Analyte monitoring and management device and method to analyze the frequency of user interaction with the device

Information

  • Patent Grant
  • 10856785
  • Patent Number
    10,856,785
  • Date Filed
    Thursday, March 8, 2018
    6 years ago
  • Date Issued
    Tuesday, December 8, 2020
    4 years ago
Abstract
Methods and Devices to monitor the level of at least one analyte are provided.
Description
BACKGROUND

The detection of the level of analytes, such as glucose, lactate, oxygen, and the like, in certain individuals, is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.


A conventional technique used by many diabetics for personally monitoring their blood glucose level includes the periodic drawing of blood, the application of that blood to a test strip, and the determination of the blood glucose level using colormetric, electrochemical, or photometric detection. This technique does not permit continuous or automatic monitoring of glucose levels in the body, but typically must be performed manually on a periodic basis. Unfortunately, the consistency with which the level of glucose is checked varies widely among individuals. Many diabetics find the periodic testing inconvenient and they sometimes forget to test their glucose level or do not have time for a proper test.


In vivo glucose sensors that continuously or automatically monitor the individual's glucose level and enable individuals to more easily monitor their glucose, or other analyte levels are also commercially available. These systems may provide the user with accurate analyte levels at ten, five or even one minute intervals. Some examples of such systems are illustrated in U.S. Pat. No. 6,175,752, and in U.S. Patent Publication No. 2004/0186365 filed Dec. 26, 2003, now U.S. Pat. No. 7,811,231, entitled “Continuous Glucose Monitoring System and Methods of Use.” Devices and systems for management of the analyte level may also be included in the analyte monitoring system. An example of an analyte management system is an insulin pump, which may manage the analyte level by, for example, delivering a dose of insulin to the user in response to the glucose levels of the user. The analyte management system may be automatic, user controlled, or any combination thereof.


Clinical studies have shown that some patients derive considerable benefits from an increased frequency of available analyte levels, a benefit provided by the analyte measuring systems. However, other patients derived little or no benefit from an increased availability of analyte levels. Using glucose monitoring as an example, patients who derived little or no value from the glucose monitoring systems were at an increased risk of hyperglycemic or hypoglycemic episodes.


Increasingly, research has associated the lack of frequent interaction with the analyte monitoring system as the reason that some patients potentially derive reduced value from the analyte monitoring systems. As a result, there is a need for a system which reminds or encourages the user to interact with the analyte monitoring system at a minimum frequency.


SUMMARY

Exemplary embodiments of the present disclosure overcome the above disadvantages and other disadvantages not described above and provide advantages which will be apparent from the following description of exemplary embodiments of the disclosure. Also, the present disclosure is not required to overcome the disadvantages described above.


According to one aspect of the present disclosure, there is provided methods to analyze user interaction with a medical device. Exemplary embodiments include methods to encourage user interaction with a medical device that may include monitoring a user's actual frequency of interaction with the medical device; comparing the user's actual frequency of interaction with the medical device to at least one predetermined target level of interaction; and alerting the user when the user's actual frequency of interaction with the medical device is equal to or below the at least one predetermined target level of interaction.


According to one aspect of the present disclosure, the user may be informed of the difference between the actual frequency of interaction with the medical device and the predetermined target level of interaction.


According to one aspect of the present disclosure the user may be alerted using an alarm. The alarm may be an audible and/or visual and/or vibrating alarm. According to another aspect of the present disclosure, the audible alarm may increase in loudness over time after being activated.


According to one aspect of the present disclosure the method may include a plurality of predetermined target levels of interaction, wherein alerting the user distinguishes between the plurality of target levels of interaction.


According to one aspect of the present disclosure, the user may be required to perform at least one step to turn off the alert. According to yet another aspect, the at least one step may be a decision related to the user's state of health.


According to one aspect of the present disclosure, the at least one predetermined target level of interaction may be adjusted by an authorized user. The at least one predetermined target level of interaction may also be adjusted according to a time of day, type of activity, or projected future analyte level.


According to another aspect of the present disclosure, the history of the user's actual frequency of interaction with the medical device may be recorded. In this aspect, the at least one predetermined target level of interaction may be adjusted according to the recorded history. Moreover, the history of the user's actual frequency of interaction with the medical device may be organized according to behavior variables inputted by the user. According to another aspect of the present disclosure, the at least one predetermined target level of interaction may be adjusted according to a data received from a sensor located on the user.


According to one aspect of the present disclosure, the user may be rewarded when the actual frequency of interaction stays above the at least one predetermined level of interaction for a predetermined time.


According to another aspect of the present disclosure, there is disclosed an analyte monitoring apparatus comprising a sensor which is attached to a user for monitoring an analyte level of the user, the sensor further comprising a transmitter which transmits information obtained by the sensor; and a receiver unit comprising a receiver for receiving data from the sensor, and a display coupled to the receiver which displays the received data to the user when the user interacts with the receiver unit, wherein the receiver unit monitors the user's actual frequency of interaction with the device, compares the user's actual frequency of interaction with the receiver unit to at least one predetermined target level of interaction, and alerts the user when the user's actual frequency of interaction with the receiver unit is equal to or below the at least one predetermined target level of interaction.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features and advantages of the present disclosure will become more apparent from detailed exemplary embodiments set forth hereinafter with reference to the attached drawings in which:



FIG. 1 is a block diagram of an exemplary embodiment of a data monitoring and management system according to the present disclosure;



FIG. 2 is a block diagram of one exemplary embodiment of a receiver unit, according to the present disclosure;



FIG. 3 is a front view of an exemplary embodiment of a receiver unit;



FIG. 4 is a front view of a second exemplary embodiment of a receiver unit;



FIG. 5 is a front view of a third exemplary embodiment of a receiver unit; and



FIG. 6 is a chart of an analyte monitoring system according to an exemplary embodiment of the present disclosure.





DETAILED DESCRIPTION

The present disclosure will now be described more fully with reference to the accompanying figures, in which exemplary embodiments of the disclosure are shown. The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity. Like reference numerals in the figures denote like elements.


It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.


Embodiments are described herein generally with respect to in vivo analyte monitoring device and methods in which at least a portion of an analyte sensor is positioned beneath a skin surface of a user, where such description is not intended to limit the scope of the disclosure in any way. Also contemplated are in vitro analyte monitoring systems, e.g., small volume (e.g., sample volumes ranging from about 0.1 to about 1 microliter), and/or short assay times (e.g., assay times ranging from about 1 second to about 10 seconds). In vitro systems usually include a test strip and a meter to read the test strip. Examples of in vitro analyte systems include, but are not limited to, FreeStyle® and Precision® blood glucose monitoring systems from Abbott Diabetes Care Inc. Also contemplated are integrated systems in which one or more components of an in vitro system are included in a single housing, e.g., lance, test strip or meter.



FIG. 1 shows a data monitoring and management system such as, for example, an analyte (e.g., glucose) monitoring system 100 in accordance with certain embodiments. Embodiments of the subject disclosure are further described primarily with respect to glucose monitoring devices and systems, and methods of glucose detection, for convenience only and such description is in no way intended to limit the scope of the disclosure. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes at the same time or at different times.


Additionally, in one exemplary embodiment the analyte monitoring system may include an analyte management system, such as an insulin pump. Thus, it is to be understood that the following description is directed to an analyte (for example, glucose) monitoring system for convenience only and such description is in no way intended to limit the scope of the disclosure.


Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, creatinine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketone bodies, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those exemplary embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.


Moreover, the description herein is directed primarily to electrochemical sensors for convenience only and is in no way intended to limit the scope of the disclosure. Other sensors and sensor systems are contemplated. Such include, but are not limited to, optical sensors, colorimetric sensors, and sensors that detect hydrogen peroxide to infer analyte levels, etc.


Referring to FIG. 1, the analyte monitoring system 100 includes a sensor 101, a data processing unit 102 connectable to the sensor 101, and a primary receiver unit 104, which is configured to communicate with the data processing unit 102 via a communication link 103. In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104 and/or the data processing terminal 105 and/or optionally the secondary receiver unit 106. In one exemplary embodiment, the primary receiver unit 104 may be designed to sit on a shelf or nightstand. In this exemplary embodiment, the primary receiver unit 104 may be used by parents to monitor their children while they sleep or to awaken patients during the night. In addition, in this exemplary embodiment the primary receiver unit may include a lamp or a radio for convenience and/or for activation as an alarm.


Also shown in FIG. 1 is an optional secondary receiver unit 106 which is operatively coupled to the communication link and configured to communicate with the data processing unit 102. The secondary receiver unit 106 may also be configured to communicate with the primary receiver unit 104, as well as the data processing terminal 105. The secondary receiver unit 106 may be configured for bi-directional wireless communication with each of the data processing unit 102, the primary receiver unit 104 and the data processing terminal 105. In certain embodiments the secondary receiver unit 106 may be a de-featured receiver as compared to the primary receiver, i.e., the secondary receiver may include a limited or minimal number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may include a smaller (in one or more, including all, dimensions) compact housing or be embodied in a device such as a wrist watch, arm band, etc., for example. Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functions and features as the primary receiver unit 104. The secondary receiver unit 106 may also include a docking portion to be mated with a docking cradle unit for placement by, e.g., the bedside for night time monitoring, and/or a bi-directional communication device. A docking cradle may recharge a power supply.


Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include more than one sensor 101, and/or more than one data processing unit 102, and/or more than one data processing terminal 105. Multiple sensors may be positioned in a patient for analyte monitoring at the same or different times. In certain embodiments, analyte information obtained by a first positioned sensor may be employed as a comparison to analyte information obtained by a second sensor. This may be useful to confirm or validate analyte information obtained from one or both of the sensors. Such redundancy may be useful if analyte information is contemplated in critical therapy-related decisions. In certain embodiments, a first sensor may be used to calibrate a second sensor, or vice-versa.


The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.


In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least periodically sample the analyte level of the user and convert the sampled analyte level into a corresponding signal for transmission by the data processing unit 102. The data processing unit 102 performs data processing functions, where such functions may include, but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to a receiver unit (104 or 106) via the communication link 103. In certain embodiments, one or more application-specific integrated circuits (ASIC) may be used to implement one or more functions or routines associated with the operations of the data processing unit (and/or receiver unit) using for example one or more state machines and buffers.


In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.


In certain embodiments, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, data bit recovery, etc., or any combination thereof.


In operation, the primary receiver unit 104 in certain exemplary embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, an identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101.


Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs), telephone such as a cellular phone (e.g., a multimedia and Internet-enabled mobile phone such as an iPhone or similar phone), mp3 player, pager, and the like), or a drug delivery device (e.g., an insulin pump), each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving, updating, and/or analyzing data corresponding to the detected analyte level of the user.


In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in FIG. 1, may use one or more of: a radio frequency (RF) communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements), while avoiding potential data collision and interference.


The primary receiver unit 104, according to an exemplary embodiment of the present disclosure, illustrated in block form in FIG. 2, includes a receiver 20 to receive data from the data processing unit 102, an analyzer 22 to evaluate the data, a display 24 to provide information to the user, and an alarm system 26 to warn the user when a condition arises. The primary receiver unit 104 may also optionally include a data storage device 28, a transmitter 30, and/or an input device 32. As described above, the secondary receiver unit 106 may have the same structure as the primary receiver unit 104, and as such, the following description of receiver unit functions apply equally to the primary and secondary receiver units.


In one exemplary embodiment, a primary receiver unit 104 may be a bedside unit for use at home. The bedside unit may have its own data analyzer and data storage. The data may be communicated from the data processing unit 102 or another receiver unit, such as a secondary receiver unit 106. Thus, at least one receiver unit contains all the relevant data so that the data can be downloaded and analyzed without significant gaps.


The receiver 20 may be formed using known receiver and antenna circuitry and may be tuned or tunable to the frequency or frequency band of the data processing unit 102. In one exemplary embodiment, the receiver 20 is capable of receiving signals from a distance greater than the transmitting distance of the data processing unit 102.


In another embodiment, a repeater unit (not shown) is used to boost a signal from the data processing unit 102 so that the signal can be received by receiver units 104 and 106 that may be distant from the data processing unit 102. The repeater unit is typically independent of the data processing unit 102, but, in some cases, the repeater unit may be configured to attach to the data processing unit 102. Typically, the repeater unit includes a receiver for receiving the signals from the data processing unit 102 and a transmitter for transmitting the received signals. The transmitter of the repeater unit may be more powerful than the transmitter of the data processing unit 102 in one exemplary embodiment of the present disclosure. The repeater unit may be used, for example, in a child's bedroom for transmitting a signal from a data processing unit 102 on the child to a primary receiver unit 104 in the parent's bedroom for monitoring the child's analyte levels and frequency of interaction with the secondary receiver unit 106.


A variety of displays 24 may be used, including cathode ray tube displays (particularly for larger units), light emitting diode (LED) displays, or liquid crystal display (LCD) displays. The display 24 may be monochromatic (e.g., black and white) or polychromatic (i.e., having a range of colors). The display 24 may contain symbols or other indicators that are activated under certain conditions (e.g., an alert to the user may become visible on the display when the user's frequency of interaction with the receiver units 104 and 106 falls below the predetermined target level of interaction). The display 24 may also contain more complex structures, such as LCD or LED alphanumeric structures, portions of which can be activated to produce a letter, number, or symbol. For example, the display 24 may include region 34 to display numerically the level of the analyte, as illustrated in FIG. 3.


In one exemplary embodiment, as shown in FIG. 5, the display 24 also provides a message 60 to the user to direct the user in an action. Such messages may include, for example, “Check Analyte Level”, if the user's frequency of interaction with a receiver unit falls below the predetermined target level. In another exemplary embodiment, the messages may provide helpful hints or tips to the user. The display may also include other indicators 36, including directional arrows, etc., which may be activated under certain conditions. For example, indicator 38 of a glucose monitoring device, may be activated if the patient is hyperglycemic. Other indicators may be activated in the cases of hypoglycemia (40), impending hyperglycemia (42), impending hypoglycemia (44), a malfunction, an error condition, or when calibration of the device is required (46). In some embodiments, color coded indicators may be used. Alternatively, the portion 34 which displays the analyte concentration, may also include a composite indicator 50 (see FIG. 4), portions of which may be appropriately activated to indicate any of the conditions described above. In another exemplary embodiment, the display may be capable of displaying a graph 48 of the analyte level over a period of time, as illustrated in FIG. 4.


One example of a receiver unit (104 or 106) is illustrated in FIG. 3. The display 24 of this particular receiver unit (104 or 106) includes a portion 34 that displays the level of the analyte, for example, the blood glucose concentration. In one embodiment, the screen may be blank or dark when in the resting state. In this exemplary embodiment, the screen may be activated if the user interacts with the device. In another embodiment, the receiver unit (104 or 106) indicates the time of day on the default screen, and the user may view the current analyte level by interacting with the receiver unit (104 or 106), for example by pressing a button or the like on the receiver unit (104 or 106), which will display the current analyte level. In this way, receiver units 104 and 106 can monitor the frequency of interaction between the user and the receiver units 104 and 106.


In one exemplary embodiment, the user's interaction with the receiver units 104 and 106 is system specific. That is, the receiver units 104 and 106 update each other when the user interacts with one of the receiver units (either 104 or 106). In this embodiment, the user needs to only interact with one unit to maintain the target level of interaction.


In another embodiment, the user's interaction with the receiving units 104 and 106 may be receiver unit specific. One example where the user's interaction with the receiver is receiver unit specific may be a guardian/child relationship. In this example, the child's level of interaction (with, for example, the primary receiver unit 104) and the guardian's level of interaction (with, for example, the secondary receiver unit 106) should be assessed independently.


In another exemplary embodiment, as illustrated in FIG. 5, the display 24 may display a bar graph 62, or any other suitable indicator, comparing the user's frequency of interaction with the receiver units 104 and 106 to the predetermined target frequency. Additionally, as shown in FIG. 5, the display 24 may further be capable of displaying an analyte indicator 64, which may indicate the rate of change of the analyte, and the direction of change of the analyte, e.g., by the particular direction of an arrow or the like. In this exemplary embodiment, the analyte indicator 64 may point in different directions, such as for example, around a 360 degree clock. Other examples of graphs may include graphs of the user's frequency of interaction with the receiver unit (104 or 106), or units (104 and 106), over a period of time, and graphs of the rate of change or acceleration in the rate of change of the analyte level over time.


In some exemplary embodiments, the receiver unit is configured so that the user may choose the particular display (e.g., blood glucose concentration or graph of concentration versus time) that the user wishes to view. The user may choose the desired display mode by pushing a button or the like, for example, on an optional input device 32. When the user interacts with the device, to view or choose a particular display or to wake the device from its resting state, the receiver unit 104 or 106 may record the date and time of the user's interaction with that receiver unit. In this way, the receiver units 104 and 106 can monitor the frequency of user interaction with the receiver units. The optional input device 32 for interacting with the receiver units 104 and 106 will be described in greater detail below.


The above-described graphs benefit both the user and the health care provider (“HCP”). The user can benefit from subtle behavioral modification as the graphs and/or screen prompts encourage more frequent interaction with the device and the expected improvement in outcomes.


HCPs may benefit from more cumulative statistics (such as average glucose views per day, average glucose views before/after meals, average glucose views on “in-control” vs. “out-of-control” days or time of day) which may be obtained from the record of user's interaction frequency with the device and which can be used to understand why a patient may not be realizing expected gains from the analyte monitoring system. If an HCP sees that a patient is not benefiting as expected from the analyte monitoring system, they may recommend an increased level of interaction (e.g., increase interaction target level).


In one exemplary embodiment, the receiver units 104 and 106 may include software. In this exemplary embodiment, each instance of user interaction, by pressing a button or the like, with a receiver unit 104 or 106, or both receiver units 104 and 106, may be recorded. The software may associate each instance of user interaction with the date and time of that interaction. For example, the software may record each instance that the user queries the main screen of the receiver unit 104 or 106. In this exemplary embodiment, the receiver unit 104 or 106 may further include an algorithm for comparing the frequency of user interaction with the receiver to a predetermined frequency of interaction. In this exemplary embodiment, if the frequency of a user's interaction with the receiver units 104 and 106 matches or falls below the predetermined level of interaction, the receiver unit (104 or 106) may alert the user through an audible or vibratory alert. The alert system will be described in greater detail below.


In another exemplary embodiment of the present disclosure, the receiver units 104 and 106 may also contain software designed to encourage interaction with the receiver units. For example, the software may set target rates for the user, so that the user strives to achieve a desired interaction frequency with the receiver unit. In another exemplary embodiment, the software may offer educational information related to treatment as well as helpful hints and tips, thereby educating the user as to the importance of maintaining a predetermined target level of interaction with the receiver unit.


In yet another embodiment, the receiver units 104 and 106 may include software that prompts user interaction, e.g., an electronic game, or cartoon-like character, or the like, that requires feedback from the user. In one exemplary embodiment, the cartoon-like character or the like may have a “health bar” or a “life bar” which would represent the level of interaction between the user and the analyte monitoring system 100. That is, by frequently interacting with the cartoon-like character, the user will keep the health, or life, level of the cartoon-like character above the predetermined target level. In one exemplary embodiment, the user may “feed” the cartoon-like character by interacting with the device. The user's analyte level, or other relevant information should also be displayed on the screen of the device during interaction between the user and the cartoon-like character. In one exemplary embodiment, the user will be limited in the amount of interaction in a predetermined time. That is, the user will not be able to front-load the amount of interaction with the device, and then ignore the device for a prolonged period of time. As such, the device may only record a predetermined number of interactions within a certain period of time.


By interacting with the cartoon-like character, the user may also be educated as to the benefits of maintaining a proper target rate of interaction with the device, or may at least stay informed as to his own state of health. This embodiment may be particularly interesting to children as it may help ensure that children maintain the necessary level of interaction with the monitoring device of this disclosure. This exemplary embodiment may also be coupled with education regarding treatment options, helpful hints and tips. Moreover, the above-described embodiment need not be used with a continuous glucose monitoring (“CGM”) device.


In one exemplary embodiment of the present disclosure, the above concept can also be adapted to the “finger stick test.” Using glucose as an example, the user may interact with the cartoon-like character by manually checking his blood glucose level. That is, each time the user manually checks his glucose level, using the finger stick test, the cartoon-like character may gain a point to the “health” or “life” bar. Similar to the embodiment described above, the “health” or “life” bar may represent the target level of user interaction. In this way, the user will desire to keep the cartoon-like character healthy, and thus interact with the device at an increased frequency. With regard to the embodiments described above, one of ordinary skill in the art will understand that the cartoon-like character is simply an example, and that any kind of character or figure may be used.


In order to achieve the full benefit of the analyte monitoring system 100, the user should maintain a predetermined target rate of interaction with the system. In one exemplary embodiment, the predetermined target level of user interaction is set by an HCP, or the user's health care team. Thus, each predetermined target level of interaction will likely depend on the specific user. However, in one exemplary embodiment, factors affecting the predetermined level of user interaction with the system may be: the particular analyte to be measured, the user's general state of health, (for example, more frequent during sick days), symptoms exhibited by the user, time of day, time since or until meal, activity level and other events.


In one exemplary embodiment, the target level may be programmed (or user modifiable) to vary during the course of the day or week (work week vs. weekend), with these rates being easily adjustable to account for events or changes, such as, during sick days, times of high activity, or other times when more frequent interactions should be encouraged. Although HCPs may recommend only general interaction levels (e.g., once per hour during waking hours), these levels may be tailored to the individual user. For example, if a user feels overwhelmed with CGM technology, lower target levels of interaction may be needed, whereas a user who feels empowered by the technology may be encouraged to interact with the device at a higher frequency. Generally, HCPs will review interaction levels during routine visits when assessing general health and reviewing data uploads (e.g., approximately every 3 months for patients with diabetes). However, this approach may differ depending on the user, or other factors.


In another exemplary embodiment, the predetermined target level of user interaction with the receiver units 104 and 106 may be set according to the time of day. For example, a user may interact with the receiver units 104 and 106 more frequently during the day than at night. Additionally, in another exemplary embodiment, the predetermined target level of user interaction with the receiver units 104 and 106 may be set according to the type of activity being performed by the user. For example, a user on a long-distance bicycle ride or car ride may need to check the analyte levels more frequently. In one exemplary embodiment, an HCP may recommend target levels of interaction corresponding to various events. In another exemplary embodiment, the target level of user interaction may be set by the user, or any other authorized party.


In one exemplary embodiment, the system may automatically adjust the target level of interaction based upon the user's activity level or state of general wellness. In this exemplary embodiment, the system may use pulse rate, body temperature, respiration rate or other indicators to adjust the analyte level. Alternatively, position sensors, accelerometers or the like may be used to detect sleep and reduce (or even suspend) the target interaction frequency.


In another exemplary embodiment, the analyte monitoring system 100 may use the detected analyte levels to adjust future target levels of interaction. For example, the system may use an increase in glucose level, an increase in the rate of change of the glucose level, user entered information or some other analysis of the measured analyte level to identify a need to adjust the current target level of interaction. In one exemplary embodiment, the analyte levels may detect that the user has recently had a meal and may then adjust the interaction frequency automatically to a pre-programmed or user-set level.


Another exemplary embodiment may include a plurality of predetermined target levels of user interaction with the system of the present disclosure. For example, the present disclosure may include an “ideal” level of interaction, an “acceptable” level of interaction and a “critical” level of interaction. These levels may shift based on several factors. In one exemplary embodiment, the level of interaction may be adjusted to an increased or decreased target level of interaction based upon the monitoring results, based upon some user interaction with the device (e.g., meal or activity level entry), or may be pre-programmed to vary with the time of day or day of the week. The monitoring results may include, analyte levels, the rate of change of analyte levels, etc.


In another exemplary embodiment, the interaction frequency level may be relative to the predetermined target interaction frequency. For example “ideal” may be approximately 90% or more of the target level; “acceptable” may be 70-90% of the target level; and “critical” may be below 70% of the target level.


In another exemplary embodiment of the present disclosure, the analyte monitoring system 100 may adjust the predetermined target levels of user interaction according to the condition of the user. Using glucose as an example, if the user's level of glucose drops below a certain threshold, the system may alert the user that hypoglycemia may occur. In this exemplary embodiment, the analyte monitoring system 100 may adjust the target rate of user interaction to be more frequent, thus prompting the user to interact with the device more often, and thus encourage the user to raise his level of glucose to a more acceptable level. Once the glucose level returns to an acceptable level, the system may adjust the target interaction rate accordingly.


In the above exemplary embodiment, the system may include a multiplier for adjusting target levels of user interaction, wherein the predetermined target rate of interaction is multiplied by a predetermined amount according to the condition reached. In one exemplary embodiment, a multiplier may be associated with a predetermined target level, such as for example the “critical” target level. In another exemplary embodiment, a multiplier may be associated with a specific condition, or analyte level of the user, such as when the user is in danger of becoming hypoglycemic.


In another exemplary embodiment, the system may adjust the rate of interaction according to predicted future analyte levels. For example, the analyte monitoring system 100 may predict the future analyte level of a user by monitoring the present rate of change of the user's analyte level.


As shown in FIG. 2, a receiver unit (104 or 106) may also optionally include an alarm system 26. In one exemplary embodiment, the alarm system 26 is triggered when the user's frequency of interaction with the receiver units 104 and 106 falls below a predetermined target level of interaction. In another exemplary embodiment, the alarm system 26 may be triggered when the user's level of interaction matches the predetermined target level of interaction.


The alarm system 26 may contain one or more individual alarms. Each of the alarms may be individually activated to indicate one or more predetermined target levels of user interaction with the receiver units 104 and 106. The alarms may be, for example, auditory or visual. Other sensory-stimulating alarm systems may be used, including alarm systems that direct the data processing unit 102 to heat, cool, vibrate, or produce a mild electrical shock. In some embodiments, the alarms are auditory with a different tone, note or volume indicating different predetermined target levels of user interaction with the receiver units 104 and 106. In one exemplary embodiment of the present disclosure, various tones of the alarm system 26 may indicate varying urgency levels of a user's need to interact with the receiver units 104 and 106. For example, a high volume alarm may indicate a “critical” predetermined target level being reached, while a lower volume alarm might indicate that the user's frequency of interaction has fallen below the “acceptable” level of interaction with the receiver unit. Visual alarms may also use a difference in color or brightness of the display, or indicators on the display, to distinguish between different predetermined target levels of user interaction with the receiver units 104 and 106. In some embodiments, an auditory alarm system may be configured so that the volume of the alarm increases over time until the alarm is deactivated.


In some embodiments, the alarms may be automatically deactivated after a predetermined time period. In other embodiments, the alarms may be configured to deactivate only when the user interacts with a receiver unit.


In another exemplary embodiment of the present disclosure, the receiver units 104 and 106 may include software for requiring the user to perform a series of operations in order to silence the alarm. In this exemplary embodiment, the operations may be therapeutic decision options being presented to the user, or may be a series of options related to the user's state of health. The user would then need to review these options and acknowledge understanding by interacting with the device. In certain cases, the alarm may not turn off unless the user acknowledges such understanding.



FIG. 6 shows a chart according to an exemplary embodiment of the analyte monitoring system 100 of the present disclosure. As shown in Step 1 of FIG. 6, the predetermined target level of interaction is set. As discussed above, this level may be set by a user, an HCP, any other authorized person, or may automatically change depending on the factors discussed above. Next, in Step 2, the predetermined target level of user interaction is compared to the actual level of user interaction. If the user's actual level of interaction is above the predetermined target level, the system may simply wait. However, if the user's actual level of interaction falls below the target level, the system moves on to Step 3. In Step 3, the system calculates the difference between the actual level of user interaction and the predetermined target level.


In the exemplary embodiment shown in FIG. 6, there are three levels of user interaction, the “ideal,” the “acceptable” and the “critical” level of interaction. In this exemplary embodiment, if the user's actual level of interaction falls below the “ideal” target level of user interaction, the user may be prompted to interact with the device (Step 4A). In one exemplary embodiment, the device will sound a low volume alarm for a predetermined period of time. That is, in Step 5A, the device will determine if the user has interacted with the device, and if the user has interacted, the alarm is turned off (Step 7A). As described above, the user may interact with the device by pressing a button or the like. If the user has not interacted with the device, the device determines whether a predetermined period of time has passed (Step 6A), and if it has, turns off the alarm.


Similarly, if the user's actual level of interaction falls below the “acceptable” target level of interaction, the system will prompt the user to interact with the device, by sounding an alarm or the like (Step 4B). In this example, as shown in Steps 5B and 6B, the alarm will not be turned off until the user has acknowledged the alarm, by pressing a button or the like.


If the user's actual level of interaction falls below the “critical” target level of interaction, the system will set off a third alarm (Step 4C). Similar to the “acceptable” target level, the alarm will not be turned off until the user has acknowledged the alarm (Step 5C). Additionally, to silence an alarm corresponding to the “critical” target level of interaction, the user may be required to perform a series of operations (Step 6C). Once the user completes the series of operations, the alarm is turned off (Step 7C).


One of ordinary skill in the art will understand that the analyte monitoring system of FIG. 6 is simply one possible example of the system according to the present disclosure. Steps other than those described in FIG. 6 may be included in the analyte monitoring system, and similarly, the system does not have to include all of the steps shown in FIG. 6. As such, FIG. 6 should not limit the present disclosure in any way, and is simply provided as one example of an analyte monitoring system according to an embodiment of the present disclosure.


As shown in FIG. 2, the receiver unit (104 or 106) may also include a transmitter 30 which can be used to transmit a signal to activate an alarm system (not shown) on the data processing unit 102. In one exemplary embodiment, the data processing unit 102 may include a receiver for communicating with the receiver units 104 or 106. In another exemplary embodiment, the data processing unit 102 may include an alarm system (not shown) such as the one included with the receiver units 104 and 106, wherein the alarm of the data processing unit 102 may be activated by a receiver unit (104 or 106).


A receiver unit (104 or 106) may also include a number of optional items. One such item may be, for example, a data storage unit 28. The data storage unit 28 may be used to store the history of user interaction with the receiver unit, among other data. The data storage unit 28 may also be useful to store data that may be downloaded to another receiver unit, such as the primary receiver unit 104. Alternatively, the data may be downloaded to a computer or other data storage device in a user's home, at an HCP's office, etc., for evaluation of trends in analyte levels.


In one exemplary embodiment, the HCP may use the recorded history of interaction to modify the treatment of the user. The storage unit 28 may also store behavior variables, such as events, together with the data of the particular event. These behavior variables may be generated either automatically by the receiver unit or can, alternatively, be input by the user. In an exemplary embodiment, the user may also edit the event history. Examples of events may include things such as the user's activity level, state of health, medication (e.g., insulin) dosages, meals or any other event that may have an effect on the assessment of a treatment approach and recommendations for treatment modifications of the user.


As shown in FIG. 2, another optional component for the receiver unit is an input device 32, such as a keypad or keyboard. The input device 32 may allow numeric or alphanumeric input. The input device 32 may also include buttons, keys, or the like which initiate functions of, and/or provide input to, the analyte monitoring system 100. Such functions may include interacting with a receiver unit, manually changing the target level of user interaction with the receiver unit, changing the settings of the receiver unit or entering behavior variables to be used together with the history of user interaction with the receiver unit, but are not limited to the above.


Referring to FIG. 5, there is provided an exemplary embodiment of a receiver unit. In FIG. 5, the user may interact with the receiver unit using input options 32a-d. In one exemplary embodiment, input options 32a and 32b are used to select the options shown on the display 24, while input options 32c and 32d are used to move through lists to highlight options and change settings. In another exemplary embodiment, a user's interaction with the integrated test strip, used to, for example, manually check the blood analyte level of a user, can be included as part of the user's interaction with the device.


In one exemplary embodiment, the user will have to acknowledge the alarm or message displayed by the receiver unit (104 or 106). In this exemplary embodiment, a receiver unit (104 or 106) may have a button which is the default button for acknowledging an alarm or message. However, some alarms may require the user to interact with a button other than the default button. Further, in certain exemplary embodiments, some alarms may require the user to perform a series of operations, such as pressing a combination of buttons or the like, in order to silence the alarm.


Another exemplary embodiment of the input device 32 is a touch screen display. The touch screen display may be incorporated into the display 24 or may be a separate display. The touch screen display is activated when the user touches the screen at a position indicated by a “soft button” which corresponds to a desired function.


In addition, the analyte monitoring system 100 may include password protection to prevent the unauthorized transmission of data to a terminal or the unauthorized changing of settings for the system 100. A user may be prompted by the receiver unit to input a password using the input device 32 whenever a password-protected function is initiated.


Accordingly, a method in one aspect includes monitoring a user's actual frequency of interaction with the medical device, comparing the user's actual frequency of interaction with the medical device to at least one predetermined target level of interaction, and alerting the user when the user's actual frequency of interaction with the medical device is equal to or below the at least one predetermined target level of interaction.


In one aspect, alerting the user may indicate a difference between the actual frequency of interaction with the medical device and the predetermined target level of interaction.


The user may be alerted by an audible alarm, where the audible alarm may increase in loudness over time after being activated.


In another aspect, the user may be alerted by a vibrating alarm.


The method in a further embodiment may include a plurality of predetermined target levels of interaction, where alerting the user distinguishes between the plurality of target levels of interaction.


The user may be required to perform at least one step to turn off the alert, where the at least one step may be a decision related to the user's state of health.


The at least one predetermined target level of interaction may be adjusted by an authorized user.


In a further aspect, the method may include adjusting the at least one predetermined target level of interaction according to a time of day.


The method may also include adjusting the at least one predetermined target level of interaction according to a type of activity.


Also, the method may still include adjusting the at least one predetermined target level of interaction according to a future analyte level of the user, predicted using rate of change data.


Additionally, the method may include recording a history of the user's actual frequency of interaction with the medical device, where the method may also include adjusting the at least one predetermined target level of interaction according to the recorded history.


In still yet a further embodiment, the method may include organizing the history of the user's actual frequency of interaction with the medical device according to behavior variables inputted by the user.


Further, the method may include rewarding the user when the actual frequency of interaction stays above the at least one predetermined level of interaction for a predetermined time.


Additionally, the method may include adjusting the at least one predetermined target level of interaction according to a data received from a sensor located on the user.


An analyte monitoring system in accordance with another embodiment includes a user interactive analyte device to monitor at least one analyte of a user, and a processor unit coupled to the user interactive device to determine the frequency of user interaction with the analyte monitoring device.


The analyte may include glucose.


In still yet a further aspect, the user interactive device may include an in vivo analyte sensor, where the sensor may be configured to at least be partially positioned under a skin surface of a user.


An analyte monitoring system in accordance with still another embodiment may include a sensor to monitor an analyte level of the user, a transmitter to transmit information obtained by the sensor, and a receiver unit comprising a receiver to receive data from the sensor, and a display coupled to the receiver to display the received data to the user when the user interacts with the receiver unit, where the receiver unit monitors the user's actual frequency of interaction with the device, compares the user's actual frequency of interaction with the receiver unit to at least one predetermined target level of interaction, and alerts the user when the user's actual frequency of interaction with the receiver unit is equal to or below the at least one predetermined target level of interaction.


The system in one aspect may include a data storage unit for storing a history of the user's actual interaction with the receiver unit.


The receiver unit may be portable.


The receiver unit may include a user input unit for interacting with the display unit.


Further, the user input unit may be used to change settings of the receiver unit.


Although the exemplary embodiment of the present disclosure have been described, it will be understood by those skilled in the art that the present disclosure should not be limited to the described exemplary embodiments, but various changes and modifications can be made within the spirit and the scope of the present disclosure. Accordingly, the scope of the present disclosure is not limited to the described range of the following claims.

Claims
  • 1. A system, comprising: an analyte sensor configured to be in contact with bodily fluid under a skin surface to monitor a concentration of an analyte, the analyte sensor further configured to generate signals corresponding to the monitored concentration of the analyte;a first receiving device; anda second receiving device, comprising: a communication component configured to receive the signals corresponding to the monitored concentration of the analyte, and to communicate the signals corresponding to the monitored concentration of the analyte to the first receiving device; anda processor unit coupled to the communication component, the processor unit configured to: determine a frequency of interaction over a time period based on user operation of the second receiving device and/or the first receiving device;compare the frequency of interaction to at least one predetermined target level of interaction;output an alert to notify the user when the frequency of interaction is below the at least one predetermined target level of interaction;modify the at least one predetermined target level of interaction based on at least the frequency of interaction and the monitored analyte concentration during the time period; anddisplay an output indicator on the second receiving device when the frequency of interaction is at least equal to the at least one predetermined target level of interaction.
  • 2. The system of claim 1, wherein the at least one predetermined target level of interaction varies during the time period.
  • 3. The system of claim 2, wherein the at least one predetermined target level of interaction varies according to a time of day.
  • 4. The system of claim 2, wherein the at least one predetermined target level of interaction varies according to a type of activity performed by the user during the time period.
  • 5. The system of claim 1, wherein the output indicator displayed includes information corresponding to the user's frequency of interaction and the monitored concentration of the analyte during the time period.
  • 6. The system of claim 1, wherein the processor unit is configured to increase the predetermined target level of interaction when the monitored concentration of the analyte falls below a threshold level.
  • 7. The system of claim 6, wherein the threshold level includes a hypoglycemic level.
  • 8. The system of claim 1, wherein the processor unit is configured to monitor for a user input at the second receiving device to turn off the outputted alert.
  • 9. The system of claim 8, wherein the user is required to perform at least one step to turn off the outputted alert, wherein the at least one step is a decision related to a state of health of the user.
  • 10. The system of claim 1, wherein the at least one predetermined target level of interaction is adjustable by an authorized user.
  • 11. The system of claim 1, further including a memory operatively coupled to the processor unit, wherein the processor unit is configured to record in the memory a history of the frequency of interaction.
  • 12. The system of claim 11, wherein the processor unit is configured to adjust the at least one predetermined target level of interaction according to the recorded history.
  • 13. The system of claim 11, wherein the processor unit is configured to organize the history of the user's frequency of interaction according to behavior variables inputted by the user.
  • 14. The system of claim 1, wherein the user operation includes an operation to obtain an analyte level.
  • 15. The system of claim 14, wherein the processor unit is configured to modify the at least one predetermined target level of interaction based on the obtained analyte level.
  • 16. The system of claim 1, wherein the analyte sensor comprises a plurality of electrodes including a working electrode comprising an analyte-responsive enzyme bonded to a polymer disposed on the working electrode.
  • 17. The system of claim 16, wherein the analyte-responsive enzyme is chemically bonded to the polymer.
  • 18. The system of claim 16, wherein the working electrode further comprises a mediator.
  • 19. The system of claim 1, wherein the analyte sensor comprises a plurality of electrodes including a working electrode comprising a mediator bonded to a polymer disposed on the working electrode.
  • 20. The system of claim 19, wherein the mediator is chemically bonded to the polymer.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/629,447 filed Feb. 23, 2015, now U.S. Pat. No. 9,913,600, which is a continuation of U.S. patent application Ser. No. 13/448,287 filed Apr. 16, 2012, which is a continuation of U.S. patent application Ser. No. 12/147,464 filed Jun. 26, 2008, now U.S. Pat. No. 8,160,900, which claims priority under § 35 U.S.C. 119(e) to U.S. Provisional Application No. 60/947,026 filed Jun. 29, 2007 entitled “Analyte Monitoring and Management Device and Method to Analyze the Frequency of User Interaction with the Device,” the disclosures of each of which are incorporated by reference for all purposes.

US Referenced Citations (1249)
Number Name Date Kind
3581062 Aston May 1971 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4129128 McFarlane Dec 1978 A
4245634 Albisser et al. Jan 1981 A
4327725 Cortese et al. May 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4425920 Bourland et al. Jan 1984 A
4441968 Emmer et al. Apr 1984 A
4464170 Clemens et al. Aug 1984 A
4478976 Goertz et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4527240 Kvitash Jul 1985 A
4538616 Rogoff Sep 1985 A
4545382 Higgins et al. Oct 1985 A
4619793 Lee Oct 1986 A
4671288 Gough Jun 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4757022 Shults et al. Jul 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4847785 Stephens Jul 1989 A
4854322 Ash et al. Aug 1989 A
4890620 Gough Jan 1990 A
4925268 Iyer et al. May 1990 A
4953552 DeMarzo Sep 1990 A
4986271 Wilkins Jan 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5051688 Murase et al. Sep 1991 A
5055171 Peck Oct 1991 A
5082550 Rishpon et al. Jan 1992 A
5106365 Hernandez Apr 1992 A
5122925 Inpyn Jun 1992 A
5135004 Adams et al. Aug 1992 A
5165407 Wilson et al. Nov 1992 A
5202261 Musho et al. Apr 1993 A
5210778 Massart May 1993 A
5228449 Christ et al. Jul 1993 A
5231988 Wernicke et al. Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5251126 Kahn et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5279294 Anderson et al. Jan 1994 A
5285792 Sjoquist et al. Feb 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5330634 Wong et al. Jul 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5372427 Padovani et al. Dec 1994 A
5379238 Stark Jan 1995 A
5384547 Lynk et al. Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5394877 Orr et al. Mar 1995 A
5402780 Faasse, Jr. Apr 1995 A
5408999 Singh et al. Apr 1995 A
5410326 Goldstein Apr 1995 A
5411647 Johnson et al. May 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5438983 Falcone Aug 1995 A
5462645 Albery et al. Oct 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5497772 Schulman et al. Mar 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5532686 Urbas et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5552997 Massart Sep 1996 A
5555190 Derby et al. Sep 1996 A
5564434 Halperin et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5634468 Platt et al. Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5653239 Pompei et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5707502 McCaffrey et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5724030 Urbas et al. Mar 1998 A
5726646 Bane et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5748103 Flach et al. May 1998 A
5749907 Mann May 1998 A
5772586 Heinonen et al. Jun 1998 A
5791344 Schulman et al. Aug 1998 A
5794219 Brown Aug 1998 A
5804047 Karube et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5820551 Hill et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5875186 Belanger et al. Feb 1999 A
5891049 Cyrus et al. Apr 1999 A
5899855 Brown May 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5918603 Brown Jul 1999 A
5919141 Money et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5942979 Luppino Aug 1999 A
5951485 Cyrus et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6022315 lliff Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6028413 Brockmann Feb 2000 A
6049727 Crothall Apr 2000 A
6052565 Ishikura et al. Apr 2000 A
6066243 Anderson et al. May 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6091987 Thompson Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6096364 Bok et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6115622 Minoz Sep 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6129823 Hughes et al. Oct 2000 A
6130623 MacLellan et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6141573 Kurnik et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6144871 Saito et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6167362 Brown Dec 2000 A
6175752 Say et al. Jan 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6223283 Chaiken et al. Apr 2001 B1
6248065 Brown Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6291200 LeJeune et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6294997 Paratore et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6314317 Willis Nov 2001 B1
6329161 Heller et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359270 Bridson Mar 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368273 Brown Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6387048 Schulman et al. May 2002 B1
6400974 Lesho Jun 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6416471 Kumar et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6440068 Brown et al. Aug 2002 B1
6461496 Feldman et al. Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6496729 Thompson Dec 2002 B2
6497655 Linberg et al. Dec 2002 B1
6498043 Schulman et al. Dec 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6540891 Stewart et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6549796 Sohrab Apr 2003 B2
6551494 Heller et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561975 Pool et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6574490 Abbink et al. Jun 2003 B2
6574510 Von Arx et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579231 Phipps Jun 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6631281 Kastle Oct 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6635167 Batman et al. Oct 2003 B1
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6656114 Poulson et al. Dec 2003 B1
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6730025 Platt May 2004 B1
6730200 Stewart et al. May 2004 B1
6731976 Penn et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6735183 O'Toole et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6743635 Neel et al. Jun 2004 B2
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6789195 Prihoda et al. Sep 2004 B1
6790178 Mault et al. Sep 2004 B1
6804558 Haller et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6850790 Berner et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6912413 Rantala et al. Jun 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6923764 Aceti et al. Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6940403 Kail, IV Sep 2005 B2
6941163 Ford et al. Sep 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6954662 Freger et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6968375 Brown Nov 2005 B1
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999854 Roth Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7009511 Mazar et al. Mar 2006 B2
7011630 Desai et al. Mar 2006 B2
7015817 Copley et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7022219 Mansouri et al. Apr 2006 B2
7024236 Ford et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7027931 Jones et al. Apr 2006 B1
7029444 Shin et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7043287 Khalil et al. May 2006 B1
7043305 KenKnight et al. May 2006 B2
7046153 Oja et al. May 2006 B2
7052472 Miller et al. May 2006 B1
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7058453 Nelson et al. Jun 2006 B2
7060031 Webb et al. Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7082334 Boute et al. Jul 2006 B2
7092891 Maus et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7118667 Lee Oct 2006 B2
7123950 Mannheimer Oct 2006 B2
7125382 Zhou et al. Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7153265 Vachon Dec 2006 B2
7155290 Von Arx et al. Dec 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7179226 Crothall et al. Feb 2007 B2
7183102 Monfre et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7203549 Schommer et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7223236 Brown May 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226442 Sheppard et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7228182 Healy et al. Jun 2007 B2
7237712 DeRocco et al. Jul 2007 B2
7258666 Brown Aug 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7286894 Grant et al. Oct 2007 B1
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7324850 Persen et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7347819 Lebel et al. May 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7384397 Zhang et al. Jun 2008 B2
7387010 Sunshine et al. Jun 2008 B2
7392167 Brown Jun 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7419573 Gundel Sep 2008 B2
7424318 Brister et al. Sep 2008 B2
7429258 Angel et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7468125 Kraft et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7492254 Bandy et al. Feb 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7501053 Karinka et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7519478 Bartkowiak et al. Apr 2009 B2
7523004 Bartkowiak et al. Apr 2009 B2
7565197 Haubrich et al. Jul 2009 B2
7574266 Dudding et al. Aug 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7602310 Mann et al. Oct 2009 B2
7604178 Stewart Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7624028 Brown Nov 2009 B1
7630748 Budiman Dec 2009 B2
7632228 Brauker et al. Dec 2009 B2
7635594 Holmes et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7643971 Brown Jan 2010 B2
7651596 Petisce et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7653425 Hayter et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7659823 Killian et al. Feb 2010 B1
7668596 Von Arx et al. Feb 2010 B2
7684999 Brown Mar 2010 B2
7689440 Brown Mar 2010 B2
7697967 Stafford Apr 2010 B2
7699775 Desai et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7711493 Bartkowiak et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736310 Taub Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7741734 Joannopoulos et al. Jun 2010 B2
7751864 Buck, Jr. Jul 2010 B2
7754093 Forrow et al. Jul 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7768387 Fennell et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7778680 Goode et al. Aug 2010 B2
7779332 Karr et al. Aug 2010 B2
7782192 Jeckelmann et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7791467 Mazar et al. Sep 2010 B2
7792562 Shults et al. Sep 2010 B2
7811231 Jin et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7822454 Alden et al. Oct 2010 B1
7831310 Lebel et al. Nov 2010 B2
7857760 Brister et al. Dec 2010 B2
7860574 Von Arx et al. Dec 2010 B2
7866026 Wang et al. Jan 2011 B1
7873595 Singh et al. Jan 2011 B2
7877274 Brown Jan 2011 B2
7877276 Brown Jan 2011 B2
7882611 Shah et al. Feb 2011 B2
7885697 Brister et al. Feb 2011 B2
7889069 Fifolt et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7899545 John Mar 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914460 Melker et al. Mar 2011 B2
7916013 Stevenson Mar 2011 B2
7921186 Brown Apr 2011 B2
7937255 Brown May 2011 B2
7938797 Estes May 2011 B2
7941200 Weinert et al. May 2011 B2
7941308 Brown May 2011 B2
7941323 Brown May 2011 B2
7941326 Brown May 2011 B2
7941327 Brown May 2011 B2
7946984 Brister et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7949507 Brown May 2011 B2
7955258 Goscha et al. Jun 2011 B2
7966230 Brown Jun 2011 B2
7970448 Shults et al. Jun 2011 B2
7970620 Brown Jun 2011 B2
7972267 Brown Jul 2011 B2
7972296 Braig et al. Jul 2011 B2
7976466 Ward et al. Jul 2011 B2
7978063 Baldus et al. Jul 2011 B2
7979259 Brown Jul 2011 B2
7979284 Brown Jul 2011 B2
7996158 Hayter et al. Aug 2011 B2
7999674 Kamen Aug 2011 B2
8005524 Brauker et al. Aug 2011 B2
8010174 Goode et al. Aug 2011 B2
8010256 Oowada Aug 2011 B2
8015025 Brown Sep 2011 B2
8015030 Brown Sep 2011 B2
8015033 Brown Sep 2011 B2
8019618 Brown Sep 2011 B2
8024201 Brown Sep 2011 B2
8032399 Brown Oct 2011 B2
8060173 Goode, Jr. et al. Nov 2011 B2
8072310 Everhart Dec 2011 B1
8090445 Ginggen Jan 2012 B2
8093991 Stevenson et al. Jan 2012 B2
8094009 Allen et al. Jan 2012 B2
8098159 Batra et al. Jan 2012 B2
8098160 Howarth et al. Jan 2012 B2
8098161 Lavedas Jan 2012 B2
8098201 Choi et al. Jan 2012 B2
8098208 Ficker et al. Jan 2012 B2
8102021 Degani Jan 2012 B2
8102154 Bishop et al. Jan 2012 B2
8102263 Yeo et al. Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103241 Young et al. Jan 2012 B2
8103325 Swedlow et al. Jan 2012 B2
8103471 Hayter Jan 2012 B2
8111042 Bennett Feb 2012 B2
8115488 McDowell Feb 2012 B2
8116681 Baarman Feb 2012 B2
8116683 Baarman Feb 2012 B2
8116837 Huang Feb 2012 B2
8117481 Anselmi et al. Feb 2012 B2
8120493 Burr Feb 2012 B2
8124452 Sheats Feb 2012 B2
8130093 Mazar et al. Mar 2012 B2
8131351 Kalgren et al. Mar 2012 B2
8131365 Zhang et al. Mar 2012 B2
8131565 Dicks et al. Mar 2012 B2
8132037 Fehr et al. Mar 2012 B2
8135352 Langsweirdt et al. Mar 2012 B2
8136735 Arai et al. Mar 2012 B2
8138925 Downie et al. Mar 2012 B2
8140160 Pless et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8140299 Siess Mar 2012 B2
8140312 Hayter et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150516 Levine et al. Apr 2012 B2
8160900 Taub Apr 2012 B2
8170803 Kamath et al. May 2012 B2
8179266 Hermle May 2012 B2
8192394 Estes et al. Jun 2012 B2
8216138 McGarraugh et al. Jul 2012 B1
8239166 Hayter et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8260558 Hayter et al. Sep 2012 B2
8282549 Brauker et al. Oct 2012 B2
8374668 Hayter et al. Feb 2013 B1
8376945 Hayter et al. Feb 2013 B2
8377271 Mao et al. Feb 2013 B2
8409093 Bugler Apr 2013 B2
8444560 Hayter et al. May 2013 B2
8457703 Al-Ali Jun 2013 B2
8461985 Fennell et al. Jun 2013 B2
8484005 Hayter et al. Jul 2013 B2
8532935 Budiman Sep 2013 B2
8543354 Luo et al. Sep 2013 B2
8560038 Hayter et al. Oct 2013 B2
8571808 Hayter Oct 2013 B2
8583205 Budiman et al. Nov 2013 B2
8597570 Terashima et al. Dec 2013 B2
8600681 Hayter et al. Dec 2013 B2
8612163 Hayter et al. Dec 2013 B2
8657746 Roy Feb 2014 B2
8682615 Hayter et al. Mar 2014 B2
8710993 Hayter et al. Apr 2014 B2
8834366 Hayter et al. Sep 2014 B2
8845536 Brauker et al. Sep 2014 B2
8924159 Taub et al. Dec 2014 B2
9060719 Hayter et al. Jun 2015 B2
9289179 Hayter et al. Mar 2016 B2
9398872 Hayter et al. Jul 2016 B2
9408566 Hayter et al. Aug 2016 B2
9439586 Bugler Sep 2016 B2
9483608 Hayter et al. Nov 2016 B2
9558325 Hayter et al. Jan 2017 B2
9743872 Hayter et al. Aug 2017 B2
9913600 Taub Mar 2018 B2
20010011224 Brown Aug 2001 A1
20010020124 Tamada Sep 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010037366 Webb et al. Nov 2001 A1
20010047604 Valiulis Dec 2001 A1
20020016534 Trepagnier et al. Feb 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020054320 Ogino May 2002 A1
20020065454 Lebel et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020095076 Krausman et al. Jul 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020111832 Judge Aug 2002 A1
20020117639 Paolini et al. Aug 2002 A1
20020120186 Keimel Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020133107 Darcey Sep 2002 A1
20020147135 Schnell Oct 2002 A1
20020150959 Lejeunne et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020188748 Blackwell et al. Dec 2002 A1
20030005464 Gropper et al. Jan 2003 A1
20030021729 Moller et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032077 Itoh et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030050546 Desai et al. Mar 2003 A1
20030054428 Monfre et al. Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030147515 Kai et al. Aug 2003 A1
20030163351 Brown Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030191377 Robinson et al. Oct 2003 A1
20030199744 Buse et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040010186 Kimball et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015102 Cummings et al. Jan 2004 A1
20040024553 Monfre et al. Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040041749 Dixon Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040060818 Feldman et al. Apr 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040073266 Haefner et al. Apr 2004 A1
20040078215 Dahlin et al. Apr 2004 A1
20040093167 Braig et al. May 2004 A1
20040099529 Mao et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040111017 Say et al. Jun 2004 A1
20040117204 Mazar et al. Jun 2004 A1
20040117210 Brown Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040128225 Thompson et al. Jul 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040133390 Osorio et al. Jul 2004 A1
20040135571 Uutela et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040142403 Hetzel et al. Jul 2004 A1
20040147872 Thompson Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040162678 Hetzel et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040172307 Gruber Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193020 Chiba et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199056 Husemann et al. Oct 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050017864 Tsoukalis Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050049473 Desai et al. Mar 2005 A1
20050060194 Brown Mar 2005 A1
20050070774 Addison et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096516 Soykan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113648 Yang et al. May 2005 A1
20050113886 Fischell et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050115832 Simpson et al. Jun 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050134731 Lee et al. Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050184153 Auchinleck Aug 2005 A1
20050187442 Cho et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050196821 Monfre et al. Sep 2005 A1
20050197793 Baker, Jr. Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050204134 Von Arx et al. Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050228883 Brown Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050251033 Scarantino et al. Nov 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001551 Kraft et al. Jan 2006 A1
20060010014 Brown Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060058588 Zdeblick Mar 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060091006 Wang et al. May 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060154642 Scannell Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060189851 Tvig et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060193375 Lee et al. Aug 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060234202 Brown Oct 2006 A1
20060235722 Brown Oct 2006 A1
20060241975 Brown Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060247710 Goetz et al. Nov 2006 A1
20060247985 Liamos et al. Nov 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060264785 Dring et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060281985 Ward et al. Dec 2006 A1
20060285660 Brown Dec 2006 A1
20060285736 Brown Dec 2006 A1
20060287691 Drew Dec 2006 A1
20060287889 Brown Dec 2006 A1
20060287931 Brown Dec 2006 A1
20060290496 Peeters et al. Dec 2006 A1
20060293607 Alt et al. Dec 2006 A1
20070010950 Abensour et al. Jan 2007 A1
20070011320 Brown Jan 2007 A1
20070016381 Kamath et al. Jan 2007 A1
20070016445 Brown Jan 2007 A1
20070017983 Frank et al. Jan 2007 A1
20070021984 Brown Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070027383 Peyser et al. Feb 2007 A1
20070027507 Burdett et al. Feb 2007 A1
20070032717 Brister et al. Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070055799 Koehler et al. Mar 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070060869 Tolle et al. Mar 2007 A1
20070060979 Strother et al. Mar 2007 A1
20070061167 Brown Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078818 Zvitz et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070118030 Bruce et al. May 2007 A1
20070118588 Brown May 2007 A1
20070129621 Kellogg et al. Jun 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070156457 Brown Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173709 Petisce et al. Jul 2007 A1
20070173710 Petisce et al. Jul 2007 A1
20070176867 Reggiardo et al. Aug 2007 A1
20070179434 Weinert et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070202562 Curry et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203539 Stone et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208244 Brauker et al. Sep 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213605 Brown Sep 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070231846 Cosentino et al. Oct 2007 A1
20070232878 Kovatchev et al. Oct 2007 A1
20070232880 Siddiqui et al. Oct 2007 A1
20070233013 Schoenberg et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244383 Talbot et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070255321 Gelber et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070299617 Willis Dec 2007 A1
20080004515 Jennewine et al. Jan 2008 A1
20080004601 Jennewine et al. Jan 2008 A1
20080004904 Tran Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080012701 Kass et al. Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080018433 Pitt-Pladdy Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080021972 Huelskamp et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080058773 John Mar 2008 A1
20080060955 Goodnow Mar 2008 A1
20080061961 John Mar 2008 A1
20080064943 Talbot et al. Mar 2008 A1
20080066305 Wang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080081977 Hayter et al. Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080092638 Brenneman et al. Apr 2008 A1
20080102441 Chen et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080114228 McCluskey et al. May 2008 A1
20080114229 Brown May 2008 A1
20080119703 Brister et al. May 2008 A1
20080119705 Patel et al. May 2008 A1
20080119708 Budiman May 2008 A1
20080125636 Ward et al. May 2008 A1
20080127052 Rostoker May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080148873 Wang Jun 2008 A1
20080161666 Feldman et al. Jul 2008 A1
20080167572 Stivoric et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080177149 Weinert et al. Jul 2008 A1
20080177165 Blomquist et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080201325 Doniger et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214900 Fennell et al. Sep 2008 A1
20080214910 Buck Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080218180 Waffenschmidt et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080234943 Ray et al. Sep 2008 A1
20080235469 Drew Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080242963 Essenpreis et al. Oct 2008 A1
20080254544 Modzelewski et al. Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080267823 Wang et al. Oct 2008 A1
20080269571 Brown Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080278332 Fennel et al. Nov 2008 A1
20080281179 Fennel et al. Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294024 Cosentino et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312518 Jina et al. Dec 2008 A1
20080314395 Kovatchev et al. Dec 2008 A1
20080319085 Wright et al. Dec 2008 A1
20080319294 Taub et al. Dec 2008 A1
20080319295 Bernstein et al. Dec 2008 A1
20080319296 Bernstein et al. Dec 2008 A1
20090005665 Hayter et al. Jan 2009 A1
20090005666 Shin et al. Jan 2009 A1
20090005729 Hendrixson et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006061 Thukral et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090012376 Agus Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018425 Ouyang et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090040022 Finkenzeller Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054745 Jennewine et al. Feb 2009 A1
20090054747 Fennell Feb 2009 A1
20090054748 Feldman et al. Feb 2009 A1
20090054753 Robinson et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090063964 Huang et al. Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090088614 Taub Apr 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105554 Stahmann et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105568 Bugler Apr 2009 A1
20090105570 Sloan et al. Apr 2009 A1
20090105571 Fennell et al. Apr 2009 A1
20090112478 Mueller, Jr. et al. Apr 2009 A1
20090112626 Talbot et al. Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode, Jr. et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090143725 Peyser et al. Jun 2009 A1
20090149728 Van Antwerp et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090163855 Shin et al. Jun 2009 A1
20090177068 Stivoric et al. Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090182517 Gandhi et al. Jul 2009 A1
20090189738 Hermle Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090234200 Husheer Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090248380 Brown Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090267765 Greene et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090289796 Blumberg Nov 2009 A1
20090294277 Thomas et al. Dec 2009 A1
20090298182 Schulat et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100022988 Wochner et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100057041 Hayter et al. Mar 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100064764 Hayter et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081905 Bommakanti et al. Apr 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081909 Budiman et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100081953 Syeda-Mahmood et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100093786 Watanabe et al. Apr 2010 A1
20100094111 Heller et al. Apr 2010 A1
20100094251 Estes et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121167 McGarraugh et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100141429 Bruegger et al. Jun 2010 A1
20100141656 Krieftewirth Jun 2010 A1
20100145172 Petisce et al. Jun 2010 A1
20100146300 Brown Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100160760 Shults et al. Jun 2010 A1
20100161269 Kamath et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168540 Kamath et al. Jul 2010 A1
20100168541 Kamath et al. Jul 2010 A1
20100168542 Kamath et al. Jul 2010 A1
20100168543 Kamath et al. Jul 2010 A1
20100168544 Kamath et al. Jul 2010 A1
20100168545 Kamath et al. Jul 2010 A1
20100168546 Kamath et al. Jul 2010 A1
20100168657 Kamath et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100179399 Goode et al. Jul 2010 A1
20100179400 Brauker et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179405 Goode et al. Jul 2010 A1
20100179407 Goode et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185073 Goode et al. Jul 2010 A1
20100185074 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100190435 Cook et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100191085 Budiman Jul 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100213057 Feldman et al. Aug 2010 A1
20100213080 Celentano et al. Aug 2010 A1
20100230285 Hoss et al. Sep 2010 A1
20100234710 Budiman et al. Sep 2010 A1
20100257490 Lyon et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280441 Willinska et al. Nov 2010 A1
20100298686 Reggiardo et al. Nov 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20100317952 Budiman et al. Dec 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100326842 Mazza et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110004276 Blair et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110029247 Kalathil Feb 2011 A1
20110031986 Bhat et al. Feb 2011 A1
20110040163 Telson et al. Feb 2011 A1
20110044333 Sicurello et al. Feb 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110082484 Saravia et al. Apr 2011 A1
20110105955 Yudovsky et al. May 2011 A1
20110106126 Love et al. May 2011 A1
20110112696 Yodfat et al. May 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110152637 Kateraas et al. Jun 2011 A1
20110190603 Stafford Aug 2011 A1
20110191044 Stafford Aug 2011 A1
20110208027 Wagner et al. Aug 2011 A1
20110208155 Palerm et al. Aug 2011 A1
20110257495 Hoss et al. Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110282327 Kellogg et al. Nov 2011 A1
20110287528 Fern et al. Nov 2011 A1
20110288574 Curry et al. Nov 2011 A1
20110289497 Kiaie et al. Nov 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120078071 Bohm et al. Mar 2012 A1
20120108931 Taub et al. May 2012 A1
20120108934 Valdes et al. May 2012 A1
20120165626 Irina et al. Jun 2012 A1
20120165640 Galley et al. Jun 2012 A1
20120173200 Breton et al. Jul 2012 A1
20120179017 Satou et al. Jul 2012 A1
20120209099 Ljuhs et al. Aug 2012 A1
20120215462 Goode et al. Aug 2012 A1
20130035575 Mayou et al. Feb 2013 A1
20130225959 Bugler Aug 2013 A1
20130231541 Hayter et al. Sep 2013 A1
20130235166 Jones et al. Sep 2013 A1
20140221966 Buckingham et al. Aug 2014 A1
20140275898 Taub et al. Sep 2014 A1
20150241407 Ou et al. Aug 2015 A1
Foreign Referenced Citations (26)
Number Date Country
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
WO-1996025089 Aug 1996 WO
WO-1996035370 Nov 1996 WO
WO-1998035053 Aug 1998 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000074753 Dec 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2006024671 Mar 2006 WO
WO-2008001366 Jan 2008 WO
WO-2008086541 Jul 2008 WO
WO-2010077329 Jul 2010 WO
Non-Patent Literature Citations (56)
Entry
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jovanovic, L., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus”, Diabetes Technology & Therapeutics, vol. 2, Sup. 1, 2000, pp. S67-S71.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219.
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410.
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
U.S. Appl. No. 12/147,464, Notice of Allowance dated Jan. 24, 2012.
U.S. Appl. No. 12/147,464, Office Action dated Oct. 23, 2014.
U.S. Appl. No. 14/629,447, Office Action dated Aug. 10, 2017.
U.S. Appl. No. 14/629,447, Notice of Allowance dated Dec. 5, 2017.
Related Publications (1)
Number Date Country
20180192927 A1 Jul 2018 US
Provisional Applications (1)
Number Date Country
60947026 Jun 2007 US
Continuations (3)
Number Date Country
Parent 14629447 Feb 2015 US
Child 15916255 US
Parent 13448287 Apr 2012 US
Child 14629447 US
Parent 12147464 Jun 2008 US
Child 13448287 US