The detection of the level of analytes, such as glucose, lactate, oxygen, and the like, in certain individuals, is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.
A conventional technique used by many diabetics for personally monitoring their blood glucose level includes the periodic drawing of blood, the application of that blood to a test strip, and the determination of the blood glucose level using colormetric, electrochemical, or photometric detection. This technique does not permit continuous or automatic monitoring of glucose levels in the body, but typically must be performed manually on a periodic basis. Unfortunately, the consistency with which the level of glucose is checked varies widely among individuals. Many diabetics find the periodic testing inconvenient and they sometimes forget to test their glucose level or do not have time for a proper test.
In vivo glucose sensors that continuously or automatically monitor the individual's glucose level and enable individuals to more easily monitor their glucose, or other analyte levels are also commercially available. These systems may provide the user with accurate analyte levels at ten, five or even one minute intervals. Some examples of such systems are illustrated in U.S. Pat. No. 6,175,752, and in U.S. Patent Publication No. 2004/0186365 filed Dec. 26, 2003, now U.S. Pat. No. 7,811,231, entitled “Continuous Glucose Monitoring System and Methods of Use.” Devices and systems for management of the analyte level may also be included in the analyte monitoring system. An example of an analyte management system is an insulin pump, which may manage the analyte level by, for example, delivering a dose of insulin to the user in response to the glucose levels of the user. The analyte management system may be automatic, user controlled, or any combination thereof.
Clinical studies have shown that some patients derive considerable benefits from an increased frequency of available analyte levels, a benefit provided by the analyte measuring systems. However, other patients derived little or no benefit from an increased availability of analyte levels. Using glucose monitoring as an example, patients who derived little or no value from the glucose monitoring systems were at an increased risk of hyperglycemic or hypoglycemic episodes.
Increasingly, research has associated the lack of frequent interaction with the analyte monitoring system as the reason that some patients potentially derive reduced value from the analyte monitoring systems. As a result, there is a need for a system which reminds or encourages the user to interact with the analyte monitoring system at a minimum frequency.
Exemplary embodiments of the present disclosure overcome the above disadvantages and other disadvantages not described above and provide advantages which will be apparent from the following description of exemplary embodiments of the disclosure. Also, the present disclosure is not required to overcome the disadvantages described above.
According to one aspect of the present disclosure, there is provided methods to analyze user interaction with a medical device. Exemplary embodiments include methods to encourage user interaction with a medical device that may include monitoring a user's actual frequency of interaction with the medical device; comparing the user's actual frequency of interaction with the medical device to at least one predetermined target level of interaction; and alerting the user when the user's actual frequency of interaction with the medical device is equal to or below the at least one predetermined target level of interaction.
According to one aspect of the present disclosure, the user may be informed of the difference between the actual frequency of interaction with the medical device and the predetermined target level of interaction.
According to one aspect of the present disclosure the user may be alerted using an alarm. The alarm may be an audible and/or visual and/or vibrating alarm. According to another aspect of the present disclosure, the audible alarm may increase in loudness over time after being activated.
According to one aspect of the present disclosure the method may include a plurality of predetermined target levels of interaction, wherein alerting the user distinguishes between the plurality of target levels of interaction.
According to one aspect of the present disclosure, the user may be required to perform at least one step to turn off the alert. According to yet another aspect, the at least one step may be a decision related to the user's state of health.
According to one aspect of the present disclosure, the at least one predetermined target level of interaction may be adjusted by an authorized user. The at least one predetermined target level of interaction may also be adjusted according to a time of day, type of activity, or projected future analyte level.
According to another aspect of the present disclosure, the history of the user's actual frequency of interaction with the medical device may be recorded. In this aspect, the at least one predetermined target level of interaction may be adjusted according to the recorded history. Moreover, the history of the user's actual frequency of interaction with the medical device may be organized according to behavior variables inputted by the user. According to another aspect of the present disclosure, the at least one predetermined target level of interaction may be adjusted according to a data received from a sensor located on the user.
According to one aspect of the present disclosure, the user may be rewarded when the actual frequency of interaction stays above the at least one predetermined level of interaction for a predetermined time.
According to another aspect of the present disclosure, there is disclosed an analyte monitoring apparatus comprising a sensor which is attached to a user for monitoring an analyte level of the user, the sensor further comprising a transmitter which transmits information obtained by the sensor; and a receiver unit comprising a receiver for receiving data from the sensor, and a display coupled to the receiver which displays the received data to the user when the user interacts with the receiver unit, wherein the receiver unit monitors the user's actual frequency of interaction with the device, compares the user's actual frequency of interaction with the receiver unit to at least one predetermined target level of interaction, and alerts the user when the user's actual frequency of interaction with the receiver unit is equal to or below the at least one predetermined target level of interaction.
The above and other features and advantages of the present disclosure will become more apparent from detailed exemplary embodiments set forth hereinafter with reference to the attached drawings in which:
The present disclosure will now be described more fully with reference to the accompanying figures, in which exemplary embodiments of the disclosure are shown. The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity. Like reference numerals in the figures denote like elements.
It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
Embodiments are described herein generally with respect to in vivo analyte monitoring device and methods in which at least a portion of an analyte sensor is positioned beneath a skin surface of a user, where such description is not intended to limit the scope of the disclosure in any way. Also contemplated are in vitro analyte monitoring systems, e.g., small volume (e.g., sample volumes ranging from about 0.1 to about 1 microliter), and/or short assay times (e.g., assay times ranging from about 1 second to about 10 seconds). In vitro systems usually include a test strip and a meter to read the test strip. Examples of in vitro analyte systems include, but are not limited to, FreeStyle® and Precision® blood glucose monitoring systems from Abbott Diabetes Care Inc. Also contemplated are integrated systems in which one or more components of an in vitro system are included in a single housing, e.g., lance, test strip or meter.
Additionally, in one exemplary embodiment the analyte monitoring system may include an analyte management system, such as an insulin pump. Thus, it is to be understood that the following description is directed to an analyte (for example, glucose) monitoring system for convenience only and such description is in no way intended to limit the scope of the disclosure.
Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, creatinine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketone bodies, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those exemplary embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.
Moreover, the description herein is directed primarily to electrochemical sensors for convenience only and is in no way intended to limit the scope of the disclosure. Other sensors and sensor systems are contemplated. Such include, but are not limited to, optical sensors, colorimetric sensors, and sensors that detect hydrogen peroxide to infer analyte levels, etc.
Referring to
Also shown in
Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.
In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least periodically sample the analyte level of the user and convert the sampled analyte level into a corresponding signal for transmission by the data processing unit 102. The data processing unit 102 performs data processing functions, where such functions may include, but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to a receiver unit (104 or 106) via the communication link 103. In certain embodiments, one or more application-specific integrated circuits (ASIC) may be used to implement one or more functions or routines associated with the operations of the data processing unit (and/or receiver unit) using for example one or more state machines and buffers.
In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.
In certain embodiments, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, data bit recovery, etc., or any combination thereof.
In operation, the primary receiver unit 104 in certain exemplary embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, an identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101.
Referring again to
In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in
The primary receiver unit 104, according to an exemplary embodiment of the present disclosure, illustrated in block form in
In one exemplary embodiment, a primary receiver unit 104 may be a bedside unit for use at home. The bedside unit may have its own data analyzer and data storage. The data may be communicated from the data processing unit 102 or another receiver unit, such as a secondary receiver unit 106. Thus, at least one receiver unit contains all the relevant data so that the data can be downloaded and analyzed without significant gaps.
The receiver 20 may be formed using known receiver and antenna circuitry and may be tuned or tunable to the frequency or frequency band of the data processing unit 102. In one exemplary embodiment, the receiver 20 is capable of receiving signals from a distance greater than the transmitting distance of the data processing unit 102.
In another embodiment, a repeater unit (not shown) is used to boost a signal from the data processing unit 102 so that the signal can be received by receiver units 104 and 106 that may be distant from the data processing unit 102. The repeater unit is typically independent of the data processing unit 102, but, in some cases, the repeater unit may be configured to attach to the data processing unit 102. Typically, the repeater unit includes a receiver for receiving the signals from the data processing unit 102 and a transmitter for transmitting the received signals. The transmitter of the repeater unit may be more powerful than the transmitter of the data processing unit 102 in one exemplary embodiment of the present disclosure. The repeater unit may be used, for example, in a child's bedroom for transmitting a signal from a data processing unit 102 on the child to a primary receiver unit 104 in the parent's bedroom for monitoring the child's analyte levels and frequency of interaction with the secondary receiver unit 106.
A variety of displays 24 may be used, including cathode ray tube displays (particularly for larger units), light emitting diode (LED) displays, or liquid crystal display (LCD) displays. The display 24 may be monochromatic (e.g., black and white) or polychromatic (i.e., having a range of colors). The display 24 may contain symbols or other indicators that are activated under certain conditions (e.g., an alert to the user may become visible on the display when the user's frequency of interaction with the receiver units 104 and 106 falls below the predetermined target level of interaction). The display 24 may also contain more complex structures, such as LCD or LED alphanumeric structures, portions of which can be activated to produce a letter, number, or symbol. For example, the display 24 may include region 34 to display numerically the level of the analyte, as illustrated in
In one exemplary embodiment, as shown in
One example of a receiver unit (104 or 106) is illustrated in
In one exemplary embodiment, the user's interaction with the receiver units 104 and 106 is system specific. That is, the receiver units 104 and 106 update each other when the user interacts with one of the receiver units (either 104 or 106). In this embodiment, the user needs to only interact with one unit to maintain the target level of interaction.
In another embodiment, the user's interaction with the receiving units 104 and 106 may be receiver unit specific. One example where the user's interaction with the receiver is receiver unit specific may be a guardian/child relationship. In this example, the child's level of interaction (with, for example, the primary receiver unit 104) and the guardian's level of interaction (with, for example, the secondary receiver unit 106) should be assessed independently.
In another exemplary embodiment, as illustrated in
In some exemplary embodiments, the receiver unit is configured so that the user may choose the particular display (e.g., blood glucose concentration or graph of concentration versus time) that the user wishes to view. The user may choose the desired display mode by pushing a button or the like, for example, on an optional input device 32. When the user interacts with the device, to view or choose a particular display or to wake the device from its resting state, the receiver unit 104 or 106 may record the date and time of the user's interaction with that receiver unit. In this way, the receiver units 104 and 106 can monitor the frequency of user interaction with the receiver units. The optional input device 32 for interacting with the receiver units 104 and 106 will be described in greater detail below.
The above-described graphs benefit both the user and the health care provider (“HCP”). The user can benefit from subtle behavioral modification as the graphs and/or screen prompts encourage more frequent interaction with the device and the expected improvement in outcomes.
HCPs may benefit from more cumulative statistics (such as average glucose views per day, average glucose views before/after meals, average glucose views on “in-control” vs. “out-of-control” days or time of day) which may be obtained from the record of user's interaction frequency with the device and which can be used to understand why a patient may not be realizing expected gains from the analyte monitoring system. If an HCP sees that a patient is not benefiting as expected from the analyte monitoring system, they may recommend an increased level of interaction (e.g., increase interaction target level).
In one exemplary embodiment, the receiver units 104 and 106 may include software. In this exemplary embodiment, each instance of user interaction, by pressing a button or the like, with a receiver unit 104 or 106, or both receiver units 104 and 106, may be recorded. The software may associate each instance of user interaction with the date and time of that interaction. For example, the software may record each instance that the user queries the main screen of the receiver unit 104 or 106. In this exemplary embodiment, the receiver unit 104 or 106 may further include an algorithm for comparing the frequency of user interaction with the receiver to a predetermined frequency of interaction. In this exemplary embodiment, if the frequency of a user's interaction with the receiver units 104 and 106 matches or falls below the predetermined level of interaction, the receiver unit (104 or 106) may alert the user through an audible or vibratory alert. The alert system will be described in greater detail below.
In another exemplary embodiment of the present disclosure, the receiver units 104 and 106 may also contain software designed to encourage interaction with the receiver units. For example, the software may set target rates for the user, so that the user strives to achieve a desired interaction frequency with the receiver unit. In another exemplary embodiment, the software may offer educational information related to treatment as well as helpful hints and tips, thereby educating the user as to the importance of maintaining a predetermined target level of interaction with the receiver unit.
In yet another embodiment, the receiver units 104 and 106 may include software that prompts user interaction, e.g., an electronic game, or cartoon-like character, or the like, that requires feedback from the user. In one exemplary embodiment, the cartoon-like character or the like may have a “health bar” or a “life bar” which would represent the level of interaction between the user and the analyte monitoring system 100. That is, by frequently interacting with the cartoon-like character, the user will keep the health, or life, level of the cartoon-like character above the predetermined target level. In one exemplary embodiment, the user may “feed” the cartoon-like character by interacting with the device. The user's analyte level, or other relevant information should also be displayed on the screen of the device during interaction between the user and the cartoon-like character. In one exemplary embodiment, the user will be limited in the amount of interaction in a predetermined time. That is, the user will not be able to front-load the amount of interaction with the device, and then ignore the device for a prolonged period of time. As such, the device may only record a predetermined number of interactions within a certain period of time.
By interacting with the cartoon-like character, the user may also be educated as to the benefits of maintaining a proper target rate of interaction with the device, or may at least stay informed as to his own state of health. This embodiment may be particularly interesting to children as it may help ensure that children maintain the necessary level of interaction with the monitoring device of this disclosure. This exemplary embodiment may also be coupled with education regarding treatment options, helpful hints and tips. Moreover, the above-described embodiment need not be used with a continuous glucose monitoring (“CGM”) device.
In one exemplary embodiment of the present disclosure, the above concept can also be adapted to the “finger stick test.” Using glucose as an example, the user may interact with the cartoon-like character by manually checking his blood glucose level. That is, each time the user manually checks his glucose level, using the finger stick test, the cartoon-like character may gain a point to the “health” or “life” bar. Similar to the embodiment described above, the “health” or “life” bar may represent the target level of user interaction. In this way, the user will desire to keep the cartoon-like character healthy, and thus interact with the device at an increased frequency. With regard to the embodiments described above, one of ordinary skill in the art will understand that the cartoon-like character is simply an example, and that any kind of character or figure may be used.
In order to achieve the full benefit of the analyte monitoring system 100, the user should maintain a predetermined target rate of interaction with the system. In one exemplary embodiment, the predetermined target level of user interaction is set by an HCP, or the user's health care team. Thus, each predetermined target level of interaction will likely depend on the specific user. However, in one exemplary embodiment, factors affecting the predetermined level of user interaction with the system may be: the particular analyte to be measured, the user's general state of health, (for example, more frequent during sick days), symptoms exhibited by the user, time of day, time since or until meal, activity level and other events.
In one exemplary embodiment, the target level may be programmed (or user modifiable) to vary during the course of the day or week (work week vs. weekend), with these rates being easily adjustable to account for events or changes, such as, during sick days, times of high activity, or other times when more frequent interactions should be encouraged. Although HCPs may recommend only general interaction levels (e.g., once per hour during waking hours), these levels may be tailored to the individual user. For example, if a user feels overwhelmed with CGM technology, lower target levels of interaction may be needed, whereas a user who feels empowered by the technology may be encouraged to interact with the device at a higher frequency. Generally, HCPs will review interaction levels during routine visits when assessing general health and reviewing data uploads (e.g., approximately every 3 months for patients with diabetes). However, this approach may differ depending on the user, or other factors.
In another exemplary embodiment, the predetermined target level of user interaction with the receiver units 104 and 106 may be set according to the time of day. For example, a user may interact with the receiver units 104 and 106 more frequently during the day than at night. Additionally, in another exemplary embodiment, the predetermined target level of user interaction with the receiver units 104 and 106 may be set according to the type of activity being performed by the user. For example, a user on a long-distance bicycle ride or car ride may need to check the analyte levels more frequently. In one exemplary embodiment, an HCP may recommend target levels of interaction corresponding to various events. In another exemplary embodiment, the target level of user interaction may be set by the user, or any other authorized party.
In one exemplary embodiment, the system may automatically adjust the target level of interaction based upon the user's activity level or state of general wellness. In this exemplary embodiment, the system may use pulse rate, body temperature, respiration rate or other indicators to adjust the analyte level. Alternatively, position sensors, accelerometers or the like may be used to detect sleep and reduce (or even suspend) the target interaction frequency.
In another exemplary embodiment, the analyte monitoring system 100 may use the detected analyte levels to adjust future target levels of interaction. For example, the system may use an increase in glucose level, an increase in the rate of change of the glucose level, user entered information or some other analysis of the measured analyte level to identify a need to adjust the current target level of interaction. In one exemplary embodiment, the analyte levels may detect that the user has recently had a meal and may then adjust the interaction frequency automatically to a pre-programmed or user-set level.
Another exemplary embodiment may include a plurality of predetermined target levels of user interaction with the system of the present disclosure. For example, the present disclosure may include an “ideal” level of interaction, an “acceptable” level of interaction and a “critical” level of interaction. These levels may shift based on several factors. In one exemplary embodiment, the level of interaction may be adjusted to an increased or decreased target level of interaction based upon the monitoring results, based upon some user interaction with the device (e.g., meal or activity level entry), or may be pre-programmed to vary with the time of day or day of the week. The monitoring results may include, analyte levels, the rate of change of analyte levels, etc.
In another exemplary embodiment, the interaction frequency level may be relative to the predetermined target interaction frequency. For example “ideal” may be approximately 90% or more of the target level; “acceptable” may be 70-90% of the target level; and “critical” may be below 70% of the target level.
In another exemplary embodiment of the present disclosure, the analyte monitoring system 100 may adjust the predetermined target levels of user interaction according to the condition of the user. Using glucose as an example, if the user's level of glucose drops below a certain threshold, the system may alert the user that hypoglycemia may occur. In this exemplary embodiment, the analyte monitoring system 100 may adjust the target rate of user interaction to be more frequent, thus prompting the user to interact with the device more often, and thus encourage the user to raise his level of glucose to a more acceptable level. Once the glucose level returns to an acceptable level, the system may adjust the target interaction rate accordingly.
In the above exemplary embodiment, the system may include a multiplier for adjusting target levels of user interaction, wherein the predetermined target rate of interaction is multiplied by a predetermined amount according to the condition reached. In one exemplary embodiment, a multiplier may be associated with a predetermined target level, such as for example the “critical” target level. In another exemplary embodiment, a multiplier may be associated with a specific condition, or analyte level of the user, such as when the user is in danger of becoming hypoglycemic.
In another exemplary embodiment, the system may adjust the rate of interaction according to predicted future analyte levels. For example, the analyte monitoring system 100 may predict the future analyte level of a user by monitoring the present rate of change of the user's analyte level.
As shown in
The alarm system 26 may contain one or more individual alarms. Each of the alarms may be individually activated to indicate one or more predetermined target levels of user interaction with the receiver units 104 and 106. The alarms may be, for example, auditory or visual. Other sensory-stimulating alarm systems may be used, including alarm systems that direct the data processing unit 102 to heat, cool, vibrate, or produce a mild electrical shock. In some embodiments, the alarms are auditory with a different tone, note or volume indicating different predetermined target levels of user interaction with the receiver units 104 and 106. In one exemplary embodiment of the present disclosure, various tones of the alarm system 26 may indicate varying urgency levels of a user's need to interact with the receiver units 104 and 106. For example, a high volume alarm may indicate a “critical” predetermined target level being reached, while a lower volume alarm might indicate that the user's frequency of interaction has fallen below the “acceptable” level of interaction with the receiver unit. Visual alarms may also use a difference in color or brightness of the display, or indicators on the display, to distinguish between different predetermined target levels of user interaction with the receiver units 104 and 106. In some embodiments, an auditory alarm system may be configured so that the volume of the alarm increases over time until the alarm is deactivated.
In some embodiments, the alarms may be automatically deactivated after a predetermined time period. In other embodiments, the alarms may be configured to deactivate only when the user interacts with a receiver unit.
In another exemplary embodiment of the present disclosure, the receiver units 104 and 106 may include software for requiring the user to perform a series of operations in order to silence the alarm. In this exemplary embodiment, the operations may be therapeutic decision options being presented to the user, or may be a series of options related to the user's state of health. The user would then need to review these options and acknowledge understanding by interacting with the device. In certain cases, the alarm may not turn off unless the user acknowledges such understanding.
In the exemplary embodiment shown in
Similarly, if the user's actual level of interaction falls below the “acceptable” target level of interaction, the system will prompt the user to interact with the device, by sounding an alarm or the like (Step 4B). In this example, as shown in Steps 5B and 6B, the alarm will not be turned off until the user has acknowledged the alarm, by pressing a button or the like.
If the user's actual level of interaction falls below the “critical” target level of interaction, the system will set off a third alarm (Step 4C). Similar to the “acceptable” target level, the alarm will not be turned off until the user has acknowledged the alarm (Step 5C). Additionally, to silence an alarm corresponding to the “critical” target level of interaction, the user may be required to perform a series of operations (Step 6C). Once the user completes the series of operations, the alarm is turned off (Step 7C).
One of ordinary skill in the art will understand that the analyte monitoring system of
As shown in
A receiver unit (104 or 106) may also include a number of optional items. One such item may be, for example, a data storage unit 28. The data storage unit 28 may be used to store the history of user interaction with the receiver unit, among other data. The data storage unit 28 may also be useful to store data that may be downloaded to another receiver unit, such as the primary receiver unit 104. Alternatively, the data may be downloaded to a computer or other data storage device in a user's home, at an HCP's office, etc., for evaluation of trends in analyte levels.
In one exemplary embodiment, the HCP may use the recorded history of interaction to modify the treatment of the user. The storage unit 28 may also store behavior variables, such as events, together with the data of the particular event. These behavior variables may be generated either automatically by the receiver unit or can, alternatively, be input by the user. In an exemplary embodiment, the user may also edit the event history. Examples of events may include things such as the user's activity level, state of health, medication (e.g., insulin) dosages, meals or any other event that may have an effect on the assessment of a treatment approach and recommendations for treatment modifications of the user.
As shown in
Referring to
In one exemplary embodiment, the user will have to acknowledge the alarm or message displayed by the receiver unit (104 or 106). In this exemplary embodiment, a receiver unit (104 or 106) may have a button which is the default button for acknowledging an alarm or message. However, some alarms may require the user to interact with a button other than the default button. Further, in certain exemplary embodiments, some alarms may require the user to perform a series of operations, such as pressing a combination of buttons or the like, in order to silence the alarm.
Another exemplary embodiment of the input device 32 is a touch screen display. The touch screen display may be incorporated into the display 24 or may be a separate display. The touch screen display is activated when the user touches the screen at a position indicated by a “soft button” which corresponds to a desired function.
In addition, the analyte monitoring system 100 may include password protection to prevent the unauthorized transmission of data to a terminal or the unauthorized changing of settings for the system 100. A user may be prompted by the receiver unit to input a password using the input device 32 whenever a password-protected function is initiated.
Accordingly, a method in one aspect includes monitoring a user's actual frequency of interaction with the medical device, comparing the user's actual frequency of interaction with the medical device to at least one predetermined target level of interaction, and alerting the user when the user's actual frequency of interaction with the medical device is equal to or below the at least one predetermined target level of interaction.
In one aspect, alerting the user may indicate a difference between the actual frequency of interaction with the medical device and the predetermined target level of interaction.
The user may be alerted by an audible alarm, where the audible alarm may increase in loudness over time after being activated.
In another aspect, the user may be alerted by a vibrating alarm.
The method in a further embodiment may include a plurality of predetermined target levels of interaction, where alerting the user distinguishes between the plurality of target levels of interaction.
The user may be required to perform at least one step to turn off the alert, where the at least one step may be a decision related to the user's state of health.
The at least one predetermined target level of interaction may be adjusted by an authorized user.
In a further aspect, the method may include adjusting the at least one predetermined target level of interaction according to a time of day.
The method may also include adjusting the at least one predetermined target level of interaction according to a type of activity.
Also, the method may still include adjusting the at least one predetermined target level of interaction according to a future analyte level of the user, predicted using rate of change data.
Additionally, the method may include recording a history of the user's actual frequency of interaction with the medical device, where the method may also include adjusting the at least one predetermined target level of interaction according to the recorded history.
In still yet a further embodiment, the method may include organizing the history of the user's actual frequency of interaction with the medical device according to behavior variables inputted by the user.
Further, the method may include rewarding the user when the actual frequency of interaction stays above the at least one predetermined level of interaction for a predetermined time.
Additionally, the method may include adjusting the at least one predetermined target level of interaction according to a data received from a sensor located on the user.
An analyte monitoring system in accordance with another embodiment includes a user interactive analyte device to monitor at least one analyte of a user, and a processor unit coupled to the user interactive device to determine the frequency of user interaction with the analyte monitoring device.
The analyte may include glucose.
In still yet a further aspect, the user interactive device may include an in vivo analyte sensor, where the sensor may be configured to at least be partially positioned under a skin surface of a user.
An analyte monitoring system in accordance with still another embodiment may include a sensor to monitor an analyte level of the user, a transmitter to transmit information obtained by the sensor, and a receiver unit comprising a receiver to receive data from the sensor, and a display coupled to the receiver to display the received data to the user when the user interacts with the receiver unit, where the receiver unit monitors the user's actual frequency of interaction with the device, compares the user's actual frequency of interaction with the receiver unit to at least one predetermined target level of interaction, and alerts the user when the user's actual frequency of interaction with the receiver unit is equal to or below the at least one predetermined target level of interaction.
The system in one aspect may include a data storage unit for storing a history of the user's actual interaction with the receiver unit.
The receiver unit may be portable.
The receiver unit may include a user input unit for interacting with the display unit.
Further, the user input unit may be used to change settings of the receiver unit.
Although the exemplary embodiment of the present disclosure have been described, it will be understood by those skilled in the art that the present disclosure should not be limited to the described exemplary embodiments, but various changes and modifications can be made within the spirit and the scope of the present disclosure. Accordingly, the scope of the present disclosure is not limited to the described range of the following claims.
The present application is a continuation of U.S. patent application Ser. No. 14/629,447 filed Feb. 23, 2015, now U.S. Pat. No. 9,913,600, which is a continuation of U.S. patent application Ser. No. 13/448,287 filed Apr. 16, 2012, which is a continuation of U.S. patent application Ser. No. 12/147,464 filed Jun. 26, 2008, now U.S. Pat. No. 8,160,900, which claims priority under § 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/947,026 filed Jun. 29, 2007 entitled “Analyte Monitoring and Management Device and Method to Analyze the Frequency of User Interaction with the Device,” the disclosures of each of which are incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4619793 | Lee | Oct 1986 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320715 | Berg | Jun 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5402780 | Faasse, Jr. | Apr 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5438983 | Falcone | Aug 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5532686 | Urbas et al. | Jul 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5552997 | Massart | Sep 1996 | A |
5555190 | Derby et al. | Sep 1996 | A |
5564434 | Halperin et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5601435 | Quy | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5707502 | McCaffrey et al. | Jan 1998 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5724030 | Urbas et al. | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5794219 | Brown | Aug 1998 | A |
5804047 | Karube et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5820551 | Hill et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5875186 | Belanger et al. | Feb 1999 | A |
5891049 | Cyrus et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5951485 | Cyrus et al. | Sep 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5987353 | Khatchatrian et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6004278 | Botich et al. | Dec 1999 | A |
6022315 | lliff | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6091987 | Thompson | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6115622 | Minoz | Sep 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6130623 | MacLellan et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144837 | Quy | Nov 2000 | A |
6144871 | Saito et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6161095 | Brown | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6167362 | Brown | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6223283 | Chaiken et al. | Apr 2001 | B1 |
6248065 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6291200 | LeJeune et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6294997 | Paratore et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6338790 | Feldman et al. | Jan 2002 | B1 |
6348640 | Navot et al. | Feb 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368273 | Brown | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6377894 | Deweese et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6387048 | Schulman et al. | May 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6405066 | Essenpreis et al. | Jun 2002 | B1 |
6413393 | Van Antwerp et al. | Jul 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6496729 | Thompson | Dec 2002 | B2 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514460 | Fendrock | Feb 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6540891 | Stewart et al. | Apr 2003 | B1 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6551494 | Heller et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6574510 | Von Arx et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579231 | Phipps | Jun 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6595919 | Berner et al. | Jul 2003 | B2 |
6600997 | Deweese et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6631281 | Kastle | Oct 2003 | B1 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6635167 | Batman et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650471 | Doi | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulson et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6730200 | Stewart et al. | May 2004 | B1 |
6731976 | Penn et al. | May 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6735183 | O'Toole et al. | May 2004 | B2 |
6736957 | Forrow et al. | May 2004 | B1 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6764581 | Forrow et al. | Jul 2004 | B1 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6773671 | Lewis et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6804558 | Haller et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6912413 | Rantala et al. | Jun 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932892 | Chen et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6941163 | Ford et al. | Sep 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6954662 | Freger et al. | Oct 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6968375 | Brown | Nov 2005 | B1 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7022219 | Mansouri et al. | Apr 2006 | B2 |
7024236 | Ford et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7043287 | Khalil et al. | May 2006 | B1 |
7043305 | KenKnight et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052472 | Miller et al. | May 2006 | B1 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7058453 | Nelson et al. | Jun 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7082334 | Boute et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7118667 | Lee | Oct 2006 | B2 |
7123950 | Mannheimer | Oct 2006 | B2 |
7125382 | Zhou et al. | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7183102 | Monfre et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7203549 | Schommer et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7223236 | Brown | May 2007 | B2 |
7225535 | Feldman et al. | Jun 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228182 | Healy et al. | Jun 2007 | B2 |
7237712 | DeRocco et al. | Jul 2007 | B2 |
7258666 | Brown | Aug 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7324850 | Persen et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7347819 | Lebel et al. | May 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7381184 | Funderburk et al. | Jun 2008 | B2 |
7384397 | Zhang et al. | Jun 2008 | B2 |
7387010 | Sunshine et al. | Jun 2008 | B2 |
7392167 | Brown | Jun 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7419573 | Gundel | Sep 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7429258 | Angel et al. | Sep 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7462264 | Heller et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7468125 | Kraft et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7492254 | Bandy et al. | Feb 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7499002 | Blasko et al. | Mar 2009 | B2 |
7501053 | Karinka et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7519478 | Bartkowiak et al. | Apr 2009 | B2 |
7523004 | Bartkowiak et al. | Apr 2009 | B2 |
7565197 | Haubrich et al. | Jul 2009 | B2 |
7574266 | Dudding et al. | Aug 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7604178 | Stewart | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7624028 | Brown | Nov 2009 | B1 |
7630748 | Budiman | Dec 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7643971 | Brown | Jan 2010 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7659823 | Killian et al. | Feb 2010 | B1 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7684999 | Brown | Mar 2010 | B2 |
7689440 | Brown | Mar 2010 | B2 |
7697967 | Stafford | Apr 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7711493 | Bartkowiak et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7727147 | Osorio et al. | Jun 2010 | B1 |
7731657 | Stafford | Jun 2010 | B2 |
7736310 | Taub | Jun 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7751864 | Buck, Jr. | Jul 2010 | B2 |
7754093 | Forrow et al. | Jul 2010 | B2 |
7763042 | Iio et al. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7771352 | Shults et al. | Aug 2010 | B2 |
7778680 | Goode et al. | Aug 2010 | B2 |
7779332 | Karr et al. | Aug 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7783333 | Brister et al. | Aug 2010 | B2 |
7791467 | Mazar et al. | Sep 2010 | B2 |
7792562 | Shults et al. | Sep 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7822454 | Alden et al. | Oct 2010 | B1 |
7831310 | Lebel et al. | Nov 2010 | B2 |
7857760 | Brister et al. | Dec 2010 | B2 |
7860574 | Von Arx et al. | Dec 2010 | B2 |
7866026 | Wang et al. | Jan 2011 | B1 |
7873595 | Singh et al. | Jan 2011 | B2 |
7877274 | Brown | Jan 2011 | B2 |
7877276 | Brown | Jan 2011 | B2 |
7882611 | Shah et al. | Feb 2011 | B2 |
7885697 | Brister et al. | Feb 2011 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7912674 | Killoren Clark et al. | Mar 2011 | B2 |
7914460 | Melker et al. | Mar 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7921186 | Brown | Apr 2011 | B2 |
7937255 | Brown | May 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7941308 | Brown | May 2011 | B2 |
7941323 | Brown | May 2011 | B2 |
7941326 | Brown | May 2011 | B2 |
7941327 | Brown | May 2011 | B2 |
7946984 | Brister et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7949507 | Brown | May 2011 | B2 |
7955258 | Goscha et al. | Jun 2011 | B2 |
7966230 | Brown | Jun 2011 | B2 |
7970448 | Shults et al. | Jun 2011 | B2 |
7970620 | Brown | Jun 2011 | B2 |
7972267 | Brown | Jul 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
7979259 | Brown | Jul 2011 | B2 |
7979284 | Brown | Jul 2011 | B2 |
7996158 | Hayter et al. | Aug 2011 | B2 |
7999674 | Kamen | Aug 2011 | B2 |
8005524 | Brauker et al. | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8015025 | Brown | Sep 2011 | B2 |
8015030 | Brown | Sep 2011 | B2 |
8015033 | Brown | Sep 2011 | B2 |
8019618 | Brown | Sep 2011 | B2 |
8024201 | Brown | Sep 2011 | B2 |
8032399 | Brown | Oct 2011 | B2 |
8060173 | Goode, Jr. et al. | Nov 2011 | B2 |
8072310 | Everhart | Dec 2011 | B1 |
8090445 | Ginggen | Jan 2012 | B2 |
8093991 | Stevenson et al. | Jan 2012 | B2 |
8094009 | Allen et al. | Jan 2012 | B2 |
8098159 | Batra et al. | Jan 2012 | B2 |
8098160 | Howarth et al. | Jan 2012 | B2 |
8098161 | Lavedas | Jan 2012 | B2 |
8098201 | Choi et al. | Jan 2012 | B2 |
8098208 | Ficker et al. | Jan 2012 | B2 |
8102021 | Degani | Jan 2012 | B2 |
8102154 | Bishop et al. | Jan 2012 | B2 |
8102263 | Yeo et al. | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103241 | Young et al. | Jan 2012 | B2 |
8103325 | Swedlow et al. | Jan 2012 | B2 |
8103471 | Hayter | Jan 2012 | B2 |
8111042 | Bennett | Feb 2012 | B2 |
8115488 | McDowell | Feb 2012 | B2 |
8116681 | Baarman | Feb 2012 | B2 |
8116683 | Baarman | Feb 2012 | B2 |
8116837 | Huang | Feb 2012 | B2 |
8117481 | Anselmi et al. | Feb 2012 | B2 |
8120493 | Burr | Feb 2012 | B2 |
8124452 | Sheats | Feb 2012 | B2 |
8130093 | Mazar et al. | Mar 2012 | B2 |
8131351 | Kalgren et al. | Mar 2012 | B2 |
8131365 | Zhang et al. | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8132037 | Fehr et al. | Mar 2012 | B2 |
8135352 | Langsweirdt et al. | Mar 2012 | B2 |
8136735 | Arai et al. | Mar 2012 | B2 |
8138925 | Downie et al. | Mar 2012 | B2 |
8140160 | Pless et al. | Mar 2012 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8140299 | Siess | Mar 2012 | B2 |
8140312 | Hayter et al. | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150516 | Levine et al. | Apr 2012 | B2 |
8160900 | Taub | Apr 2012 | B2 |
8170803 | Kamath et al. | May 2012 | B2 |
8179266 | Hermle | May 2012 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8216138 | McGarraugh et al. | Jul 2012 | B1 |
8239166 | Hayter et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8260558 | Hayter et al. | Sep 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8374668 | Hayter et al. | Feb 2013 | B1 |
8376945 | Hayter et al. | Feb 2013 | B2 |
8377271 | Mao et al. | Feb 2013 | B2 |
8409093 | Bugler | Apr 2013 | B2 |
8444560 | Hayter et al. | May 2013 | B2 |
8457703 | Al-Ali | Jun 2013 | B2 |
8461985 | Fennell et al. | Jun 2013 | B2 |
8484005 | Hayter et al. | Jul 2013 | B2 |
8532935 | Budiman | Sep 2013 | B2 |
8543354 | Luo et al. | Sep 2013 | B2 |
8560038 | Hayter et al. | Oct 2013 | B2 |
8571808 | Hayter | Oct 2013 | B2 |
8583205 | Budiman et al. | Nov 2013 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
8600681 | Hayter et al. | Dec 2013 | B2 |
8612163 | Hayter et al. | Dec 2013 | B2 |
8657746 | Roy | Feb 2014 | B2 |
8682615 | Hayter et al. | Mar 2014 | B2 |
8710993 | Hayter et al. | Apr 2014 | B2 |
8834366 | Hayter et al. | Sep 2014 | B2 |
8845536 | Brauker et al. | Sep 2014 | B2 |
8924159 | Taub et al. | Dec 2014 | B2 |
9060719 | Hayter et al. | Jun 2015 | B2 |
9289179 | Hayter et al. | Mar 2016 | B2 |
9398872 | Hayter et al. | Jul 2016 | B2 |
9408566 | Hayter et al. | Aug 2016 | B2 |
9439586 | Bugler | Sep 2016 | B2 |
9483608 | Hayter et al. | Nov 2016 | B2 |
9558325 | Hayter et al. | Jan 2017 | B2 |
9743872 | Hayter et al. | Aug 2017 | B2 |
9913600 | Taub | Mar 2018 | B2 |
20010011224 | Brown | Aug 2001 | A1 |
20010020124 | Tamada | Sep 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010047604 | Valiulis | Dec 2001 | A1 |
20020016534 | Trepagnier et al. | Feb 2002 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020065454 | Lebel et al. | May 2002 | A1 |
20020072784 | Sheppard et al. | Jun 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020111832 | Judge | Aug 2002 | A1 |
20020117639 | Paolini et al. | Aug 2002 | A1 |
20020120186 | Keimel | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020133107 | Darcey | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020150959 | Lejeunne et al. | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020188748 | Blackwell et al. | Dec 2002 | A1 |
20030005464 | Gropper et al. | Jan 2003 | A1 |
20030021729 | Moller et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030023461 | Quintanilla et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030032077 | Itoh et al. | Feb 2003 | A1 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030050546 | Desai et al. | Mar 2003 | A1 |
20030054428 | Monfre et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030163351 | Brown | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030191377 | Robinson et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030235817 | Bartkowiak et al. | Dec 2003 | A1 |
20040010186 | Kimball et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040015102 | Cummings et al. | Jan 2004 | A1 |
20040024553 | Monfre et al. | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040060818 | Feldman et al. | Apr 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040073266 | Haefner et al. | Apr 2004 | A1 |
20040078215 | Dahlin et al. | Apr 2004 | A1 |
20040093167 | Braig et al. | May 2004 | A1 |
20040099529 | Mao et al. | May 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040117204 | Mazar et al. | Jun 2004 | A1 |
20040117210 | Brown | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040128225 | Thompson et al. | Jul 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135571 | Uutela et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040142403 | Hetzel et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040162678 | Hetzel et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040172307 | Gruber | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193020 | Chiba et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040223985 | Dunfiled et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050027181 | Goode et al. | Feb 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050049473 | Desai et al. | Mar 2005 | A1 |
20050060194 | Brown | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113648 | Yang et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050115832 | Simpson et al. | Jun 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050134731 | Lee et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050184153 | Auchinleck | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050196821 | Monfre et al. | Sep 2005 | A1 |
20050197793 | Baker, Jr. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050228883 | Brown | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050239156 | Drucker et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050277164 | Drucker et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060010014 | Brown | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025662 | Buse et al. | Feb 2006 | A1 |
20060025663 | Talbot et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060189851 | Tvig et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060229512 | Petisce et al. | Oct 2006 | A1 |
20060234202 | Brown | Oct 2006 | A1 |
20060235722 | Brown | Oct 2006 | A1 |
20060241975 | Brown | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247710 | Goetz et al. | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060264785 | Dring et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060281985 | Ward et al. | Dec 2006 | A1 |
20060285660 | Brown | Dec 2006 | A1 |
20060285736 | Brown | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060287889 | Brown | Dec 2006 | A1 |
20060287931 | Brown | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070011320 | Brown | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070016445 | Brown | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070021984 | Brown | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070027383 | Peyser et al. | Feb 2007 | A1 |
20070027507 | Burdett et al. | Feb 2007 | A1 |
20070032717 | Brister et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070055799 | Koehler et al. | Mar 2007 | A1 |
20070056858 | Chen et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070061167 | Brown | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070068807 | Feldman et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078818 | Zvitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070095661 | Wang et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070108048 | Wang et al. | May 2007 | A1 |
20070118030 | Bruce et al. | May 2007 | A1 |
20070118588 | Brown | May 2007 | A1 |
20070129621 | Kellogg et al. | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20070156457 | Brown | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173709 | Petisce et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070176867 | Reggiardo et al. | Aug 2007 | A1 |
20070179434 | Weinert et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070199818 | Petyt et al. | Aug 2007 | A1 |
20070202562 | Curry et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208244 | Brauker et al. | Sep 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070213605 | Brown | Sep 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070227911 | Wang et al. | Oct 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070231846 | Cosentino et al. | Oct 2007 | A1 |
20070232878 | Kovatchev et al. | Oct 2007 | A1 |
20070232880 | Siddiqui et al. | Oct 2007 | A1 |
20070233013 | Schoenberg et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070244383 | Talbot et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070255321 | Gelber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070282299 | Hellwig | Dec 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20070299617 | Willis | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080018433 | Pitt-Pladdy | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080021972 | Huelskamp et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080030369 | Mann et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080064943 | Talbot et al. | Mar 2008 | A1 |
20080066305 | Wang et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080102441 | Chen et al. | May 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080114229 | Brown | May 2008 | A1 |
20080119703 | Brister et al. | May 2008 | A1 |
20080119705 | Patel et al. | May 2008 | A1 |
20080119708 | Budiman | May 2008 | A1 |
20080125636 | Ward et al. | May 2008 | A1 |
20080127052 | Rostoker | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080148873 | Wang | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080167572 | Stivoric et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080183061 | Goode, Jr. et al. | Jul 2008 | A1 |
20080183399 | Goode, Jr. et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080189051 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194937 | Goode, Jr. et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode, Jr. et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080201325 | Doniger et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214910 | Buck | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080218180 | Waffenschmidt et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255438 | Saidara et al. | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080267823 | Wang et al. | Oct 2008 | A1 |
20080269571 | Brown | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080278332 | Fennel et al. | Nov 2008 | A1 |
20080281179 | Fennel et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080294024 | Cosentino et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306368 | Goode, Jr. et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312518 | Jina et al. | Dec 2008 | A1 |
20080314395 | Kovatchev et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20080319294 | Taub et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090005729 | Hendrixson et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090006133 | Weinert et al. | Jan 2009 | A1 |
20090012376 | Agus | Jan 2009 | A1 |
20090012377 | Jennewine et al. | Jan 2009 | A1 |
20090012379 | Goode, Jr. et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090018425 | Ouyang et al. | Jan 2009 | A1 |
20090030293 | Cooper et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054745 | Jennewine et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090054748 | Feldman et al. | Feb 2009 | A1 |
20090054753 | Robinson et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090063964 | Huang et al. | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085768 | Patel et al. | Apr 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088614 | Taub | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105554 | Stahmann et al. | Apr 2009 | A1 |
20090105560 | Solomon | Apr 2009 | A1 |
20090105568 | Bugler | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090112478 | Mueller, Jr. et al. | Apr 2009 | A1 |
20090112626 | Talbot et al. | Apr 2009 | A1 |
20090124877 | Goode, Jr. et al. | May 2009 | A1 |
20090124878 | Goode, Jr. et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090131860 | Nielsen | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090143725 | Peyser et al. | Jun 2009 | A1 |
20090149728 | Van Antwerp et al. | Jun 2009 | A1 |
20090150186 | Cohen et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090163855 | Shin et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090182517 | Gandhi et al. | Jul 2009 | A1 |
20090189738 | Hermle | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090248380 | Brown | Oct 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090267765 | Greene et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090289796 | Blumberg | Nov 2009 | A1 |
20090294277 | Thomas et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100022988 | Wochner et al. | Jan 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100057041 | Hayter et al. | Mar 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100064764 | Hayter et al. | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081905 | Bommakanti et al. | Apr 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081909 | Budiman et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100081953 | Syeda-Mahmood et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100093786 | Watanabe et al. | Apr 2010 | A1 |
20100094111 | Heller et al. | Apr 2010 | A1 |
20100094251 | Estes et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100121167 | McGarraugh et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100141429 | Bruegger et al. | Jun 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100145172 | Petisce et al. | Jun 2010 | A1 |
20100146300 | Brown | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100160760 | Shults et al. | Jun 2010 | A1 |
20100161269 | Kamath et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168540 | Kamath et al. | Jul 2010 | A1 |
20100168541 | Kamath et al. | Jul 2010 | A1 |
20100168542 | Kamath et al. | Jul 2010 | A1 |
20100168543 | Kamath et al. | Jul 2010 | A1 |
20100168544 | Kamath et al. | Jul 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100168546 | Kamath et al. | Jul 2010 | A1 |
20100168657 | Kamath et al. | Jul 2010 | A1 |
20100174157 | Brister et al. | Jul 2010 | A1 |
20100174158 | Kamath et al. | Jul 2010 | A1 |
20100174163 | Brister et al. | Jul 2010 | A1 |
20100174164 | Brister et al. | Jul 2010 | A1 |
20100174165 | Brister et al. | Jul 2010 | A1 |
20100174166 | Brister et al. | Jul 2010 | A1 |
20100174167 | Kamath et al. | Jul 2010 | A1 |
20100174168 | Goode et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100179399 | Goode et al. | Jul 2010 | A1 |
20100179400 | Brauker et al. | Jul 2010 | A1 |
20100179401 | Rasdal et al. | Jul 2010 | A1 |
20100179402 | Goode et al. | Jul 2010 | A1 |
20100179404 | Kamath et al. | Jul 2010 | A1 |
20100179405 | Goode et al. | Jul 2010 | A1 |
20100179407 | Goode et al. | Jul 2010 | A1 |
20100179408 | Kamath et al. | Jul 2010 | A1 |
20100179409 | Kamath et al. | Jul 2010 | A1 |
20100185065 | Goode et al. | Jul 2010 | A1 |
20100185069 | Brister et al. | Jul 2010 | A1 |
20100185070 | Brister et al. | Jul 2010 | A1 |
20100185071 | Simpson et al. | Jul 2010 | A1 |
20100185072 | Goode et al. | Jul 2010 | A1 |
20100185073 | Goode et al. | Jul 2010 | A1 |
20100185074 | Goode et al. | Jul 2010 | A1 |
20100185075 | Brister et al. | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100191082 | Brister et al. | Jul 2010 | A1 |
20100191085 | Budiman | Jul 2010 | A1 |
20100198035 | Kamath et al. | Aug 2010 | A1 |
20100198036 | Kamath et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213057 | Feldman et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100230285 | Hoss et al. | Sep 2010 | A1 |
20100234710 | Budiman et al. | Sep 2010 | A1 |
20100257490 | Lyon et al. | Oct 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100280441 | Willinska et al. | Nov 2010 | A1 |
20100298686 | Reggiardo et al. | Nov 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100317952 | Budiman et al. | Dec 2010 | A1 |
20100324392 | Yee et al. | Dec 2010 | A1 |
20100326842 | Mazza et al. | Dec 2010 | A1 |
20110004085 | Mensinger et al. | Jan 2011 | A1 |
20110004276 | Blair et al. | Jan 2011 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110029247 | Kalathil | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110040163 | Telson et al. | Feb 2011 | A1 |
20110044333 | Sicurello et al. | Feb 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110082484 | Saravia et al. | Apr 2011 | A1 |
20110105955 | Yudovsky et al. | May 2011 | A1 |
20110106126 | Love et al. | May 2011 | A1 |
20110112696 | Yodfat et al. | May 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110152637 | Kateraas et al. | Jun 2011 | A1 |
20110190603 | Stafford | Aug 2011 | A1 |
20110191044 | Stafford | Aug 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110208155 | Palerm et al. | Aug 2011 | A1 |
20110257495 | Hoss et al. | Oct 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110263958 | Brauker et al. | Oct 2011 | A1 |
20110282327 | Kellogg et al. | Nov 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110288574 | Curry et al. | Nov 2011 | A1 |
20110289497 | Kiaie et al. | Nov 2011 | A1 |
20110320130 | Valdes et al. | Dec 2011 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120108931 | Taub et al. | May 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20120173200 | Breton et al. | Jul 2012 | A1 |
20120179017 | Satou et al. | Jul 2012 | A1 |
20120209099 | Ljuhs et al. | Aug 2012 | A1 |
20120215462 | Goode et al. | Aug 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130225959 | Bugler | Aug 2013 | A1 |
20130231541 | Hayter et al. | Sep 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20140221966 | Buckingham et al. | Aug 2014 | A1 |
20140275898 | Taub et al. | Sep 2014 | A1 |
20150241407 | Ou et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
4401400 | Jul 1995 | DE |
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0286118 | Jan 1995 | EP |
1048264 | Nov 2000 | EP |
WO-1996025089 | Aug 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO-1998035053 | Aug 1998 | WO |
WO-1999056613 | Nov 1999 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO-2000074753 | Dec 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO-2006024671 | Mar 2006 | WO |
WO-2008001366 | Jan 2008 | WO |
WO-2008086541 | Jul 2008 | WO |
WO-2010077329 | Jul 2010 | WO |
Entry |
---|
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jovanovic, L., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus”, Diabetes Technology & Therapeutics, vol. 2, Sup. 1, 2000, pp. S67-S71. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
U.S. Appl. No. 12/147,464, Notice of Allowance dated Jan. 24, 2012. |
U.S. Appl. No. 12/147,464, Office Action dated Oct. 23, 2014. |
U.S. Appl. No. 14/629,447, Office Action dated Aug. 10, 2017. |
U.S. Appl. No. 14/629,447, Notice of Allowance dated Dec. 5, 2017. |
Number | Date | Country | |
---|---|---|---|
20180192927 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
60947026 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14629447 | Feb 2015 | US |
Child | 15916255 | US | |
Parent | 13448287 | Apr 2012 | US |
Child | 14629447 | US | |
Parent | 12147464 | Jun 2008 | US |
Child | 13448287 | US |