This application generally relates to the field of blood glucose measurement systems and more specifically to portable analyte meters that are configured to adjust glucose measurement based on a hematocrit level.
Blood glucose measurement systems typically comprise an analyte meter that is configured to receive a biosensor, usually in the form of a test strip. Because many of these systems are portable, and testing can be completed in a short amount of time, patients are able to use such devices in the normal course of their daily lives without significant interruption to their personal routines. A person with diabetes may measure their blood glucose levels several times a day as a part of a self management process to ensure glycemic control of their blood glucose within a target range. A failure to maintain target glycemic control can result in serious diabetes-related complications including cardiovascular disease, kidney disease, nerve damage and blindness.
There currently exist a number of available portable electronic devices that can measure glucose levels in an individual based on a small sample of blood. During an assay of the sample, a person is required to prick their finger and then make finger contact with the test strip in order to apply the blood sample. The results of the testing can be significantly affected due to electrical influences from the physical finger contact upon the test strip. Errors in measurement may be caused by the operating frequency characteristics of test strips and strip port connection circuits being electrically altered by the added electrical properties of the human finger contacting the test strip. Because physical contact between a user's finger and the test strip is required in order to collect a sample for measurement, it is preferable that improvements in error avoidance be directed toward measurement processes rather than modifying well established procedures followed by users to provide a blood sample.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention (wherein like numerals represent like elements).
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used herein, the terms “patient” or “user” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.
The term “sample” means a volume of a liquid, solution or suspension, intended to be subjected to qualitative or quantitative determination of any of its properties, such as the presence or absence of a component, the concentration of a component, e.g., an analyte, etc. The embodiments of the present invention are applicable to human and animal samples of whole blood. Typical samples in the context of the present invention as described herein include blood, plasma, red blood cells, serum and suspension thereof.
The term “about” as used in connection with a numerical value throughout the description and claims denotes an interval of accuracy, familiar and acceptable to a person skilled in the art. The interval governing this term is preferably ±10%. Unless specified, the terms described above are not intended to narrow the scope of the invention as described herein and according to the claims.
The electronic components of the glucose measurement system 100 can be disposed on, for example, a printed circuit board situated within the housing 11 and forming the data management unit 140 of the herein described system.
The analyte test strip 24 can be in the form of an electrochemical glucose test strip. The test strip 24 can include one or more working electrodes. Test strip 24 can also include a plurality of electrical contact pads, where each electrode can be in electrical communication with at least one electrical contact pad. Strip port connector 22 can be configured to electrically interface to the electrical contact pads and form electrical communication with the electrodes. Test strip 24 can include a reagent layer that is disposed over at least one electrode. The reagent layer can include an enzyme and a mediator. Exemplary enzymes suitable for use in the reagent layer include glucose oxidase, glucose dehydrogenase (with pyrroloquinoline quinone co-factor, “PQQ”), and glucose dehydrogenase (with flavin adenine dinucleotide co-factor, “FAD”). An exemplary mediator suitable for use in the reagent layer includes ferricyanide, which in this case is in the oxidized form. The reagent layer can be configured to physically transform glucose into an enzymatic by-product and in the process generate an amount of reduced mediator (e.g., ferrocyanide) that is proportional to the glucose concentration. The working electrode can then be used to measure a concentration of the reduced mediator in the form of a current. In turn, strip port circuit 104 can convert the current magnitude into a glucose concentration. An exemplary analyte meter performing such current measurements is described in U.S. Patent Application Publication No. US 1259/0301899 A1 entitled “System and Method for Measuring an Analyte in a Sample”, which is incorporated by reference herein as if fully set forth in this application.
A display module 119, which may include a display processor and display buffer, is electrically connected to the processing unit 122 over the communication interface 123 for receiving and displaying output data, and for displaying user interface input options under control of processing unit 122. The structure of the user interface, such as menu options, is stored in user interface module 103 and is accessible by processing unit 122 for presenting menu options to a user of the blood glucose measurement system 100. An audio module 120 includes a speaker 121 for outputting audio data received or stored by the DMU 140. Audio outputs can include, for example, notifications, reminders, and alarms, or may include audio data to be replayed in conjunction with display data presented on the display 14. Such stored audio data can be accessed by processing unit 122 and executed as playback data at appropriate times. A volume of the audio output is controlled by the processing unit 122, and the volume setting can be stored in settings module 105, as determined by the processor or as adjusted by the user. User input module 102 receives inputs via user interface buttons 16 which are processed and transmitted to the processing unit 122 over the communication interface 123. The processing unit 122 may have electrical access to a digital time-of-day clock connected to the printed circuit board for recording dates and times of blood glucose measurements, which may then be accessed, uploaded, or displayed at a later time as necessary.
The display 14 can alternatively include a backlight whose brightness may be controlled by the processing unit 122 via a light source control module 115. Similarly, the user interface buttons 16 may also be illuminated using LED light sources electrically connected to processing unit 122 for controlling a light output of the buttons. The light source module 115 is electrically connected to the display backlight and processing unit 122. Default brightness settings of all light sources, as well as settings adjusted by the user, are stored in a settings module 105, which is accessible and adjustable by the processing unit 122.
A memory module 101, that includes but are not limited to volatile random access memory (“RAM”) 112, a non-volatile memory 113, which may comprise read only memory (“ROM”) or flash memory, and a circuit 114 for connecting to an external portable memory device via a data port 13, is electrically connected to the processing unit 122 over a communication interface 123. External memory devices may include flash memory devices housed in thumb drives, portable hard disk drives, data cards, or any other form of electronic storage devices. The on-board memory can include various embedded applications executed by the processing unit 122 for operation of the analyte meter 10, as will be explained below. On board memory can also be used to store a history of a user's blood glucose measurements including dates and times associated therewith. Using the wireless transmission capability of the analyte meter 10 or the data port 13, as described below, such measurement data can be transferred via wired or wireless transmission to connected computers or other processing devices.
A wireless module 106 may include transceiver circuits for wireless digital data transmission and reception via one or more internal digital antennas 107, and is electrically connected to the processing unit 122 over communication interface 123. The wireless transceiver circuits may be in the form of integrated circuit chips, chipsets, programmable functions operable via processing unit 122, or a combination thereof. Each of the wireless transceiver circuits is compatible with a different wireless transmission standard. For example, a wireless transceiver circuit 108 may be compatible with the Wireless Local Area Network IEEE 802.11 standard known as WiFi. Transceiver circuit 108 may be configured to detect a WiFi access point in proximity to the analyte meter 10 and to transmit and receive data from such a detected WiFi access point. A wireless transceiver circuit 109 may be compatible with the Bluetooth protocol and is configured to detect and process data transmitted from a Bluetooth “beacon” in proximity to the analyte meter 10. A wireless transceiver circuit 110 may be compatible with the near field communication (“NFC”) standard and is configured to establish radio communication with, for example, an NFC compliant point of sale terminal at a retail merchant in proximity to the analyte meter 10. A wireless transceiver circuit 111 may comprise a circuit for cellular communication with cellular networks and is configured to detect and link to available cellular communication towers.
A power supply module 116 is electrically connected to all modules in the housing 11 and to the processing unit 122 to supply electric power thereto. The power supply module 116 may comprise standard or rechargeable batteries 118 or an AC power supply 117 may be activated when the analyte meter 10 is connected to a source of AC power. The power supply module 116 is also electrically connected to processing unit 122 over the communication interface 123 such that processing unit 122 can monitor a power level remaining in a battery power mode of the power supply module 116.
In addition to connecting external storage for use by the analyte meter 10, the data port 13 can be used to accept a suitable connector attached to a connecting lead, thereby allowing the analyte meter 10 to be wired to an external device such as a personal computer. Data port 13 can be any port that allows for transmission of data such as, example, a serial, USB, or a parallel port.
With reference to
During a calibration phase, performed after test strip insertion but before a sample is applied thereto by a user, known calibration load 226 is switched into the circuit 125 by electronic switch 230. Under direction from microcontroller 122, the switch 230 can controllably connect the contacts 222 and 224 to the calibration load 226, or to the test strip 24 for analyte level measurement. Prior to the actual test strip sample analyte measurement, microcontroller 122 selectively connects the contacts 222, 224 to the known calibration load 226 during hardware integrity checks, calibration of impedance circuits with respect to voltage offsets and leakage currents, and the like. The test strip is switched in for actual testing after calibration is completed, wherein the user applies a sample to the test strip for analyte measurement. Calibration parameters generated during this calibration phase are used to adjust the magnitude and phase calculations as described above.
Experiments have shown that a 250 KHz applied sine wave signal has a high phase sensitivity to changes in the hematocrit level of the sample, but is also sensitive to a user's finger contact with the test strip 24. This physical finger contact can severely disrupt detectability of the phase difference between input and output signals. The finger contact is unavoidable as the user must provide the blood sample by direct contact with the test strip, after a finger prick procedure. As will be explained below, desensitizing the circuit 125 from these phase and magnitude effects caused by physical human contact while also maintaining good hematocrit sensitivity, is provided by an embodiment disclosed herein.
Investigations have also revealed that particular applied sinusoidal frequencies provide sufficient sensitivity to hematocrit levels in the sample while maintaining good immunity to the effects of a user's finger contact with the test strip. Different phase and magnitude plots, as will be described below, at different frequencies establish where in the frequency spectrum such immunity from human body interference may be obtained. With reference to
With respect to a frequency range of about 50 kHz to about 100 kHz, the capacitance added by the finger contact is a significant fraction of the total test-strip-plus-sample capacitance, and so this contact influences the phase difference as between the input and output sinusoidal signals to a much greater extent, proportionally, than it does the magnitude difference. This is because the added resistance contributed by excess finger contact is proportionally much less than the total test-strip-plus-sample resistance. Thus, the change in magnitude is modified to a much lesser extent by the excess finger contact, and so renders the calculations to determine magnitude relatively immune to the influence of the finger contact on the test strip.
One of the characteristics of the modified output response curves shown in
With reference to
The electrical model as shown, which incorporates the test strip 24 and the effect of a person touching it, enables simulation of various analyte meter modifications in a controlled and consistent manner. This model can be used to predict trends and sensitivity to various influences, including design improvements. Finely tuning the passive circuit elements allows realistic responses to be measured and tested. Additionally, the model 400 could be used to predict the performance effect of design changes in the strip electrical parameters and the blood analyte meter without building new strips or prototypes. This helps to identify modifications that may make the system less prone to the effects of a person touching the strip while an assay is being carried out.
The model circuit of
With reference to
In terms of operation, one aspect of the analyte meter 10 may include a capability for measuring analyte levels in a sample without electrical interference caused by human contact with the test strip containing the sample. Moreover, electrical modeling of the measuring apparatus allows simulation of various analyte meter modifications in a controlled and consistent manner. Additionally, the modeling could be used to predict the performance effect of design changes in the strip electrical parameters and the blood analyte meter without building new strips or prototypes.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method, or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.), or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “circuitry,” “module,” and/or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible, non-transitory medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code and/or executable instructions embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
Furthermore, the various methods described herein can be used to generate software codes using off-the-shelf software development tools. The methods, however, may be transformed into other software languages depending on the requirements and the availability of new software languages for coding the methods.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.