaining and managing an analyte testing and therapeutic agent dosing regimen such as blood glucose monitoring and insulin administration. The present invention enables easy initiation and intensification, and improved compliance with a prescribed regimen by providing a simple, efficient way of guiding the patient in a step-by-step manner. By logging information on recommended versus the actual regimen followed by the patient in the manner described herein, the testing device and methods described and illustrated herein provide an effective and unitary record keeping system to help the patient and healthcare practitioner provide better care.
By virtue of the embodiments described and illustrated herein, a method of managing diabetes can be utilized with clinical benefit for persons with diabetes. In one example, as shown in the various display screens of
Where the protocol selected is the Long-Acting protocol, the HCP would select the weight range of the user at screen 1903 and confirm at screen 1904 that the starting and maximum doses are correct with the preferred blood glucose test being performed after fasting and the insulin being delivered to the user's body at bedtime. Thereafter, the protocol is then transferred, by cables or via short or long-range wireless connection to the user's device 100.
Where the protocol selected is the Mix protocol in screen 1902, the HCP would select the frequency of insulin delivery over a fixed time period at screen 1905. At screen 1906, the HCP would need to confirm the insulin regimen as being of the selected frequency over a fixed duration but at specified time in a day. Thereafter, the protocol is then transferred, by cables or via short or long-range wireless connection to the user's device 100.
Where the protocol selected is the MDI protocol in screen 1902, the HCP would select the largest meal that the user would have during the day at screen 1907 and confirm at screen 1909 the regimen with the required dosages for rapid acting at specified daily event and rapid acting at a different daily event. Thereafter, the protocol is then transferred, by cables or via short or long-range wireless connection to the user's device 100.
At device 100, the user whose HCP has selected a Long-Acting protocol would see a series of interactive screens in
At device 100, the user whose HCP has selected a Mix protocol would see a series of interactive screens in
At device 100, the user whose HCP has selected a MDI protocol would see a series of interactive screens in
To ensure that the user follow the therapeutic regimen, the device 100 in conjunction with the therapeutic agent delivery 12 can be used to ensure compliance of the regimen by, as shown in
Applicants note that while the measurement device and delivery device have been described preferably as separate components, both components described and illustrated herein can be integrated into a unitary device with for example a delivery mechanism at one end of a unitary housing and a measuring device at the other end of the unitary housing. Alternatively, one component (e.g., delivery device or measurement device described and illustrated herein) could be mated or enclosed in the other component (e.g., delivery device or measurement device described and illustrated herein) with direct communication (e.g., wired or Infrared) between the components when both are mated together and via wireless communication when both components are separated.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.
This application claims the benefits of priority under 35 USC § 119 to U.S. Provisional Patent Application Ser. No., 61/082,106 filed on Jul. 18, 2008, which application is incorporated by reference in their entireties herein this application.
Number | Date | Country | |
---|---|---|---|
61082106 | Jul 2008 | US |