Diabetes Mellitus is an incurable chronic disease in which the body does not produce or properly utilize insulin. Insulin is a hormone produced by the pancreas that regulates blood sugar (glucose). In particular, when blood sugar levels rise, e.g., after a meal, insulin lowers the blood sugar levels by facilitating blood glucose to move from the blood into the body cells. Thus, when the pancreas does not produce sufficient insulin (a condition known as Type I Diabetes) or does not properly utilize insulin (a condition known as Type II Diabetes), the blood glucose remains in the blood resulting in hyperglycemia or abnormally high blood sugar levels.
The vast and uncontrolled fluctuations in blood glucose levels in people suffering from diabetes cause long-term, serious complications. Some of these complications include blindness, kidney failure, and nerve damage. Additionally, it is known that diabetes is a factor in accelerating cardiovascular diseases such as atherosclerosis (hardening of the arteries), leading to stroke, coronary heart disease, and other diseases. Accordingly, one important and universal strategy in managing diabetes is to control blood glucose levels.
The first step in managing blood glucose levels is testing and monitoring blood glucose levels by using conventional techniques, such as drawing blood samples, applying the blood to a test strip, and determining the blood glucose level using colorimetric, electrochemical, or photometric test meters. Another more recent technique for monitoring blood glucose levels is by using a continuous or automatic glucose monitoring system. Unlike conventional blood glucose meters, continuous analyte monitoring systems employ an insertable or implantable sensor, which continuously detects and monitors blood glucose levels. These blood glucose levels may then be displayed to a user to assist the user in managing the user's diabetes. However, as battery life drains from one or more components of the continuous analyte monitoring system, such as a receiver, data corresponding to the monitored blood glucose levels may be lost or become corrupt if the receiver of the analyte monitoring system shuts down due to lack of power in a rechargeable power source of the receiver. Additionally, noise produced by various components of the analyte monitoring system may interfere with a signal that conveys the monitored blood glucose levels.
The following patents, applications and/or publications are incorporated herein by reference for all purposes: U.S. Pat. Nos. 4,545,382; 4,711,245; 5,262,035; 5,262,305; 5,264,104; 5,320,715; 5,356,786; 5,509,410; 5,543,326; 5,593,852; 5,601,435; 5,628,890; 5,820,551; 5,822,715; 5,899,855; 5,918,603; 6,071,391; 6,103,033; 6,120,676; 6,121,009; 6,134,461; 6,143,164; 6,144,837; 6,161,095; 6,175,752; 6,270,455; 6,284,478; 6,299,757; 6,338,790; 6,377,894; 6,461,496; 6,503,381; 6,514,460; 6,514,718; 6,540,891; 6,560,471; 6,579,690; 6,591,125; 6,592,745; 6,600,997; 6,605,200; 6,605,201; 6,616,819; 6,618,934; 6,650,471; 6,654,625; 6,676,816; 6,730,200; 6,736,957; 6,746,582; 6,749,740; 6,764,581; 6,773,671; 6,881,551; 6,893,545; 6,932,892; 6,932,894; 6,942,518; 7,041,468; 7,167,818; 7,299,082; 7,740,581; 7,811,231; 7,811,430; 7,846,311; 7,802,467; 7,822,557; 7,885,698; 7,866,026; 7,887,682; 7,895,740; 7,918,975; 8,219,173; 8,298,389; 8,346,335; 8,595,607; 8,771,183; 9,186,098; 9,215,992; 9,402,544; 9,795,326; U.S. Publication Nos. 2006/0091006; 2007/0095661; 2007/0233013; 2008/0081977; 72008/0161666; 2008/0267823; 2009/0294277; 2010/0213057, 2010/0326842; 2010/0198034; 2010/0230285.
Embodiments described herein relate to systems and methods for selectively disabling components of an analyte monitoring device based on a percentage of power remaining in a power source of the analyte monitoring device. As such, the analyte monitoring device is configured to determine a temperature level of the power source of the analyte monitoring device, determine a level of power remaining in the power source of the analyte monitoring device, and selectively deactivate at least one component of the analyte monitoring device when at least one of the temperature levels of the power source reaches a predetermined temperature threshold or when the level of power remaining in the power source reaches a predetermined power threshold. Also disclosed herein are methods and systems for reducing noise caused by components of the analyte monitoring device during data transmission and/or reception.
These and other objects, features and advantages of the present disclosure will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.
A detailed description of various aspects, features, and embodiments of the subject matter described herein is provided with reference to the accompanying drawings, which are briefly described below. The drawings are illustrative and are not necessarily drawn to scale, with some components and features being exaggerated for clarity. The drawings illustrate various aspects and features of the present subject matter and may illustrate one or more embodiment(s) or example(s) of the present subject matter in whole or in part.
Before the present disclosure is described in detail, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges as also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.
Various exemplary embodiments of the analyte monitoring system and methods of the disclosure are described in further detail below. Although the disclosure is described primarily with respect to a glucose monitoring system, each aspect of the disclosure is not intended to be limited to the particular embodiment so described. Accordingly, it is to be understood that such description should not be construed to limit the scope of the disclosure, and it is to be understood that the analyte monitoring system can be configured to monitor a variety of analytes, as described below.
Also shown in
In one aspect, sensor 101 may include two or more sensors each configured to communicate with transmitter unit 102. Furthermore, while only one, transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
In one embodiment of the present disclosure, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In certain embodiments, the transmitter unit 102 may be physically coupled to the sensor 101 so that both devices are integrated in a single housing and positioned on the user's body. The transmitter unit 102 may perform data processing such as filtering and encoding on data signals and/or other functions, each of which corresponds to a sampled analyte level of the user, and in any event transmitter unit 102 transmits analyte information to the primary receiver unit 104 via the communication link 103. Additional detailed description of the continuous analyte monitoring system, its various components including the functional descriptions of the transmitter are provided in, but not limited to, U.S. Pat. Nos. 6,134,461, 6,175,752, 6,121,611, 6,560,471, and 6,746,582, and U.S. Patent Publication No. 2008/0278332 and elsewhere, the disclosures of each of which are incorporated by reference for all purposes.
In accordance with an embodiment, the receiver 200 includes two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In certain embodiments, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the receiver is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.
In certain embodiments, various data processing functionalities are executed by the receiver 200 such as, for example, calibration of analyte levels received from the sensor 101 and the transmitter unit 102 and techniques for managing power and noise of the analyte monitoring system 100, based on the periodic transmission of data from the transmitter unit 102.
In certain embodiments, a receiver 200 has an operating mode which prevents a user from operating the receiver 200 or suspends or deactivates certain functionalities of the receiver during certain conditions. Such conditions may include a low battery level of the receiver 200, such as, for example, a low battery level that prompts hardware shutdown. Other conditions may include low or high operating temperatures of the receiver 200 that may cause data corruption or erroneous behavior if the receiver 200 were to continue operating under such conditions. As will be described in greater detail below, this suspended functionality mode is referred herein as a play dead mode. In play dead mode, the receiver 200 continues to run a main clock and perform certain internal operations to keep desired data updated and current. Such operations and/or data may include operations and data corresponding to sensor life, calibration, timing of the receipt of data packets and the like. Although certain operations remain active, other operations of the receiver 200 are suspended. In certain embodiments, the operations that are suspended include writing data to memory, such as, for example a flash memory of the receiver 200, outputting sounds such as alarms, tones and/or other notifications, displaying data on a display unit, or communicating commands to a remotely controlled device, such as, for example, a pump.
In certain embodiments, one or more processors of the receiver 200 utilize a battery monitoring algorithm which performs a charge counting routine when determining whether to enter the play dead mode. More specifically, the charge counting routine in certain embodiments includes determining an estimate corresponding to an amount of battery charge available on a well-functioning battery during the lifecycle of the receiver 200. In certain embodiments, the battery monitoring algorithm takes into account variations in batteries from different manufacturers as well as an estimate of degradation of the battery capacity due to aging over the lifetime of the battery.
Referring to
For example, the receiver 200 may have a user interface processor 330 configured to process commands received from, and output data to, various user interface components 340. In certain embodiments, the user interface components 340 may include, one or more buttons disposed on a housing of the receiver 200, a display, such as, for example a touch sensitive display, a sound synthesizer, a vibration component, and/or a backlight. Although specific components are mentioned, it is contemplated that the receiver may include additional user interface components configured to enable a user to interact with the receiver 200. In certain embodiments, the user interface processor 330 is configured to interact with the various user interface components 340 including updating the display of the receiver 200, processing received glucose data, maintaining a log of historical information, operating the sound synthesizer and/or the vibration component, and/or interface with the power management module 300. In addition to the user interface processor 330, the receiver 200 may also include glucose engine processor 350 configured to receive and process analyte data received from a transmitter, such as, for example, transmitter unit 102 (
In certain embodiments, the battery monitoring algorithm discussed above incorporates several design constraints and considerations. For example, one consideration is discharge of the battery of the receiver 200. In one aspect, the battery of the receiver 200 is a lithium-ion battery. As these types of batteries may be damaged when deeply discharged (e.g., discharging the battery below a certain percentage of the charge capacity of the battery), the power management module 300 may be configured to cut or reduce power to one or more processors of the receiver 200 when the battery voltage drops below a certain voltage minimum threshold (e.g., about 3.3V).
In certain embodiments, when the voltage remaining in the battery drops below a certain threshold, for example about 3.6V, the battery is considered an empty battery and the power management module 300 reduces or cuts power to one or more of the processors to conserve the remaining battery power. In such situations, and as described above, when the power management module 300 cuts power from the battery, certain functionalities of the receiver 200 are disabled while other functionalities of the receiver 200 may remain active. In one aspect, one or more processors of the receiver 200 may be configured to determine which components and/or operations (e.g. writing to flash memory, updating a display, etc.) controlled by a particular processor are consuming the most power. The processor may then deactivate one or more operations and/or components that are consuming the most power while other operations and/or components controlled by that processor remain active.
For example, the user interface processor 330 may control a display and a light source of the receiver 200. When battery power reaches the predetermined minimum threshold, the user interface processor 330 may determine that continued operation of the light source will require more power than operation of the display. As such, the light source will be deactivated until the battery of the receiver 200 is recharged, but the display remains active. Although one component controlled by a processor may remain active while another component is deactivated as was described above, it is contemplated that as battery power continues to drain, the active component (e.g., the active display) controlled by the user interface processor 330 may be subsequently deactivated when remaining power of the battery reaches a second predetermined minimum threshold. When this threshold is reached, the processor of the receiver 200 may again determine which active component and/or operation is consuming the most battery power and temporarily deactivate that particular component or operation.
In another aspect, temperature damage to the battery may also be prevented using the power management module 300. For example, a lithium-ion battery can be damaged if the battery is exposed to extreme temperatures, especially hot temperatures. Additionally, low battery temperature may cause the internal resistance of the battery to increase significantly. The increase in internal resistance results in a voltage drop when the device turns on high current loads such as, for example, when a display of the receiver 200 is activated or when an alarm is output. It is beneficial to avoid or prevent voltage drops of a battery because a voltage drop may cause the operating system of the receiver 200 to unexpectedly reset. As a result of the reset, data may be lost. In certain embodiments, the temperature of the battery is monitored while the battery is being charged. If the temperature of the battery exceeds a threshold temperature, the processor of the receiver 200 issues a command to temporarily discontinue charging the battery.
In certain embodiments, when the receiver 200 is powered on, the charge count of the battery is determined based on certain conditions. For example, if the receiver 200 is recovering from a hard or soft reset, battery information that was previously stored in a memory of the receiver 200 is checked to determine if the battery information is valid. Such a determination may be made by the processor comparing the stored battery information to an estimate of the remaining power in the power source. If the battery information stored in the memory is validated, the charge count of the battery is set as the battery information that is stored in the memory. In situations where the system is reset due to a power on procedure, such as, for example, powering on the receiver 200, the charge count stored in the memory is retrieved and checked for validity. If the battery information in memory is valid, the stored battery information is compared to an actual voltage reading from the battery. If the stored battery information is within a predetermined range, such as ±0.5V of the actual voltage read from the battery, the charge count of the battery is set to the value that was stored in the memory. In another aspect, if it is determined by the user interface processor 330 that the battery voltage is below a minimum threshold, such as 3.6V or less, the charge count is set to zero and the receiver 200 enters play dead mode and/or prompts the user to begin recharging the battery. If the stored battery information is invalid, the charge count is initialized to zero and the user is prompted, via a display or alarm notification, that the battery of the receiver 200 needs to be recharged.
In certain embodiments, the user interface processor 330 of the receiver 200 receives a charge count interrupt signal, and based on the signal, determines when the battery is being charged, when the battery is fully charged, and when power from the battery is being discharged. For example, when the charge count interrupt signal is received by the processor and the signal is high, the user interface processor 330 is configured to increment a charge count. However, when the charge count interrupt signal is received and the signal is low, the user interface processor 330 subtracts one charge count. Thus, based on the charge count, the user interface processor 330 may determine how much power remains in the battery and/or when the charge count has reached a maximum count.
In certain embodiments, the user interface processor 330 of the receiver 200 is configured to calculate and display an amount of power remaining in the battery of the receiver 200. As discussed above, when the remaining battery power reaches a predetermined minimum threshold level, the user interface processor 330 is configured to issue a command to output a notification to the user that the receiver 200 is about to enter the play dead mode because the remaining battery power is at or below a threshold power level. In another aspect, the user interface processor 330 is also configured to notify the user when the battery of the receiver 200 is fully charged. In certain embodiments, the display of the receiver 200 is configured to visually output the remaining power of the battery of the receiver 200. In certain embodiments, the remaining power of the battery of the receiver 200 is output in the form of an icon that displays an amount of power remaining in the battery. It also serves as an indication that all subsystems (e.g., test strip port functionality, display functionality, etc.) of the receiver 200 can be used without the risk of data loss or data corruption due to sudden or unexpected receiver 200 shutdown.
In certain embodiments, the battery icon is output on the display having at least four indicators with each of the indicators representing a portion of the battery life. Although four indicators are specifically mentioned, it is contemplated that any number of indicators may be used. As battery life of the receiver 200 drains, each of the indicators of the battery icon may be output in a different color. For example, as battery life is depleted from a 100% charge to a 75% charge, the user interface processor 330 of the receiver 200 causes the first indicator of the battery icon to change from green, to yellow to red to indicate that the user is reaching 75% charge while the remaining three indicators of the battery icon are output in green. As power of the battery of the receiver 200 is continually discharged, the remaining three indicators are output in different colors to indicate the percentage of power remaining in the battery. In certain embodiments, the battery icon may also indicate the level or percentage of power remaining in the battery in which the user may continue to use all systems and functionalities of the receiver 200, such as, for example, the display or the test strip port 360. Additionally, the battery icon may display whether the battery of the receiver 200 is charging.
Referring back to
In certain embodiments, various alarms or other notifications may be output from the receiver 200 to warn the user that the power remaining in the battery is reaching a threshold level (e.g., 25% power). In another embodiment, multiple warnings or alerts may be output based on certain battery levels being reached. For example, when the amount of power remaining in the battery reaches a first level, a user is warned that the battery needs to be charged within a determined amount of time based on current battery power consumption. When the remaining amount of power in the battery reaches a second level, the receiver 200 enters the play dead mode (440). In another embodiment, the user interface processor 330 of the receiver 200 is configured to estimate a time frame based on the current battery usage as to when the receiver 200 will enter the play dead mode. If the estimated amount of time elapses, the receiver 200 enters play dead mode (440).
Additional description of alarms and the output of the alarms and play dead mode for certain embodiments are shown in Table 1 below.
In certain embodiments, the battery remains in the charging state 505 when the receiver 200 is connected to a peripheral power source and the battery voltage and the receiver temperature are in a safe operation range. In the charging state 505, all operations and functionalities of the receiver 200 are operable except for test strip measurements and a user initiated self test of the receiver 200. In certain embodiments, a self test enables a user to select and run a self test mode in which the receiver 200 automatically tests whether various components of the receiver are working properly. Such components may include a display, a speaker, a memory, a vibratory indicator, and/or a test strip port light. After each successive test, the results may be audibly and/or visually output to a user. Although specific self tests have been mentioned, it is contemplated that additional self tests related to other components of the receiver may be performed.
As discussed above, when in the charging state 505, an icon may be output on the display to indicate that a battery of the receiver 200 is currently being charged. In one aspect, the receiver 200 enters the charge complete state 510 when the battery is completely charged and a USB cable is connected to the receiver 200. However, as stated above, although the receiver 200 may still be connected to a power source, when the fully charged state 510 is reached, the processor, such as, for example, the user interface processor 330 (
When battery life reaches about 20% to 0%, the receiver 200 enters the play dead mode 520 described above. In the play dead mode 520, certain functionalities of the receiver 200 are inoperable. State transitions illustrated in
Further aspects of the play dead mode are illustrated in
With continued reference to
In another aspect of the present disclosure, the receiver 200 may be configured to reduce the overall electronic noise of the receiver 200 during periods when data transmission is occurring, such as, for example, when the receiver 200 is expecting a data packet from a transmitter unit, such as, for example, transmitter unit 102 (
One implementation of the noise reduction is referred to herein as the “quiet mode” in which the user interface processor 330 of the receiver 200 temporarily reduces the intensity of light from a display, such as an OLED display, of the receiver 200. During the RF packet reception, the light level of the display is reduced for a short period of time which significantly reduces the noise caused by the display and improves RF performance. This reduction in light is virtually imperceptible to the user due to the very short duration of time in which the light has been reduced. In some embodiments, the duration is about 15 to about 100 milliseconds and occurs once every 60 seconds or at time intervals that are determined based on, for example, expected time windows in which data packets are to be received from the transmitter unit 102.
Referring to
In certain embodiments, control of the antenna switch 710 is provided by at least one processor of the receiver 200, such as, for example, the glucose engine processor 350 (
In certain embodiments, the receiver 200 is sensitive to on channel signals at very low levels (e.g., about −110 dBm). However, this signal is desensitized by stronger signals such as, the local interference sources 750, even though the local interference sources 750 may not be on the same channel. As the local interference sources 750 are in close proximity to the antenna 710, the local interference sources 750 desensitize the RF receiver 202 and may corrupt the data received from the transmitter unit 102 or cause the data to be inaccurate.
Once the receiver 200 has received the first data packet and established a range of communication without the antenna 710 being used, the receiver 200 is configured to determine a window of time (830) in which the next data packet will arrive from the transmitter unit 102. In certain embodiments, the window of time is based on predetermined settings (e.g., once per minute). In another embodiment, the window of time may be selected by a user or health care professional. Once the time window is determined, the processor 740 activates the transceiver 730 for a short duration to receive the next data packet based on the determined window of time. During the determined window of time, a processor (e.g., glucose engine processor 350 (
In certain embodiments, the processor 740 asserts a quiet host signal 700 during the determined time window to indicate to the rest of the circuitry that it should enter a low power mode. Additionally, if it is determined that the receiver 200 is within range of the transmitter unit 102 such that the antenna 710 is not needed, the processor 740 issues a command to the switch 720 to disable the antenna (850) during the transmission time window. As a result, the noise level is further reduced. In certain embodiments, the range may be a predetermined range based on the strength of the signal being transmitted from the transmitter unit 102 to the receiver 200. In another embodiment, the range is established during the initial pairing of the receiver 200 and the transmitter unit 102 while the antenna 710 of the receiver 200 has been disconnected as was described above. Further description of implementing a quiet mode can be found in, among others, U.S. Patent Publication No. 2009/0076359, now U.S. Pat. No. 7,801,582, the disclosure of which is incorporated herein by reference for all purposes.
In certain embodiments, the quiet mode also refers to cessation of USB communication, such as, for example, communication between the receiver 200 and peripheral device, such as, for example, a remote computer. In one aspect, as will be described in detail below, the quiet mode also refers to the design of quiet mode blockers.
In certain embodiments, the receiver 200 may have several different power modes. Such modes include power saving modes in which the power of external devices such as sound chips and LCD controllers are turned off. In such modes, the power consumption of one or more processors of the receiver is maintained at a minimum level. In certain embodiments, at least one processor, such as, for example, the user interface processor 330 (
In certain embodiments, to reach the power saving function, the receiver 200 must verify that there are no pending instructions that need to be executed prior to entering the power saving state. As such, blockers are used to indicate if a task or other executable action is in process and has not yet been completed. In certain embodiments, each blocker is a flag. If all the blockers are released (e.g., no flags are set), the receiver 200 enters the play dead mode such as was described above. In certain embodiments, the receiver uses the following exemplary blockers as set forth in Table 3:
Referring back to
In one aspect, the receiver 200 is configured to transition from the “STOP_MODE” state 920 to the “RUN_MODE” state 910 (transition 925) under certain conditions. For example, an interrupt signal can “wake up” the user interface processor 330 after the user interface processor 330 has entered the play dead mode such that the user interface processor returns to normal operation. In certain embodiments, a press of a button on the receiver 200, an OS timer, a USB cable plug-in, and interrupt from the glucose engine processor 350, may wake up the deactivated user interface processor 330 so that receiver 200 runs in normal mode having all functionalities. In addition, the transition of the “QUIET_HOST” signal to “HIGH” by the glucose engine processor 350, or the transition of the “HOST_AWAKE” signal to “HIGH” will also transition the system from “STOP_MODE” state 920 to the “RUN_MODE” state 910.
Referring to the quiet mode 930, when in the quiet mode 930, the phase locked loops of each processor (e.g., the user interface processor 330 and the glucose engine processor 350) are shut down and clock 205 (
In certain embodiments, additional considerations are provided prior to the receiver entering the quiet mode. For example, if the system detects a USB connection when the system is in “QUIET_MODE” state 930, there will be no USB interrupt because the USB is disabled in quiet mode. If the user interface detects a “QUIET_HOST” rising edge during uploading of data to a PC through the USB port, this request from glucose engine processor 350 to quiet the system will be ignored.
There are occasions that continuous communications between the receiver 200 and an external device (e.g., a remote computer) are required for an extended period (e.g., for debugging, product engineering, hardware verification and validation, historical data upload, etc.). During such extended communications, it may be desirable to block the quiet mode entirely. Once the quiet mode is deactivated, communication between the remote computer and the receiver may occur. In certain embodiments, the communication link between the remote computer and receiver only occurs when data packets are not being received by the receiver. At the end of the period of time between packets, the PC application closes the communication link and waits for a signal which indicates that the packet transmission has been completed. In some embodiments, this process will continue as long as the PC application wants to communicate with the device. This technique may avoid the dangling and hanging of the PC application as a result of the receiver going to the quiet mode and shutting down the USB clock before the PC application closes the USB port.
In yet another embodiment, noise reduction techniques are also employed by placement of the antenna in relation to the noise generating circuits. In such embodiments, the antenna may be placed in an area so as to isolate the antenna from the noise source by being as far as physically possible from the noise source. Conversely, it is also contemplated that noise sources may be placed as far as possible from the antenna. Additional design features may be included to increase the isolation, such as ground planes, metal shields, and slots cut in the printed circuit board.
Additionally, it is contemplated that the antenna may be placed to improve signal strength by minimizing obstacles between the signal and antenna. Such considerations include hand placement positions when a user is holding the device as the user's hand may block the signal. Accordingly, the antenna may be placed on an outside edge that will not be covered by the hand of the user.
In the manner described above, an analyte monitoring device, such as, for example, a receiver, may be configured to enter an operating mode (e.g., a power conservation mode) in which certain functionalities and/or components of the analyte monitoring device are selectively disabled. In certain embodiments, this operating mode is entered when the remaining power of a power source of the analyte monitoring device has reached a predetermined minimum threshold level. In certain embodiments, the functionalities and/or components that are disabled are those components and/or functionalities that require the most battery power. Thus, disabling the components and/or functionalities that consume the most power may prolong the time before the analyte monitoring system shuts down due to lack of power which may result in the loss of data. Other conditions that may prompt the analyte monitoring device to enter the operating mode disclosed herein may include low or high operating temperatures of the analyte monitoring device that may cause data corruption or erroneous behavior if the analyte monitoring device were to continue operating under such conditions.
In certain embodiments of the present disclosure, a method is described in which one or more components of the analyte monitoring device are selectively deactivated during a time window in which the analyte monitoring device is to receive and/or transmit data. Because the one or more components are deactivated, the noise generated by those components is reduced which results in an enhanced and more accurate signal.
Certain aspects of the present disclosure may include determining a temperature level of a power source of an analyte monitoring device, determining a level of power remaining in the power source of the analyte monitoring device, and selectively deactivating at least one component of the analyte monitoring device when at least one of the temperature levels of the power source reaches a predetermined temperature threshold or when the level of power remaining in the power source reaches a predetermined power threshold.
In certain embodiments, the at least one component may be a display.
In certain embodiments, the display may be an organic light emitting diode (OLED) display.
In certain embodiments, the at least one component may be a test strip interface.
In certain embodiments, the at least one component may be a memory device.
In certain embodiments, the memory device may be a flash memory device.
In certain embodiments, the predetermined temperature threshold may be about zero degrees Celsius.
In certain embodiments, the predetermined temperature threshold may be about negative five degrees Celsius.
In certain embodiments, the predetermined power threshold may be about 3.6V.
In certain embodiments, the predetermined power threshold may be about 3.7V.
In certain embodiments, selectively deactivating the at least one component may comprise determining an amount of power needed by the at least one component and deactivating the at least one component when the determined amount of power exceeds a threshold level.
In other certain aspects of the present disclosure, an apparatus may include one or more processors, and a memory operatively coupled to the one or more processors, the memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to determine a temperature level of a power source of the apparatus, determine a level of power remaining in the power source of the apparatus, and selectively deactivate at least one component of the apparatus when at least one of the temperature level of the power source reaches a predetermined temperature threshold or when the level of power remaining in the power source reaches a predetermined power threshold.
Other certain aspects of the present disclosure may include providing a receiving unit comprising a radio frequency (RF) receiver, receiving a signal relating to an analyte concentration of a patient, determining a time window for receiving a subsequent signal corresponding to additional analyte concentrations of the patient, and selectively deactivating at least one of an antenna of the receiving unit or at least one component of the receiving unit during the determined time window.
In certain embodiments, the antenna may be deactivated using a switch.
Certain embodiments may include determining a transmission range between the receiving unit and the transmitter.
Certain embodiments may include deactivating the antenna when the determined transmission range is within a predetermined transmission range threshold.
In certain embodiments, the transmission range may be based on the strength of the signal.
Various other modifications and alterations in the structure and method of operation of this disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the embodiments of the present disclosure. Although the present disclosure has been described in connection with particular embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such particular embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.
Number | Name | Date | Kind |
---|---|---|---|
2755036 | Mikko | Jul 1956 | A |
3260656 | Ross, Jr. | Jul 1966 | A |
3304413 | Lehmann et al. | Feb 1967 | A |
3581062 | Aston | May 1971 | A |
3651318 | Czekajewski | Mar 1972 | A |
3653841 | Klein | Apr 1972 | A |
3698386 | Fried | Oct 1972 | A |
3719564 | Lilly, Jr. et al. | Mar 1973 | A |
3768014 | Smith et al. | Oct 1973 | A |
3776832 | Oswin et al. | Dec 1973 | A |
3837339 | Aisenberg et al. | Sep 1974 | A |
3919051 | Koch et al. | Nov 1975 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
3972320 | Kalman | Aug 1976 | A |
3979274 | Newman | Sep 1976 | A |
4003379 | Ellinwood, Jr. | Jan 1977 | A |
4008717 | Kowarski | Feb 1977 | A |
4016866 | Lawton | Apr 1977 | A |
4021718 | Konrad | May 1977 | A |
4031449 | Trombly | Jun 1977 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4059406 | Fleet | Nov 1977 | A |
4076596 | Connery et al. | Feb 1978 | A |
4098574 | Dappen | Jul 1978 | A |
4100048 | Pompei et al. | Jul 1978 | A |
4129128 | McFarlane | Dec 1978 | A |
4151845 | Clemens | May 1979 | A |
4154231 | Russell | May 1979 | A |
4168205 | Danniger et al. | Sep 1979 | A |
4172770 | Semersky et al. | Oct 1979 | A |
4178916 | McNamara | Dec 1979 | A |
4193026 | Finger et al. | Mar 1980 | A |
4206755 | Klein | Jun 1980 | A |
4224125 | Nakamura et al. | Sep 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4240889 | Yoda et al. | Dec 1980 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4247297 | Berti et al. | Jan 1981 | A |
4271449 | Grogan | Jun 1981 | A |
4318784 | Higgins et al. | Mar 1982 | A |
4327725 | Cortese et al. | May 1982 | A |
4331869 | Rollo | May 1982 | A |
4340458 | Lerner et al. | Jul 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4356074 | Johnson | Oct 1982 | A |
4365637 | Johnson | Dec 1982 | A |
4366033 | Richter et al. | Dec 1982 | A |
4375399 | Havas et al. | Mar 1983 | A |
4384586 | Christiansen | May 1983 | A |
4390621 | Bauer | Jun 1983 | A |
4392933 | Nakamura et al. | Jul 1983 | A |
4401122 | Clark, Jr. | Aug 1983 | A |
4404066 | Johnson | Sep 1983 | A |
4407959 | Tsuji et al. | Oct 1983 | A |
4417588 | Houghton et al. | Nov 1983 | A |
4418148 | Oberhardt | Nov 1983 | A |
4420564 | Tsuji et al. | Dec 1983 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4427004 | Miller et al. | Jan 1984 | A |
4427770 | Chen et al. | Jan 1984 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4436094 | Cerami | Mar 1984 | A |
4440175 | Wilkins | Apr 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4444892 | Malmros | Apr 1984 | A |
4445090 | Melocik et al. | Apr 1984 | A |
4450842 | Zick et al. | May 1984 | A |
4458686 | Clark, Jr. | Jul 1984 | A |
4461691 | Frank | Jul 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4467811 | Clark, Jr. | Aug 1984 | A |
4469110 | Slama | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4477314 | Richter et al. | Oct 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4483924 | Tsuji et al. | Nov 1984 | A |
4484987 | Gough | Nov 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4512348 | Uchigaki et al. | Apr 1985 | A |
4522690 | Venkatsetty | Jun 1985 | A |
4524114 | Samuels et al. | Jun 1985 | A |
4526661 | Steckhan et al. | Jul 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4552840 | Riffer | Nov 1985 | A |
4560534 | Kung et al. | Dec 1985 | A |
4569589 | Neufeld | Feb 1986 | A |
4571292 | Liu et al. | Feb 1986 | A |
4573994 | Fischell et al. | Mar 1986 | A |
4581336 | Malloy et al. | Apr 1986 | A |
4583035 | Sloan | Apr 1986 | A |
4595011 | Phillips | Jun 1986 | A |
4595479 | Kimura et al. | Jun 1986 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4619754 | Niki et al. | Oct 1986 | A |
4619793 | Lee | Oct 1986 | A |
4627445 | Garcia et al. | Dec 1986 | A |
4627908 | Miller | Dec 1986 | A |
4633878 | Bombardien | Jan 1987 | A |
4633881 | Moore et al. | Jan 1987 | A |
4637403 | Garcia et al. | Jan 1987 | A |
4648408 | Hutcheson et al. | Mar 1987 | A |
4650547 | Gough | Mar 1987 | A |
4653513 | Dombrowski | Mar 1987 | A |
4654197 | Lilja et al. | Mar 1987 | A |
4655880 | Liu | Apr 1987 | A |
4655885 | Hill et al. | Apr 1987 | A |
4658463 | Sugita et al. | Apr 1987 | A |
4671288 | Gough | Jun 1987 | A |
4674652 | Aten et al. | Jun 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4680268 | Clark, Jr. | Jul 1987 | A |
4682602 | Prohaska | Jul 1987 | A |
4684537 | Graetzel et al. | Aug 1987 | A |
4685463 | Williams | Aug 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4686624 | Blum et al. | Aug 1987 | A |
4703324 | White | Oct 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4717673 | Wrighton et al. | Jan 1988 | A |
4721601 | Wrighton et al. | Jan 1988 | A |
4721677 | Clark, Jr. | Jan 1988 | A |
4726378 | Kaplan | Feb 1988 | A |
4726716 | McGuire | Feb 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4750496 | Reinhardt | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4758323 | Davis et al. | Jul 1988 | A |
4759371 | Franetzki | Jul 1988 | A |
4759828 | Young et al. | Jul 1988 | A |
4764416 | Ueyama et al. | Aug 1988 | A |
4776944 | Janata et al. | Oct 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4781798 | Gough | Nov 1988 | A |
4784736 | Lonsdale et al. | Nov 1988 | A |
4795707 | Niiyama et al. | Jan 1989 | A |
4796634 | Huntsman et al. | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4805624 | Yao et al. | Feb 1989 | A |
4813424 | Wilkins | Mar 1989 | A |
4815469 | Cohen et al. | Mar 1989 | A |
4820399 | Senda et al. | Apr 1989 | A |
4822337 | Newhouse et al. | Apr 1989 | A |
4830959 | McNeil et al. | May 1989 | A |
4832797 | Vadgama et al. | May 1989 | A |
4835372 | Gombrich et al. | May 1989 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
4837049 | Byers et al. | Jun 1989 | A |
4840893 | Hill et al. | Jun 1989 | A |
RE32974 | Porat et al. | Jul 1989 | E |
4844076 | Lesho et al. | Jul 1989 | A |
4845035 | Fanta et al. | Jul 1989 | A |
4847785 | Stephens | Jul 1989 | A |
4848351 | Finch | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4856340 | Garrison | Aug 1989 | A |
4857713 | Brown | Aug 1989 | A |
4858617 | Sanders | Aug 1989 | A |
4870561 | Love et al. | Sep 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4871440 | Nagata et al. | Oct 1989 | A |
4874499 | Smith et al. | Oct 1989 | A |
4874500 | Madou et al. | Oct 1989 | A |
4890620 | Gough | Jan 1990 | A |
4890621 | Hakky | Jan 1990 | A |
4894137 | Takizawa et al. | Jan 1990 | A |
4897162 | Lewandowski et al. | Jan 1990 | A |
4897173 | Nankai et al. | Jan 1990 | A |
4899839 | Dessertine et al. | Feb 1990 | A |
4909908 | Ross et al. | Mar 1990 | A |
4911794 | Parce et al. | Mar 1990 | A |
4917800 | Lonsdale et al. | Apr 1990 | A |
4919141 | Zier et al. | Apr 1990 | A |
4919767 | Vadgama et al. | Apr 1990 | A |
4920969 | Suzuki | May 1990 | A |
4920977 | Haynes | May 1990 | A |
4923586 | Katayama et al. | May 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4927516 | Yamaguchi et al. | May 1990 | A |
4931795 | Gord | Jun 1990 | A |
4934369 | Maxwell | Jun 1990 | A |
4935105 | Churchouse | Jun 1990 | A |
4935345 | Guibeau et al. | Jun 1990 | A |
4936956 | Wrighton | Jun 1990 | A |
4938860 | Wogoman | Jul 1990 | A |
4942127 | Wada et al. | Jul 1990 | A |
4944299 | Silvian | Jul 1990 | A |
4945045 | Forrest et al. | Jul 1990 | A |
4950378 | Nagata | Aug 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4957115 | Selker | Sep 1990 | A |
4958632 | Duggan | Sep 1990 | A |
4968400 | Shimomura et al. | Nov 1990 | A |
4969468 | Byers et al. | Nov 1990 | A |
4970145 | Bennetto et al. | Nov 1990 | A |
4974929 | Curry | Dec 1990 | A |
4979509 | Hakky | Dec 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4990845 | Gord | Feb 1991 | A |
4991582 | Byers et al. | Feb 1991 | A |
4994068 | Hufnagie | Feb 1991 | A |
4994167 | Shults et al. | Feb 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5001054 | Wagner | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5007427 | Suzuki et al. | Apr 1991 | A |
5016172 | Dessertine | May 1991 | A |
5016201 | Bryan et al. | May 1991 | A |
5019974 | Beckers | May 1991 | A |
5034192 | Wrighton et al. | Jul 1991 | A |
5035860 | Kleingeld et al. | Jul 1991 | A |
5036860 | Leigh et al. | Aug 1991 | A |
5036861 | Sembrowich et al. | Aug 1991 | A |
5037527 | Hayashi et al. | Aug 1991 | A |
5049487 | Phillips et al. | Sep 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5058592 | Whisler | Oct 1991 | A |
5061941 | Lizzi et al. | Oct 1991 | A |
5063081 | Cozzette et al. | Nov 1991 | A |
5068536 | Rosenthal | Nov 1991 | A |
5070535 | Hochmair et al. | Dec 1991 | A |
5073500 | Saito et al. | Dec 1991 | A |
5077476 | Rosenthal | Dec 1991 | A |
5078854 | Burgess et al. | Jan 1992 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5082786 | Nakamoto | Jan 1992 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5089112 | Skotheim et al. | Feb 1992 | A |
5094951 | Rosenberg | Mar 1992 | A |
5095904 | Seligman et al. | Mar 1992 | A |
5096560 | Takai et al. | Mar 1992 | A |
5096836 | Macho et al. | Mar 1992 | A |
5097834 | Skrabal | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5108564 | Szuminsky et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5111539 | Hiruta et al. | May 1992 | A |
5111818 | Suzuji et al. | May 1992 | A |
5112455 | Cozzette et al. | May 1992 | A |
5114678 | Crawford et al. | May 1992 | A |
5120420 | Nankai et al. | Jun 1992 | A |
5120421 | Glass et al. | Jun 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5124661 | Zellin et al. | Jun 1992 | A |
5126034 | Carter et al. | Jun 1992 | A |
5126247 | Palmer et al. | Jun 1992 | A |
5130009 | Marsoner et al. | Jul 1992 | A |
5133856 | Yamaguchi et al. | Jul 1992 | A |
5134391 | Okada | Jul 1992 | A |
5135003 | Souma | Aug 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5139023 | Stanley et al. | Aug 1992 | A |
5140393 | Hijikihigawa et al. | Aug 1992 | A |
5141868 | Shanks et al. | Aug 1992 | A |
5161532 | Joseph | Nov 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5168046 | Hamamoto et al. | Dec 1992 | A |
5174291 | Schoonen et al. | Dec 1992 | A |
5176644 | Srisathapat et al. | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5182707 | Cooper et al. | Jan 1993 | A |
5184359 | Tsukamura et al. | Feb 1993 | A |
5185256 | Nankai et al. | Feb 1993 | A |
5190041 | Palti | Mar 1993 | A |
5192415 | Yoshioka et al. | Mar 1993 | A |
5192416 | Wang et al. | Mar 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5197322 | Indravudh | Mar 1993 | A |
5198367 | Aizawa et al. | Mar 1993 | A |
5200051 | Cozzette et al. | Apr 1993 | A |
5202261 | Musho et al. | Apr 1993 | A |
5205920 | Oyama et al. | Apr 1993 | A |
5206145 | Cattell | Apr 1993 | A |
5208154 | Weaver et al. | May 1993 | A |
5209229 | Gilli | May 1993 | A |
5215887 | Saito | Jun 1993 | A |
5216597 | Beckers | Jun 1993 | A |
5217442 | Davis | Jun 1993 | A |
5217595 | Smith et al. | Jun 1993 | A |
5227042 | Zawodzinski et al. | Jul 1993 | A |
5229282 | Yoshioka et al. | Jul 1993 | A |
5236143 | Dragon | Aug 1993 | A |
5237993 | Skrabal | Aug 1993 | A |
5245314 | Kah et al. | Sep 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5250439 | Musho et al. | Oct 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5257971 | Lord et al. | Nov 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5261401 | Baker et al. | Nov 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264103 | Yoshioka et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5264106 | McAleer et al. | Nov 1993 | A |
5265888 | Yamamoto et al. | Nov 1993 | A |
5266179 | Nankai et al. | Nov 1993 | A |
5269212 | Peters et al. | Dec 1993 | A |
5271815 | Wong | Dec 1993 | A |
5272060 | Hamamoto et al. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5278079 | Gubinski et al. | Jan 1994 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5282950 | Dietze et al. | Feb 1994 | A |
5284156 | Schramm et al. | Feb 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5286362 | Hoenes et al. | Feb 1994 | A |
5286364 | Yacynych et al. | Feb 1994 | A |
5288636 | Pollmann et al. | Feb 1994 | A |
5289497 | Jackobson et al. | Feb 1994 | A |
5291887 | Stanley et al. | Mar 1994 | A |
5293546 | Tadros et al. | Mar 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5304468 | Phillips et al. | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5309919 | Snell et al. | May 1994 | A |
5310885 | Maier et al. | May 1994 | A |
5320098 | Davidson | Jun 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5324303 | Strong et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5326449 | Cunningham | Jul 1994 | A |
5333615 | Craelius et al. | Aug 1994 | A |
5337258 | Dennis | Aug 1994 | A |
5337747 | Neftei | Aug 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342408 | deCoriolis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5352348 | Young et al. | Oct 1994 | A |
5356348 | Bellio et al. | Oct 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5358135 | Robbins et al. | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5364797 | Olson et al. | Nov 1994 | A |
5366609 | White et al. | Nov 1994 | A |
5368028 | Palti | Nov 1994 | A |
5370622 | Livingston et al. | Dec 1994 | A |
5371687 | Holmes, II et al. | Dec 1994 | A |
5371734 | Fischer | Dec 1994 | A |
5371787 | Hamilton | Dec 1994 | A |
5372133 | Hogen Esch | Dec 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5376251 | Kaneko et al. | Dec 1994 | A |
5377258 | Bro | Dec 1994 | A |
5378628 | Gratzel et al. | Jan 1995 | A |
5379238 | Stark | Jan 1995 | A |
5379764 | Barnes et al. | Jan 1995 | A |
5380422 | Negishi et al. | Jan 1995 | A |
5382346 | Uenoyama et al. | Jan 1995 | A |
5387327 | Khan | Feb 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5393903 | Gratzel et al. | Feb 1995 | A |
5395504 | Saurer et al. | Mar 1995 | A |
5399823 | McCusker | Mar 1995 | A |
5400782 | Beaubiah | Mar 1995 | A |
5400794 | Gorman | Mar 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5410474 | Fox | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5413690 | Kost et al. | May 1995 | A |
5422246 | Koopal et al. | Jun 1995 | A |
5425868 | Pedersen | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431691 | Snell et al. | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5433710 | Van Antwerp et al. | Jul 1995 | A |
5437973 | Vadgama et al. | Aug 1995 | A |
5437999 | Dieboid et al. | Aug 1995 | A |
5438271 | White et al. | Aug 1995 | A |
5438983 | Falcone | Aug 1995 | A |
5445611 | Eppstein et al. | Aug 1995 | A |
5445920 | Saito | Aug 1995 | A |
5456692 | Smith, Jr. et al. | Oct 1995 | A |
5456940 | Funderburk | Oct 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5460618 | Harreld | Oct 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5462525 | Srisathapat et al. | Oct 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5466218 | Srisathapat et al. | Nov 1995 | A |
5467778 | Catt et al. | Nov 1995 | A |
5469846 | Khan | Nov 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5476460 | Montalvo | Dec 1995 | A |
5477855 | Schindler et al. | Dec 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5484404 | Schulman et al. | Jan 1996 | A |
5487751 | Radons et al. | Jan 1996 | A |
5491474 | Suni et al. | Feb 1996 | A |
5494562 | Maley et al. | Feb 1996 | A |
5496453 | Uenoyama et al. | Mar 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5499243 | Hall | Mar 1996 | A |
5501956 | Wada et al. | Mar 1996 | A |
5505709 | Funderburk | Apr 1996 | A |
5505713 | Van Antwerp et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5508171 | Walling et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514103 | Srisathapat et al. | May 1996 | A |
5514253 | Davis et al. | May 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5518006 | Mawhirt et al. | May 1996 | A |
5520787 | Hanagan et al. | May 1996 | A |
5522865 | Schulman et al. | Jun 1996 | A |
5525511 | D'Costa | Jun 1996 | A |
5526120 | Jina et al. | Jun 1996 | A |
5527307 | Srisathapat et al. | Jun 1996 | A |
5529676 | Maley et al. | Jun 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5532686 | Urbas et al. | Jul 1996 | A |
5538511 | Van Antwerp et al. | Jul 1996 | A |
5544196 | Tiedmann, Jr. et al. | Aug 1996 | A |
5545152 | Funderburk et al. | Aug 1996 | A |
5545191 | Mann et al. | Aug 1996 | A |
5549113 | Halleck et al. | Aug 1996 | A |
5549115 | Morgan et al. | Aug 1996 | A |
5552027 | Birkle et al. | Sep 1996 | A |
5554166 | Lange et al. | Sep 1996 | A |
5556524 | Albers | Sep 1996 | A |
5560357 | Faupei et al. | Oct 1996 | A |
5562713 | Silvian | Oct 1996 | A |
5565085 | Ikeda et al. | Oct 1996 | A |
5567302 | Song et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569212 | Brown | Oct 1996 | A |
5573647 | Maley et al. | Nov 1996 | A |
5575895 | Ikeda et al. | Nov 1996 | A |
5580527 | Bell et al. | Dec 1996 | A |
5580794 | Allen | Dec 1996 | A |
5581206 | Chevallier et al. | Dec 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5582697 | Ikeda et al. | Dec 1996 | A |
5582698 | Flaherty et al. | Dec 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5589326 | Deng et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5594906 | Holmes, II et al. | Jan 1997 | A |
5596150 | Arndy et al. | Jan 1997 | A |
5596994 | Bro | Jan 1997 | A |
5600301 | Robinson, III | Feb 1997 | A |
5601435 | Quy | Feb 1997 | A |
5601694 | Maley et al. | Feb 1997 | A |
5605152 | Slate et al. | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5611900 | Worden et al. | Mar 1997 | A |
5615135 | Waclawsky et al. | Mar 1997 | A |
5615671 | Schoonen et al. | Apr 1997 | A |
5616222 | Maley et al. | Apr 1997 | A |
5617851 | Lipkovker | Apr 1997 | A |
5623925 | Swenson et al. | Apr 1997 | A |
5623933 | Amano et al. | Apr 1997 | A |
5628309 | Brown | May 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628324 | Sarbach | May 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5629981 | Nerlikar | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5640764 | Strojnik | Jun 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5647853 | Feldmann et al. | Jul 1997 | A |
5650062 | Ikeda et al. | Jul 1997 | A |
5651767 | Schulman et al. | Jul 1997 | A |
5651869 | Yoshioka et al. | Jul 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5659454 | Vermesse | Aug 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5667983 | Abel et al. | Sep 1997 | A |
5670031 | Hintsche et al. | Sep 1997 | A |
5678571 | Brown | Oct 1997 | A |
5679690 | Andre et al. | Oct 1997 | A |
5680858 | Hansen et al. | Oct 1997 | A |
5682233 | Brinda | Oct 1997 | A |
5686717 | Knowles et al. | Nov 1997 | A |
5695623 | Michel et al. | Dec 1997 | A |
5695949 | Galen et al. | Dec 1997 | A |
5701894 | Cherry et al. | Dec 1997 | A |
5704922 | Brown | Jan 1998 | A |
5707502 | McCaffrey et al. | Jan 1998 | A |
5708247 | McAleer et al. | Jan 1998 | A |
5710630 | Essenpreis et al. | Jan 1998 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711297 | Iliff et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5711862 | Sakoda et al. | Jan 1998 | A |
5711868 | Maley et al. | Jan 1998 | A |
5718234 | Warden et al. | Feb 1998 | A |
5720733 | Brown | Feb 1998 | A |
5720862 | Hamamoto et al. | Feb 1998 | A |
5721783 | Anderson | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5724030 | Urbas et al. | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5727548 | Hill et al. | Mar 1998 | A |
5729225 | Ledzius | Mar 1998 | A |
5730124 | Yamauchi | Mar 1998 | A |
5730654 | Brown | Mar 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5735273 | Kurnik et al. | Apr 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5741211 | Renirie et al. | Apr 1998 | A |
5741688 | Oxenboll et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5758290 | Nealon et al. | May 1998 | A |
5769873 | Zadeh | Jun 1998 | A |
5770028 | Maley et al. | Jun 1998 | A |
5771001 | Cobb | Jun 1998 | A |
5771890 | Tamada | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5777060 | Van Antwerp | Jul 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5781024 | Blomberg et al. | Jul 1998 | A |
5782814 | Brown et al. | Jul 1998 | A |
5785681 | Indravudh | Jul 1998 | A |
5786439 | Van Antwerp et al. | Jul 1998 | A |
5786584 | Button et al. | Jul 1998 | A |
5788678 | Van Antwerp | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5792117 | Brown | Aug 1998 | A |
5793292 | Ivey | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5804047 | Karube et al. | Sep 1998 | A |
5804048 | Wong et al. | Sep 1998 | A |
5807315 | Van Antwerp et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5820551 | Hill et al. | Oct 1998 | A |
5820570 | Erickson et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5825488 | Kohl et al. | Oct 1998 | A |
5827179 | Lichter et al. | Oct 1998 | A |
5827183 | Kurnik et al. | Oct 1998 | A |
5827184 | Netherly et al. | Oct 1998 | A |
5828943 | Brown | Oct 1998 | A |
5830064 | Bradish et al. | Nov 1998 | A |
5830132 | Robinson | Nov 1998 | A |
5830341 | Gilmartin | Nov 1998 | A |
5832448 | Brown | Nov 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5834224 | Ruger et al. | Nov 1998 | A |
5837454 | Cozzette et al. | Nov 1998 | A |
5837546 | Allen et al. | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5842983 | Abel et al. | Dec 1998 | A |
5843140 | Strojnik | Dec 1998 | A |
5846702 | Deng et al. | Dec 1998 | A |
5846744 | Athey et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5854078 | Asher et al. | Dec 1998 | A |
5854189 | Kruse et al. | Dec 1998 | A |
5856758 | Joffe et al. | Jan 1999 | A |
5857967 | Frid et al. | Jan 1999 | A |
5857983 | Douglas et al. | Jan 1999 | A |
5860917 | Comanor et al. | Jan 1999 | A |
5872713 | Douglas et al. | Feb 1999 | A |
5876484 | Raskin et al. | Mar 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5879311 | Duchon et al. | Mar 1999 | A |
5880829 | Kauhaniemi et al. | Mar 1999 | A |
5882494 | Van Antwerp | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5887133 | Brown et al. | Mar 1999 | A |
5891049 | Cyrus et al. | Apr 1999 | A |
5897493 | Brown | Apr 1999 | A |
5898025 | Burg et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5917346 | Gord | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5931791 | Saltzstein et al. | Aug 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Petterson | Aug 1999 | A |
5935224 | Svancarek et al. | Aug 1999 | A |
5939609 | Knapp et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5945345 | Blatt et al. | Aug 1999 | A |
5947921 | Johnson et al. | Sep 1999 | A |
5948512 | Kubota et al. | Sep 1999 | A |
5950632 | Reber et al. | Sep 1999 | A |
5951300 | Brown | Sep 1999 | A |
5951485 | Cyrus et al. | Sep 1999 | A |
5951492 | Douglas et al. | Sep 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5951836 | McAleer et al. | Sep 1999 | A |
5954643 | Van Antwerp | Sep 1999 | A |
5954685 | Tierny | Sep 1999 | A |
5954700 | Kovelman | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5957958 | Schulman et al. | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5968839 | Blatt et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5974124 | Schlueter, Jr. et al. | Oct 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981294 | Blatt et al. | Nov 1999 | A |
5989409 | Kurnik et al. | Nov 1999 | A |
5994476 | Shin et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999849 | Gord et al. | Dec 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6002954 | Van Antwerp et al. | Dec 1999 | A |
6002961 | Mitragotri et al. | Dec 1999 | A |
6004441 | Fujiwara et al. | Dec 1999 | A |
6011984 | Van Antwerp et al. | Jan 2000 | A |
6014577 | Henning et al. | Jan 2000 | A |
6018678 | Mitragotri et al. | Jan 2000 | A |
6023629 | Tamada | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6027459 | Shain et al. | Feb 2000 | A |
6027692 | Galen et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6032199 | Lim et al. | Feb 2000 | A |
6033866 | Guo et al. | Mar 2000 | A |
6035237 | Schulman et al. | Mar 2000 | A |
6040194 | Chick et al. | Mar 2000 | A |
6041253 | Kost et al. | Mar 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6055316 | Perlman et al. | Apr 2000 | A |
6056718 | Funderburk et al. | May 2000 | A |
6063459 | Velte | May 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6066448 | Wohlstadter et al. | May 2000 | A |
6067474 | Schulman et al. | May 2000 | A |
6068615 | Brown et al. | May 2000 | A |
6071249 | Cunningham et al. | Jun 2000 | A |
6071251 | Cunningham et al. | Jun 2000 | A |
6071294 | Simons et al. | Jun 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6073031 | Helstab et al. | Jun 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6091987 | Thompson | Jul 2000 | A |
6093156 | Cunningham et al. | Jul 2000 | A |
6093167 | Houben et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6097480 | Kaplan | Aug 2000 | A |
6097831 | Wieck et al. | Aug 2000 | A |
6099484 | Douglas et al. | Aug 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6106780 | Douglas et al. | Aug 2000 | A |
6110148 | Brown et al. | Aug 2000 | A |
6110152 | Kovelman | Aug 2000 | A |
6113578 | Brown | Sep 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6125978 | Ando et al. | Oct 2000 | A |
6130623 | MacLellan et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6134504 | Douglas et al. | Oct 2000 | A |
6139718 | Kurnik et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144837 | Quy | Nov 2000 | A |
6144869 | Berner et al. | Nov 2000 | A |
6144871 | Saito et al. | Nov 2000 | A |
6144922 | Douglas et al. | Nov 2000 | A |
6148094 | Kinsella | Nov 2000 | A |
6150128 | Uretsky | Nov 2000 | A |
6151586 | Brown | Nov 2000 | A |
6153062 | Saito et al. | Nov 2000 | A |
6153069 | Pottgen et al. | Nov 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6161095 | Brown | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167362 | Brown et al. | Dec 2000 | A |
6168563 | Brown | Jan 2001 | B1 |
6170318 | Lewis | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6180416 | Kurnik et al. | Jan 2001 | B1 |
6186145 | Brown | Feb 2001 | B1 |
6192891 | Gravel et al. | Feb 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6196970 | Brown | Mar 2001 | B1 |
6198957 | Green | Mar 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6201979 | Kurnik et al. | Mar 2001 | B1 |
6201980 | Darrow et al. | Mar 2001 | B1 |
6203495 | Bardy et al. | Mar 2001 | B1 |
6206841 | Cunningham et al. | Mar 2001 | B1 |
6207400 | Kwon | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6210272 | Brown | Apr 2001 | B1 |
6210976 | Sabbadini | Apr 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6218809 | Downs et al. | Apr 2001 | B1 |
6219565 | Cupp et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6224745 | Baltruschat | May 2001 | B1 |
6232130 | Wolf | May 2001 | B1 |
6232370 | Kubota et al. | May 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6233539 | Brown | May 2001 | B1 |
6239925 | Ardrey et al. | May 2001 | B1 |
6241862 | McAleer et al. | Jun 2001 | B1 |
6246330 | Nielsen | Jun 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248065 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6251260 | Heller et al. | Jun 2001 | B1 |
6252032 | Van Antwerp et al. | Jun 2001 | B1 |
6253804 | Safabash | Jul 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6256643 | Cork et al. | Jul 2001 | B1 |
6259587 | Sheldon et al. | Jul 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6260022 | Brown | Jul 2001 | B1 |
6266645 | Simpson | Jul 2001 | B1 |
6267724 | Taylor | Jul 2001 | B1 |
6268161 | Han et al. | Jul 2001 | B1 |
6270445 | Dean, Jr. et al. | Aug 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6280416 | Van Antwerp et al. | Aug 2001 | B1 |
6280587 | Matsumoto | Aug 2001 | B1 |
6281006 | Heller et al. | Aug 2001 | B1 |
6283943 | Dy et al. | Sep 2001 | B1 |
6284126 | Kurnik et al. | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6291200 | LeJeune et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6294281 | Heller | Sep 2001 | B1 |
6294997 | Paratore et al. | Sep 2001 | B1 |
6295463 | Stenzler | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6298254 | Tamada | Oct 2001 | B2 |
6299347 | Pompei | Oct 2001 | B1 |
6299578 | Kurnik et al. | Oct 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6301499 | Carlson et al. | Oct 2001 | B1 |
6304766 | Colvin, Jr. et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6307867 | Roobol et al. | Oct 2001 | B1 |
6309351 | Kurnik et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6313749 | Horne et al. | Nov 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6319540 | Van Antwerp et al. | Nov 2001 | B1 |
6326160 | Dunn et al. | Dec 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6329929 | Weijand et al. | Dec 2001 | B1 |
6330426 | Brown et al. | Dec 2001 | B2 |
6330464 | Colvin, Jr. et al. | Dec 2001 | B1 |
6331518 | Hemm et al. | Dec 2001 | B2 |
6334778 | Brown | Jan 2002 | B1 |
6336900 | Alleckson et al. | Jan 2002 | B1 |
6338790 | Feldman et al. | Jan 2002 | B1 |
6340421 | Vachon et al. | Jan 2002 | B1 |
6341232 | Conn et al. | Jan 2002 | B1 |
6356776 | Berner et al. | Mar 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359594 | Junod | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366793 | Bell et al. | Apr 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368141 | Van Antwerp et al. | Apr 2002 | B1 |
6368274 | Van Antwerp et al. | Apr 2002 | B1 |
6370410 | Kurnik et al. | Apr 2002 | B2 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6383767 | Polak | May 2002 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6387048 | Schulman et al. | May 2002 | B1 |
6391643 | Chen et al. | May 2002 | B1 |
6393318 | Conn et al. | May 2002 | B1 |
6398562 | Butler et al. | Jun 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6405066 | Essenpreis et al. | Jun 2002 | B1 |
6413393 | Van Antwerp et al. | Jul 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6434409 | Pfeiffer et al. | Aug 2002 | B1 |
6438414 | Conn et al. | Aug 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6442637 | Hawkins et al. | Aug 2002 | B1 |
6442672 | Ganapathy | Aug 2002 | B1 |
6443942 | Van Antwerp et al. | Sep 2002 | B2 |
6449255 | Waclawsky et al. | Sep 2002 | B1 |
6454710 | Ballerstadt et al. | Sep 2002 | B1 |
6462162 | Van Antwerp et al. | Oct 2002 | B2 |
6464848 | Matsumoto | Oct 2002 | B1 |
6466810 | Ward et al. | Oct 2002 | B1 |
6468222 | Mault et al. | Oct 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6475750 | Han et al. | Nov 2002 | B1 |
6477395 | Schulman et al. | Nov 2002 | B2 |
6478736 | Mault | Nov 2002 | B1 |
6480730 | Darrow et al. | Nov 2002 | B2 |
6480744 | Ferek-Petric | Nov 2002 | B2 |
6482156 | Iliff | Nov 2002 | B2 |
6482158 | Mault | Nov 2002 | B2 |
6482604 | Kwon | Nov 2002 | B2 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6485138 | Kubota et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6494830 | Wessel | Dec 2002 | B1 |
6496728 | Li et al. | Dec 2002 | B2 |
6496729 | Thompson | Dec 2002 | B2 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6505121 | Russel | Jan 2003 | B1 |
6512939 | Colvin et al. | Jan 2003 | B1 |
6513532 | Mault et al. | Feb 2003 | B2 |
6514718 | Heller et al. | Feb 2003 | B2 |
6515593 | Stark et al. | Feb 2003 | B1 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6529755 | Kurnik et al. | Mar 2003 | B2 |
6529772 | Carlson et al. | Mar 2003 | B2 |
6530915 | Eppstein et al. | Mar 2003 | B1 |
6534322 | Sabbadini | Mar 2003 | B1 |
6534323 | Sabbadini | Mar 2003 | B1 |
6535753 | Raskas | Mar 2003 | B1 |
6537243 | Henning et al. | Mar 2003 | B1 |
6540675 | Aceti et al. | Apr 2003 | B2 |
6541266 | Modzelweskei et al. | Apr 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6546269 | Kurnik | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6551276 | Mann et al. | Apr 2003 | B1 |
6551494 | Heller et al. | Apr 2003 | B1 |
6553244 | Lesho et al. | Apr 2003 | B2 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6564807 | Schulman et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6571200 | Mault | May 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6574510 | Von Arx et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6576117 | Iketaki et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579231 | Phipps | Jun 2003 | B1 |
6579498 | Eglise | Jun 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6580364 | Munch et al. | Jun 2003 | B1 |
6584335 | Haar et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6587705 | Kim et al. | Jul 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6591126 | Roeper et al. | Jul 2003 | B2 |
6594514 | Berner et al. | Jul 2003 | B2 |
6595919 | Berner et al. | Jul 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6602678 | Kwon et al. | Aug 2003 | B2 |
6602909 | Jarowski | Aug 2003 | B1 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6608562 | Kimura et al. | Aug 2003 | B1 |
6610012 | Mault | Aug 2003 | B2 |
6611206 | Eshelman et al. | Aug 2003 | B2 |
6612306 | Mault | Sep 2003 | B1 |
6615078 | Burson et al. | Sep 2003 | B1 |
6616613 | Goodman | Sep 2003 | B1 |
6618603 | Varalli et al. | Sep 2003 | B2 |
6620106 | Mault | Sep 2003 | B2 |
6627058 | Chan | Sep 2003 | B1 |
6627154 | Goodman et al. | Sep 2003 | B1 |
6629934 | Mault et al. | Oct 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6642015 | Vachon et al. | Nov 2003 | B2 |
6645142 | Braig et al. | Nov 2003 | B2 |
6645368 | Beaty et al. | Nov 2003 | B1 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulson et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6673625 | Satcher, Jr. et al. | Jan 2004 | B2 |
6682938 | Satcher, Jr. et al. | Jan 2004 | B1 |
6683040 | Bragulla et al. | Jan 2004 | B2 |
6687522 | Tamada | Feb 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6690276 | Marino | Feb 2004 | B1 |
6692446 | Hoek | Feb 2004 | B2 |
6693069 | Korber et al. | Feb 2004 | B2 |
6694158 | Polak | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6698269 | Baber et al. | Mar 2004 | B2 |
6701270 | Miller et al. | Mar 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6704587 | Kumar et al. | Mar 2004 | B1 |
6708057 | Marganroth | Mar 2004 | B2 |
6711423 | Colvin, Jr. | Mar 2004 | B2 |
6723046 | Lichtenstein et al. | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6731976 | Penn et al. | May 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6734162 | Van Antwerp et al. | May 2004 | B2 |
6735183 | O'Toole et al. | May 2004 | B2 |
6735479 | Fabian et al. | May 2004 | B2 |
6736777 | Kim et al. | May 2004 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6737401 | Kim et al. | May 2004 | B2 |
6738654 | Sohrab | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741163 | Roberts | May 2004 | B1 |
6741876 | Scecina et al. | May 2004 | B1 |
6741877 | Shults et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6748445 | Darcey et al. | Jun 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6750311 | Van Antwerp et al. | Jun 2004 | B1 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6766183 | Walsh et al. | Jul 2004 | B2 |
6766201 | Von Arx et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6770729 | Van Antwerp et al. | Aug 2004 | B2 |
6771995 | Kurnik et al. | Aug 2004 | B2 |
6773563 | Matsumoto | Aug 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6780297 | Matsumoto et al. | Aug 2004 | B2 |
6780871 | Glick et al. | Aug 2004 | B2 |
6784274 | Van Antwerp et al. | Aug 2004 | B2 |
6790178 | Mault et al. | Sep 2004 | B1 |
6794195 | Colvin, Jr. | Sep 2004 | B2 |
6800451 | Daniloff et al. | Oct 2004 | B2 |
6804544 | Van Antwerp et al. | Oct 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6809507 | Morgan et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6810309 | Sadler et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6811659 | Vachon | Nov 2004 | B2 |
6812031 | Carlsson | Nov 2004 | B1 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6816742 | Kim et al. | Nov 2004 | B2 |
6835553 | Han et al. | Dec 2004 | B2 |
RE38681 | Kurnik et al. | Jan 2005 | E |
6840912 | Kloepfer et al. | Jan 2005 | B2 |
6844023 | Schulman et al. | Jan 2005 | B2 |
6849237 | Housefield et al. | Feb 2005 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6852500 | Hoss et al. | Feb 2005 | B1 |
6852694 | Van Antwerp et al. | Feb 2005 | B2 |
6853854 | Proniewicz et al. | Feb 2005 | B1 |
6856928 | Harmon | Feb 2005 | B2 |
6858403 | Han et al. | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6862466 | Ackerman | Mar 2005 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6882940 | Potts et al. | Apr 2005 | B2 |
6885883 | Parris et al. | Apr 2005 | B2 |
6889331 | Soerensen et al. | May 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6899683 | Mault et al. | May 2005 | B2 |
6899684 | Mault et al. | May 2005 | B2 |
6902207 | Lickliter | Jun 2005 | B2 |
6902905 | Burson et al. | Jun 2005 | B2 |
6904301 | Raskas | Jun 2005 | B2 |
6907127 | Kravitz et al. | Jun 2005 | B1 |
6915147 | Lebel et al. | Jul 2005 | B2 |
6918874 | Hatch et al. | Jul 2005 | B1 |
6922578 | Eppstein et al. | Jul 2005 | B2 |
RE38775 | Kurnik et al. | Aug 2005 | E |
6923764 | Aceti et al. | Aug 2005 | B2 |
6923936 | Swanson et al. | Aug 2005 | B2 |
6926670 | Rich et al. | Aug 2005 | B2 |
6927246 | Noronha et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6937222 | Numao | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6940590 | Colvin, Jr. et al. | Sep 2005 | B2 |
6941163 | Ford et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6952603 | Gerber et al. | Oct 2005 | B2 |
6954673 | Von Arx et al. | Oct 2005 | B2 |
6955650 | Mault et al. | Oct 2005 | B2 |
6957102 | Silver et al. | Oct 2005 | B2 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6968375 | Brown | Nov 2005 | B1 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6978182 | Mazar et al. | Dec 2005 | B2 |
6979326 | Mann et al. | Dec 2005 | B2 |
6983176 | Gardner et al. | Jan 2006 | B2 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6987474 | Freeman et al. | Jan 2006 | B2 |
6990317 | Arnold | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6991096 | Gottlieb et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999810 | Berner et al. | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7004901 | Fish | Feb 2006 | B2 |
7005857 | Stiene et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7018366 | Easter | Mar 2006 | B2 |
7018568 | Tierney | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7022072 | Fox et al. | Apr 2006 | B2 |
7024236 | Ford et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7039810 | Nichols | May 2006 | B1 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7043305 | KenKnight et al. | May 2006 | B2 |
7049277 | Bagulla et al. | May 2006 | B2 |
7052251 | Nason et al. | May 2006 | B2 |
7052472 | Miller et al. | May 2006 | B1 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7058453 | Nelson et al. | Jun 2006 | B2 |
7060030 | Von Arx et al. | Jun 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7082334 | Boute et al. | Jul 2006 | B2 |
7089780 | Sunshine et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7114502 | Schulman et al. | Oct 2006 | B2 |
7124027 | Ernst et al. | Oct 2006 | B1 |
7125382 | Zhou et al. | Oct 2006 | B2 |
7133710 | Acosta et al. | Nov 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7150975 | Tamada et al. | Dec 2006 | B2 |
7154398 | Chen et al. | Dec 2006 | B2 |
7155112 | Uno et al. | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7163511 | Conn et al. | Jan 2007 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7174199 | Berner et al. | Feb 2007 | B2 |
7183068 | Burson et al. | Feb 2007 | B2 |
7183102 | Monfre et al. | Feb 2007 | B2 |
7189341 | Li et al. | Mar 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7203549 | Schommer et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7221977 | Weaver et al. | May 2007 | B1 |
7222054 | Geva | May 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228162 | Ward et al. | Jun 2007 | B2 |
7228163 | Ackerman | Jun 2007 | B2 |
7228182 | Healy et al. | Jun 2007 | B2 |
7233817 | Yen | Jun 2007 | B2 |
7237712 | DeRocco et al. | Jul 2007 | B2 |
7241266 | Zhou et al. | Jul 2007 | B2 |
7258665 | Kohls et al. | Aug 2007 | B2 |
7261691 | Asomani | Aug 2007 | B1 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7291107 | Hellwig et al. | Nov 2007 | B2 |
7295867 | Berner et al. | Nov 2007 | B2 |
7297112 | Zhou et al. | Nov 2007 | B2 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7324850 | Persen et al. | Jan 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7384397 | Zhang et al. | Jun 2008 | B2 |
7387010 | Sunshine et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7408132 | Wambsganss et al. | Aug 2008 | B2 |
7419573 | Gundel | Sep 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7492254 | Bandy et al. | Feb 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7506046 | Rhodes | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565197 | Haubrich et al. | Jul 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7574266 | Dudding et al. | Aug 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7604178 | Stewart | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7659823 | Killian et al. | Feb 2010 | B1 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7701052 | Borland et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7771352 | Shults et al. | Aug 2010 | B2 |
7774145 | Brauker et al. | Aug 2010 | B2 |
7775444 | DeRocco et al. | Aug 2010 | B2 |
7778680 | Goode, Jr. et al. | Aug 2010 | B2 |
7779332 | Karr et al. | Aug 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7783333 | Brister et al. | Aug 2010 | B2 |
7791467 | Mazar et al. | Sep 2010 | B2 |
7792562 | Shults et al. | Sep 2010 | B2 |
7804197 | Iisaka et al. | Sep 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7826382 | Sicurello et al. | Nov 2010 | B2 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7831310 | Lebel et al. | Nov 2010 | B2 |
7833151 | Khait et al. | Nov 2010 | B2 |
7860574 | Von Arx et al. | Dec 2010 | B2 |
7882611 | Shah et al. | Feb 2011 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7905833 | Brister et al. | Mar 2011 | B2 |
7912674 | Killoren Clark et al. | Mar 2011 | B2 |
7914450 | Goode, Jr. et al. | Mar 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7948369 | Fennell et al. | May 2011 | B2 |
7955258 | Goscha et al. | Jun 2011 | B2 |
7970448 | Shults et al. | Jun 2011 | B2 |
7974672 | Shults et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
7999674 | Kamen | Aug 2011 | B2 |
8000918 | Fjield et al. | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8072310 | Everhart | Dec 2011 | B1 |
8090445 | Ginggen | Jan 2012 | B2 |
8093991 | Stevenson et al. | Jan 2012 | B2 |
8094009 | Allen et al. | Jan 2012 | B2 |
8098159 | Batra et al. | Jan 2012 | B2 |
8098160 | Howarth et al. | Jan 2012 | B2 |
8098161 | Lavedas | Jan 2012 | B2 |
8098201 | Choi et al. | Jan 2012 | B2 |
8098208 | Ficker et al. | Jan 2012 | B2 |
8102021 | Degani | Jan 2012 | B2 |
8102154 | Bishop et al. | Jan 2012 | B2 |
8102263 | Yeo et al. | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103241 | Young et al. | Jan 2012 | B2 |
8103325 | Swedlow et al. | Jan 2012 | B2 |
8111042 | Bennett | Feb 2012 | B2 |
8115488 | McDowell | Feb 2012 | B2 |
8116681 | Baarman | Feb 2012 | B2 |
8116683 | Baarman | Feb 2012 | B2 |
8117481 | Anselmi et al. | Feb 2012 | B2 |
8120493 | Burr | Feb 2012 | B2 |
8123686 | Fennell et al. | Feb 2012 | B2 |
8124452 | Sheats | Feb 2012 | B2 |
8130093 | Mazar et al. | Mar 2012 | B2 |
8131351 | Kalgren et al. | Mar 2012 | B2 |
8131365 | Zhang et al. | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8132037 | Fehr et al. | Mar 2012 | B2 |
8135352 | Langsweirdt et al. | Mar 2012 | B2 |
8136735 | Arai et al. | Mar 2012 | B2 |
8138925 | Downie et al. | Mar 2012 | B2 |
8140160 | Pless et al. | Mar 2012 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8140299 | Siess | Mar 2012 | B2 |
8149103 | Fennell et al. | Apr 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150516 | Levine et al. | Apr 2012 | B2 |
8179266 | Hermle | May 2012 | B2 |
8233456 | Kopikare et al. | Jul 2012 | B1 |
8260393 | Kamath et al. | Sep 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8417312 | Kamath et al. | Apr 2013 | B2 |
8478389 | Brockway et al. | Jul 2013 | B1 |
8560037 | Goode, Jr. et al. | Oct 2013 | B2 |
8622903 | Jin et al. | Jan 2014 | B2 |
8638411 | Park et al. | Jan 2014 | B2 |
8914090 | Jain et al. | Dec 2014 | B2 |
8937540 | Fennell | Jan 2015 | B2 |
20010011224 | Brown | Aug 2001 | A1 |
20010011795 | Ohtsuka et al. | Aug 2001 | A1 |
20010016310 | Brown et al. | Aug 2001 | A1 |
20010016682 | Berner et al. | Aug 2001 | A1 |
20010016683 | Darrow et al. | Aug 2001 | A1 |
20010020124 | Tamada | Sep 2001 | A1 |
20010029340 | Mault et al. | Oct 2001 | A1 |
20010032278 | Brown et al. | Oct 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037069 | Carlson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010039504 | Linberg et al. | Nov 2001 | A1 |
20010041830 | Varalli et al. | Nov 2001 | A1 |
20010041831 | Starkweather et al. | Nov 2001 | A1 |
20010044581 | Mault | Nov 2001 | A1 |
20010044588 | Mault | Nov 2001 | A1 |
20010047125 | Quy | Nov 2001 | A1 |
20010047127 | New et al. | Nov 2001 | A1 |
20010049096 | Brown | Dec 2001 | A1 |
20010049470 | Mault et al. | Dec 2001 | A1 |
20020002326 | Causey, III et al. | Jan 2002 | A1 |
20020002328 | Tamada | Jan 2002 | A1 |
20020004640 | Conn et al. | Jan 2002 | A1 |
20020010414 | Coston et al. | Jan 2002 | A1 |
20020013522 | Lay et al. | Jan 2002 | A1 |
20020013538 | Teller | Jan 2002 | A1 |
20020016530 | Brown | Feb 2002 | A1 |
20020016719 | Nemeth et al. | Feb 2002 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020019584 | Schulze et al. | Feb 2002 | A1 |
20020019586 | Teller et al. | Feb 2002 | A1 |
20020019748 | Brown | Feb 2002 | A1 |
20020023852 | McIvor et al. | Feb 2002 | A1 |
20020026111 | Ackerman | Feb 2002 | A1 |
20020026937 | Mault | Mar 2002 | A1 |
20020027164 | Mault et al. | Mar 2002 | A1 |
20020028995 | Mault | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020045808 | Ford et al. | Apr 2002 | A1 |
20020046300 | Hanko et al. | Apr 2002 | A1 |
20020047867 | Mault et al. | Apr 2002 | A1 |
20020049482 | Fabian et al. | Apr 2002 | A1 |
20020053637 | Conn et al. | May 2002 | A1 |
20020062069 | Mault | May 2002 | A1 |
20020063060 | Gascoyne et al. | May 2002 | A1 |
20020065454 | Lebel et al. | May 2002 | A1 |
20020068858 | Braig et al. | Jun 2002 | A1 |
20020072784 | Sheppard et al. | Jun 2002 | A1 |
20020072858 | Cheng | Jun 2002 | A1 |
20020074162 | Su et al. | Jun 2002 | A1 |
20020077765 | Mault | Jun 2002 | A1 |
20020077766 | Mault | Jun 2002 | A1 |
20020081559 | Brown et al. | Jun 2002 | A1 |
20020083461 | Hutcheson et al. | Jun 2002 | A1 |
20020084196 | Liamos et al. | Jul 2002 | A1 |
20020087056 | Aceti et al. | Jul 2002 | A1 |
20020091312 | Berner et al. | Jul 2002 | A1 |
20020091796 | Higginson et al. | Jul 2002 | A1 |
20020093969 | Lin et al. | Jul 2002 | A1 |
20020103425 | Mault | Aug 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020107433 | Mault | Aug 2002 | A1 |
20020107476 | Mann et al. | Aug 2002 | A1 |
20020109600 | Mault et al. | Aug 2002 | A1 |
20020109621 | Khair et al. | Aug 2002 | A1 |
20020117639 | Paolini et al. | Aug 2002 | A1 |
20020118528 | Su et al. | Aug 2002 | A1 |
20020119711 | Van Antwerp et al. | Aug 2002 | A1 |
20020124017 | Mault | Sep 2002 | A1 |
20020126036 | Flaherty et al. | Sep 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020130042 | Moerman et al. | Sep 2002 | A1 |
20020133378 | Mault et al. | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020161286 | Gerber et al. | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169635 | Shillingburg | Nov 2002 | A1 |
20020177764 | Sohrab | Nov 2002 | A1 |
20020185130 | Wright et al. | Dec 2002 | A1 |
20020193679 | Malave et al. | Dec 2002 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030023182 | Mault et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030028120 | Mault et al. | Feb 2003 | A1 |
20030032077 | Itoh et al. | Feb 2003 | A1 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030032868 | Graskov et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030040683 | Rule et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030050537 | Wessel | Mar 2003 | A1 |
20030050546 | Desai et al. | Mar 2003 | A1 |
20030060689 | Kohls et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065257 | Mault et al. | Apr 2003 | A1 |
20030065273 | Mault et al. | Apr 2003 | A1 |
20030065274 | Mault et al. | Apr 2003 | A1 |
20030065275 | Mault et al. | Apr 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030076792 | Theimer | Apr 2003 | A1 |
20030081370 | Haskell et al. | May 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030100821 | Heller et al. | May 2003 | A1 |
20030105407 | Pearce et al. | Jun 2003 | A1 |
20030108976 | Braig et al. | Jun 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030119457 | Standke | Jun 2003 | A1 |
20030122021 | McConnell et al. | Jul 2003 | A1 |
20030125612 | Fox et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030135100 | Kim et al. | Jul 2003 | A1 |
20030135333 | Aceti et al. | Jul 2003 | A1 |
20030144579 | Buss | Jul 2003 | A1 |
20030146841 | Koenig | Aug 2003 | A1 |
20030153820 | Berner et al. | Aug 2003 | A1 |
20030153821 | Berner et al. | Aug 2003 | A1 |
20030158472 | Sohrab | Aug 2003 | A1 |
20030158707 | Doi | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030175806 | Rule et al. | Sep 2003 | A1 |
20030175992 | Toranto et al. | Sep 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030181851 | Mann et al. | Sep 2003 | A1 |
20030181852 | Mann et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030187525 | Mann et al. | Oct 2003 | A1 |
20030191376 | Samuels et al. | Oct 2003 | A1 |
20030191431 | Mann et al. | Oct 2003 | A1 |
20030195403 | Berner et al. | Oct 2003 | A1 |
20030195462 | Mann et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030199791 | Boecker et al. | Oct 2003 | A1 |
20030199903 | Boecker et al. | Oct 2003 | A1 |
20030203498 | Neel et al. | Oct 2003 | A1 |
20030204290 | Sadler et al. | Oct 2003 | A1 |
20030208110 | Mault et al. | Nov 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208114 | Ackerman | Nov 2003 | A1 |
20030208133 | Mault | Nov 2003 | A1 |
20030208409 | Mault | Nov 2003 | A1 |
20030212317 | Kovatchev et al. | Nov 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030212579 | Brown et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030226695 | Mault | Dec 2003 | A1 |
20030229514 | Brown | Dec 2003 | A2 |
20030232370 | Trifiro | Dec 2003 | A1 |
20030235817 | Bartkowiak et al. | Dec 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040017300 | Kotzin et al. | Jan 2004 | A1 |
20040018486 | Dunn et al. | Jan 2004 | A1 |
20040030226 | Quy | Feb 2004 | A1 |
20040030531 | Miller et al. | Feb 2004 | A1 |
20040030581 | Levin et al. | Feb 2004 | A1 |
20040034289 | Teller et al. | Feb 2004 | A1 |
20040039255 | Simonsen et al. | Feb 2004 | A1 |
20040039256 | Kawatahara et al. | Feb 2004 | A1 |
20040039298 | Abreu et al. | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040059201 | Ginsberg | Mar 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040069164 | Nakamura et al. | Apr 2004 | A1 |
20040072357 | Stiene et al. | Apr 2004 | A1 |
20040073095 | Causey, III et al. | Apr 2004 | A1 |
20040096959 | Stiene et al. | May 2004 | A1 |
20040100376 | Lye et al. | May 2004 | A1 |
20040105411 | Boatwright et al. | Jun 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040106859 | Say et al. | Jun 2004 | A1 |
20040108226 | Polychronakos et al. | Jun 2004 | A1 |
20040116786 | Iijima et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040122489 | Mazar et al. | Jun 2004 | A1 |
20040122530 | Hansen et al. | Jun 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040136377 | Miyazaki et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040146909 | Duong et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040152961 | Carlson et al. | Aug 2004 | A1 |
20040153585 | Kawatahara et al. | Aug 2004 | A1 |
20040162473 | Sohrab | Aug 2004 | A1 |
20040164961 | Bal et al. | Aug 2004 | A1 |
20040167383 | Kim et al. | Aug 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040172284 | Sullivan et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040176913 | Kawatahara et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193020 | Chiba et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040197846 | Hockersmith et al. | Oct 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040202576 | Aceti et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040206916 | Colvin, Jr. et al. | Oct 2004 | A1 |
20040208780 | Faries, Jr. et al. | Oct 2004 | A1 |
20040212536 | Mori et al. | Oct 2004 | A1 |
20040221057 | Darcey et al. | Nov 2004 | A1 |
20040225199 | Evanyk et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040248204 | Moerman | Dec 2004 | A1 |
20040249250 | McGee et al. | Dec 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040249254 | Racchini et al. | Dec 2004 | A1 |
20040249999 | Connolly et al. | Dec 2004 | A1 |
20040253736 | Stout et al. | Dec 2004 | A1 |
20040254429 | Yang | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260363 | Arx et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040263354 | Mann et al. | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004439 | Shin et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010087 | Hanel et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050016276 | Guan et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050027179 | Berner et al. | Feb 2005 | A1 |
20050027180 | Goode, Jr. et al. | Feb 2005 | A1 |
20050027181 | Goode, Jr. et al. | Feb 2005 | A1 |
20050027462 | Goode, Jr. et al. | Feb 2005 | A1 |
20050027463 | Goode, Jr. et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050033132 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050043894 | Fernandez | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050049473 | Desai et al. | Mar 2005 | A1 |
20050054909 | Petisce et al. | Mar 2005 | A1 |
20050059372 | Arayashiki et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050070777 | Cho et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096512 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050112544 | Xu et al. | May 2005 | A1 |
20050113648 | Yang et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050113657 | Alarcon et al. | May 2005 | A1 |
20050113658 | Jacobson et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050118726 | Schultz et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050124873 | Shults et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050137471 | Haar et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050143636 | Zhang et al. | Jun 2005 | A1 |
20050148003 | Kieth et al. | Jul 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050161346 | Simpson et al. | Jul 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050171513 | Mann et al. | Aug 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050177036 | Shults et al. | Aug 2005 | A1 |
20050177398 | Watanabe et al. | Aug 2005 | A1 |
20050181012 | Saint et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182358 | Veit et al. | Aug 2005 | A1 |
20050182451 | Griffin et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050203707 | Tsutsui et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050215871 | Feldman et al. | Sep 2005 | A1 |
20050215872 | Berner et al. | Sep 2005 | A1 |
20050221504 | Petruno et al. | Oct 2005 | A1 |
20050236361 | Ufer et al. | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050239156 | Drucker et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050242479 | Petisce et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050245904 | Estes et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050251083 | Carr-Brendel et al. | Nov 2005 | A1 |
20050261660 | Choi | Nov 2005 | A1 |
20050267780 | Ray et al. | Dec 2005 | A1 |
20050271546 | Gerber et al. | Dec 2005 | A1 |
20050271547 | Gerber et al. | Dec 2005 | A1 |
20050272640 | Doyle, III et al. | Dec 2005 | A1 |
20050272985 | Kotulla et al. | Dec 2005 | A1 |
20050277164 | Drucker et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001550 | Mann et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060003398 | Heller et al. | Jan 2006 | A1 |
20060004270 | Bedard et al. | Jan 2006 | A1 |
20060004271 | Peyser et al. | Jan 2006 | A1 |
20060007017 | Mann et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025663 | Talbot et al. | Feb 2006 | A1 |
20060029177 | Cranford, Jr. et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060036187 | Vos et al. | Feb 2006 | A1 |
20060040402 | Brauker et al. | Feb 2006 | A1 |
20060052679 | Kotulla et al. | Mar 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060058602 | Kwiatkowski et al. | Mar 2006 | A1 |
20060063218 | Bartkowiak et al. | Mar 2006 | A1 |
20060074564 | Bartowiak et al. | Apr 2006 | A1 |
20060129733 | Solbelman | Jun 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060155180 | Brister et al. | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060183985 | Brister et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060195029 | Shults et al. | Aug 2006 | A1 |
20060200112 | Paul | Sep 2006 | A1 |
20060202805 | Schulman et al. | Sep 2006 | A1 |
20060202859 | Mastrototaro et al. | Sep 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224109 | Steil et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060229512 | Petisce et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247710 | Goetz et al. | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060253296 | Liisberg et al. | Nov 2006 | A1 |
20060258918 | Burd et al. | Nov 2006 | A1 |
20060258929 | Goode, Jr. et al. | Nov 2006 | A1 |
20060263763 | Simpson et al. | Nov 2006 | A1 |
20060264785 | Dring et al. | Nov 2006 | A1 |
20060264888 | Moberg et al. | Nov 2006 | A1 |
20060270922 | Brauker et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070007133 | Mang et al. | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070026440 | Broderick et al. | Feb 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070027507 | Burdett et al. | Feb 2007 | A1 |
20070032706 | Kamath et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070053341 | Lizzi | Mar 2007 | A1 |
20070055799 | Koehler et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066877 | Arnold et al. | Mar 2007 | A1 |
20070071681 | Gadkar et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078323 | Reggiardo et al. | Apr 2007 | A1 |
20070090511 | Borland et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100222 | Mastrototaro et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070135697 | Reggiardo | Jun 2007 | A1 |
20070149873 | Say et al. | Jun 2007 | A1 |
20070149874 | Say et al. | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070151869 | Heller et al. | Jul 2007 | A1 |
20070153705 | Rosar et al. | Jul 2007 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20070156094 | Safabash et al. | Jul 2007 | A1 |
20070161879 | Say et al. | Jul 2007 | A1 |
20070161880 | Say et al. | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070168224 | Letzt et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173712 | Shah et al. | Jul 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070179349 | Hoyme et al. | Aug 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070179370 | Say et al. | Aug 2007 | A1 |
20070179372 | Say et al. | Aug 2007 | A1 |
20070191699 | Say et al. | Aug 2007 | A1 |
20070191700 | Say et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203408 | Say et al. | Aug 2007 | A1 |
20070203410 | Say et al. | Aug 2007 | A1 |
20070203411 | Say et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208245 | Brauker et al. | Sep 2007 | A1 |
20070208247 | Say et al. | Sep 2007 | A1 |
20070213610 | Say et al. | Sep 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070215491 | Heller et al. | Sep 2007 | A1 |
20070218097 | Heller et al. | Sep 2007 | A1 |
20070219496 | Kamen et al. | Sep 2007 | A1 |
20070222609 | Duron et al. | Sep 2007 | A1 |
20070232877 | He | Oct 2007 | A1 |
20070232880 | Siddiqui et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070244380 | Say et al. | Oct 2007 | A1 |
20070244383 | Talbot et al. | Oct 2007 | A1 |
20070249919 | Say et al. | Oct 2007 | A1 |
20070249920 | Say et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070271285 | Eichorn et al. | Nov 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20070299617 | Willis | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080009304 | Fry | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080018433 | Pitt-Pladdy | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080027586 | Hern et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080030369 | Mann et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080055070 | Bange et al. | Mar 2008 | A1 |
20080057484 | Miyata et al. | Mar 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080058626 | Miyata et al. | Mar 2008 | A1 |
20080058678 | Miyata et al. | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080062055 | Cunningham et al. | Mar 2008 | A1 |
20080064937 | McGarraugh et al. | Mar 2008 | A1 |
20080064943 | Talbot et al. | Mar 2008 | A1 |
20080067627 | Boeck et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080119705 | Patel et al. | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080154513 | Kovatchev et al. | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080167543 | Say et al. | Jul 2008 | A1 |
20080167572 | Stivoric et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080179187 | Ouyang et al. | Jul 2008 | A1 |
20080183060 | Steil et al. | Jul 2008 | A1 |
20080183061 | Goode et al. | Jul 2008 | A1 |
20080183399 | Goode et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080189051 | Goode et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode et al. | Aug 2008 | A1 |
20080194937 | Goode et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080208113 | Damian et al. | Aug 2008 | A1 |
20080212600 | Yoo | Sep 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255434 | Hayter et al. | Oct 2008 | A1 |
20080255437 | Hayter | Oct 2008 | A1 |
20080255438 | Saidara et al. | Oct 2008 | A1 |
20080255808 | Hayter | Oct 2008 | A1 |
20080256048 | Hayter | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080267823 | Wang et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080278331 | Hayter et al. | Nov 2008 | A1 |
20080278332 | Fennell et al. | Nov 2008 | A1 |
20080278333 | Fennell et al. | Nov 2008 | A1 |
20080281171 | Fennell et al. | Nov 2008 | A1 |
20080281179 | Fennell et al. | Nov 2008 | A1 |
20080281840 | Fennell et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287762 | Hayter | Nov 2008 | A1 |
20080287763 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080288180 | Hayter | Nov 2008 | A1 |
20080288204 | Hayter et al. | Nov 2008 | A1 |
20080294024 | Cosentino et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300919 | Charlton et al. | Dec 2008 | A1 |
20080300920 | Brown et al. | Dec 2008 | A1 |
20080301158 | Brown et al. | Dec 2008 | A1 |
20080301436 | Yao et al. | Dec 2008 | A1 |
20080301665 | Charlton et al. | Dec 2008 | A1 |
20080306368 | Goode et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312518 | Jina et al. | Dec 2008 | A1 |
20080312841 | Hayter | Dec 2008 | A1 |
20080312842 | Hayter | Dec 2008 | A1 |
20080312844 | Hayter et al. | Dec 2008 | A1 |
20080312845 | Hayter et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20080320587 | Vauclair et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090012379 | Goode et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090033482 | Hayter et al. | Feb 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036760 | Hayter | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090055149 | Hayter et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090062767 | VanAntwerp et al. | Mar 2009 | A1 |
20090063402 | Hayter | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076359 | Peyser et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090085768 | Patel et al. | Apr 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090094680 | Gupta et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105554 | Stahmann et al. | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090105636 | Hayter et al. | Apr 2009 | A1 |
20090112478 | Mueller, Jr. et al. | Apr 2009 | A1 |
20090124877 | Goode et al. | May 2009 | A1 |
20090124878 | Goode et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090146826 | Gofman et al. | Jun 2009 | A1 |
20090149717 | Brauer et al. | Jun 2009 | A1 |
20090150186 | Cohen et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090164190 | Hayter | Jun 2009 | A1 |
20090164239 | Hayter et al. | Jun 2009 | A1 |
20090164251 | Hayter | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090189738 | Hermle | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090198118 | Hayter et al. | Aug 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204340 | Feldman et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090237216 | Twitchell, Jr. | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247931 | Damgaard-Sorensen | Oct 2009 | A1 |
20090267765 | Greene et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090289796 | Blumberg | Nov 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20090318792 | Fennell et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100025238 | Gottlieb et al. | Feb 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100198034 | Thomas et al. | Feb 2010 | A1 |
20100057040 | Hayter | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100057044 | Hayter | Mar 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100110931 | Shim et al. | May 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100119881 | Patel et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100191085 | Budiman | Jul 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100235439 | Goodnow et al. | Sep 2010 | A1 |
20100267161 | Wu et al. | Oct 2010 | A1 |
20100275108 | Sloan et al. | Oct 2010 | A1 |
20100277342 | Sicurello et al. | Nov 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100324403 | Brister et al. | Dec 2010 | A1 |
20100331646 | Hoss et al. | Dec 2010 | A1 |
20100332142 | Shadforth et al. | Dec 2010 | A1 |
20110004276 | Blair et al. | Jan 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110054282 | Nekoomaram et al. | Mar 2011 | A1 |
20110060530 | Fennell | Mar 2011 | A1 |
20110074349 | Ghovanloo | Mar 2011 | A1 |
20110125040 | Crawford et al. | May 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110152637 | Kateraas et al. | Jun 2011 | A1 |
20110184268 | Taub | Jul 2011 | A1 |
20110193704 | Harper et al. | Aug 2011 | A1 |
20110213225 | Bernstein et al. | Sep 2011 | A1 |
20110230741 | Liang et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110270112 | Manera et al. | Nov 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20120108931 | Taub et al. | May 2012 | A1 |
20120148054 | Rank et al. | Jun 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20120215092 | Harris, III et al. | Aug 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2396613 | Mar 2008 | CA |
4234553 | Jan 1995 | DE |
0010375 | Apr 1980 | EP |
0026995 | Apr 1981 | EP |
0048090 | Mar 1982 | EP |
0078636 | May 1983 | EP |
0080304 | Jun 1983 | EP |
0098592 | Jan 1984 | EP |
0125139 | Nov 1984 | EP |
0127958 | Dec 1984 | EP |
0136362 | Apr 1985 | EP |
0170375 | Feb 1986 | EP |
0177743 | Apr 1986 | EP |
0184909 | Jun 1986 | EP |
0206218 | Dec 1986 | EP |
0230472 | Aug 1987 | EP |
0241309 | Oct 1987 | EP |
0245073 | Nov 1987 | EP |
0255291 | Feb 1988 | EP |
0278647 | Aug 1988 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0359831 | Mar 1990 | EP |
0368209 | May 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0400918 | Dec 1990 | EP |
0453283 | Oct 1991 | EP |
0470290 | Feb 1992 | EP |
0504835 | Sep 1992 | EP |
0286118 | Jan 1995 | EP |
0653718 | May 1995 | EP |
0680727 | Nov 1995 | EP |
0724859 | Aug 1996 | EP |
0800082 | Oct 1997 | EP |
0805574 | Nov 1997 | EP |
0880936 | Dec 1998 | EP |
0970655 | Jan 2000 | EP |
0973289 | Jan 2000 | EP |
0678308 | May 2000 | EP |
1034734 | Sep 2000 | EP |
1048264 | Nov 2000 | EP |
1579690 | Nov 2002 | EP |
1292218 | Mar 2003 | EP |
1077634 | Jul 2003 | EP |
1445746 | Aug 2004 | EP |
1568309 | Aug 2005 | EP |
1666091 | Jun 2006 | EP |
1703697 | Sep 2006 | EP |
1704893 | Sep 2006 | EP |
1897487 | Nov 2009 | EP |
1897492 | Nov 2009 | EP |
2113864 | Nov 2009 | EP |
1897488 | Dec 2009 | EP |
1681992 | Apr 2010 | EP |
1448489 | Aug 2010 | EP |
1971396 | Aug 2010 | EP |
2201969 | Mar 2011 | EP |
1413245 | Jun 2011 | EP |
2153382 | Feb 2012 | EP |
2284773 | Feb 2012 | EP |
1394171 | May 1975 | GB |
1579690 | Nov 1980 | GB |
1599241 | Sep 1981 | GB |
2073891 | Oct 1981 | GB |
2154003 | Aug 1985 | GB |
2194892 | Mar 1988 | GB |
2204408 | Nov 1988 | GB |
2225637 | Jun 1990 | GB |
2254436 | Oct 1992 | GB |
2409951 | Jul 2005 | GB |
1281988 | Jan 1987 | SU |
WO-1985005119 | Nov 1985 | WO |
WO-1986000513 | Jan 1986 | WO |
WO-1987000513 | Jan 1987 | WO |
WO-1987006040 | Oct 1987 | WO |
WO-1989002246 | Mar 1989 | WO |
WO-1989005119 | Jun 1989 | WO |
WO-1989008713 | Sep 1989 | WO |
WO-1990000367 | Jan 1990 | WO |
WO-1990005300 | May 1990 | WO |
WO-1990005910 | May 1990 | WO |
WO-1991001680 | Feb 1991 | WO |
WO-1991004704 | Apr 1991 | WO |
WO-1991015993 | Oct 1991 | WO |
WO-1992001947 | Feb 1992 | WO |
WO-1992013271 | Aug 1992 | WO |
WO-1994020602 | Sep 1994 | WO |
WO-1994027140 | Nov 1994 | WO |
WO-1995028878 | Feb 1995 | WO |
WO-1995006240 | Mar 1995 | WO |
WO-1996007908 | Mar 1996 | WO |
WO-1996025089 | Aug 1996 | WO |
WO-1996030431 | Oct 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO-1997002847 | Jan 1997 | WO |
WO-1997019344 | May 1997 | WO |
WO-1997020207 | Jun 1997 | WO |
WO-1997033513 | Sep 1997 | WO |
WO-1997041421 | Nov 1997 | WO |
WO-1997042882 | Nov 1997 | WO |
WO-1997042883 | Nov 1997 | WO |
WO-1997042886 | Nov 1997 | WO |
WO-1997042888 | Nov 1997 | WO |
WO-1997043962 | Nov 1997 | WO |
WO-1997046868 | Dec 1997 | WO |
WO-1998009167 | Mar 1998 | WO |
WO-1998024366 | Jun 1998 | WO |
WO-1998035053 | Aug 1998 | WO |
WO-1998052045 | Nov 1998 | WO |
WO-1998052293 | Nov 1998 | WO |
WO-1999005966 | Feb 1999 | WO |
WO-1999032883 | Jul 1999 | WO |
WO-1999056613 | Nov 1999 | WO |
WO-2000013580 | Mar 2000 | WO |
WO-2000018294 | Apr 2000 | WO |
WO-2000019887 | Apr 2000 | WO |
WO-2000020626 | Apr 2000 | WO |
WO-2000033065 | Jun 2000 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO-2000060350 | Oct 2000 | WO |
WO-2000062664 | Oct 2000 | WO |
WO-2000062665 | Oct 2000 | WO |
WO-2000074753 | Dec 2000 | WO |
WO-2000078210 | Dec 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO-2001024038 | Apr 2001 | WO |
WO-2001033216 | May 2001 | WO |
WO-2001052727 | Jul 2001 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2001057238 | Aug 2001 | WO |
WO-2001057239 | Aug 2001 | WO |
WO-2001067009 | Sep 2001 | WO |
WO-2002013686 | Feb 2002 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2002017210 | Feb 2002 | WO |
WO-2002058537 | Aug 2002 | WO |
WO-2002078512 | Oct 2002 | WO |
WO-2003036583 | May 2003 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO-2003085372 | Oct 2003 | WO |
WO-2004047445 | Jun 2004 | WO |
WO-2004061420 | Jul 2004 | WO |
WO-2004098405 | Nov 2004 | WO |
WO-2005010756 | Feb 2005 | WO |
WO-2005041766 | May 2005 | WO |
WO-2005045744 | May 2005 | WO |
WO-2005089103 | Sep 2005 | WO |
WO-2005117269 | Dec 2005 | WO |
WO-2006024671 | Mar 2006 | WO |
WO-2006032653 | Mar 2006 | WO |
WO-2006037109 | Apr 2006 | WO |
WO-2006064397 | Jun 2006 | WO |
WO-2006079114 | Jul 2006 | WO |
WO-2006118947 | Nov 2006 | WO |
WO-2006119084 | Nov 2006 | WO |
WO-2006124099 | Nov 2006 | WO |
WO-2007002189 | Jan 2007 | WO |
WO-2007007459 | Jan 2007 | WO |
WO-2007027381 | Mar 2007 | WO |
WO-2008086541 | Jul 2008 | WO |
WO-2008150428 | Dec 2008 | WO |
WO-2008153825 | Dec 2008 | WO |
WO-2009075697 | Jun 2009 | WO |
WO-2010077329 | Aug 2010 | WO |
WO-2011022418 | Feb 2011 | WO |
Entry |
---|
European Patent Application No. 10812782.0 Extended European Search Report dated Dec. 15, 2014. |
Abruna, H. D., et al., “Rectifying Interfaces Using Two-Layer Films of Electrochemically Polymerized Vinylpyridine and Vinylbipyridine Complexes of Ruthenium and Iron on Electrodes”, Journal of the American Chemical Society, vol. 103, No. 1, 1981, pp. 1-5. |
Albery, W. J., et al., “Amperometric Enzyme Electrodes Part II: Conducting Salts as Electrode Materials for the Oxidation of Glucose Oxidase”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 223-235. |
Albery, W. J., et al., “Amperometric Enzyme Electrodes”, Philosophical Transactions of the Royal Society of London, vol. 316, 1987, pp. 107-119. |
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineeringin Medicine and Biology Magazine, 1994, pp. 319-325. |
Anderson, L. B., et al., “Thin-Layer Electrochemistry: Steady-State Methods of Studying Rate Processes”, Journal of ElectroAnalytical Chemistry, vol. 10, 1965, pp. 295-305. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Bartlett, P. N., et al., “Covalent Binding of Electron Relays to Glucose Oxidase”, Journal of the Chemical Society, Chemical Communications, 1987, pp. 1603-1604. |
Bartlett, P. N., et al., “Modification of Glucose Oxidase by Tetrathiafulvalene”, Journal of the Chemical Society, Chemical Communications, 1990, pp. 1135-1136. |
Bartlett, P. N., et al., “Strategies for the Development of Amperometric Enzyme Electrodes”, Biosensors, vol. 3, 1987/88, pp. 359-379. |
Bennion, N., et al., “Alternate Site Glucose Testing: a Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463. |
Boedeker Plastics, Inc., “Polyethylene Specifications”, Web Page of Boedeker.com, 2007, pp. 1-3. |
Brandt, J., et al., “Covalent Attachment of Proteins to Polysaccharide Carriers by Means of Benzoquinone”, Biochimica et Biophysica Acta, vol. 386, 1975, pp. 196-202. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/1988, pp. 45-56. |
Brownlee, M., et al., “A Glucose-Controlled Insulin-Delivery System: Semisynthetic Insulin Bound to Lectin”, Science, vol. 206, 1979, 1190-1191. |
Cass, A. E., et al., “Ferricinum Ion as an Electron Acceptor for Oxido-Reductases”, Journal of ElectroAnalytical Chemistry, vol. 190, 1985, pp. 117-127. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Castner, J. F., et al., “Mass Transport and Reaction Kinetic Parameters Determined Electrochemically for Immobilized Glucose Oxidase”, Biochemistry, vol. 23 No. 10, 1984, 2203-2210. |
Claremont, D. J., et al., “Biosensors for Continuous In Vivo Glucose Monitoring”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 10, 1988. |
Clark Jr., L. C., et al., “Differential Anodic Enzyme Polarography for the Measurement of Glucose”, Oxygen Transport to Tissue: Instrumentation, Methods, and Physiology, 1973, pp. 127-133. |
Clark Jr., L. C., et al., “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Annals New York Academy of Sciences, 1962, pp. 29-45. |
Clark Jr., L. C., et al., “Long-term Stability of Electroenzymatic Glucose Sensors Implanted in Mice”, American Society of Artificial Internal Organs Transactions, vol. XXXIV, 1988, pp. 259-265. |
Clarke, W. L., et al., “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose”, Diabetes Care, vol. 10, No. 5, 1987, pp. 622-628. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Csoregi, E., et al., “Design, Characterization, and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode”, Analytical Chemistry, vol. 66 No. 19, 1994, pp. 3131-3138. |
Csoregi, E., et al., “On-Line Glucose Monitoring by Using Microdialysis Sampling and Amperometric Detection Based on ‘Wired’ Glucose Oxidase in Carbon Paste”, Mikrochimica Acta, vol. 121, 1995, pp. 31-40. |
Dai, W. S., et al., “Hydrogel Membranes with Mesh Size Asymmetry Based on the Gradient Crosslinking of Poly(vinyl alcohol),” Journal of Membrane Science, vol. 156, 1999, pp. 67-79. |
Davis, G., “Electrochemical Techniques for the Development of Amperometric Biosensors”, Biosensors, vol. 1, 1985, pp. 161-178. |
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 1. Electron Transfer from Glucose Oxidase to Metal Electrodes via Electron Relays, Bound Covalently to the Enzyme”, The Journal of Physical Chemistry, vol. 91, No. 6, 1987, pp. 1285-1289. |
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 2. Methods for Bonding Electron-Transfer Relays to Glucose Oxidase and D-Amino-Acid Oxidase”, Journal of the American Chemical Society, vol. 110, No. 8, 1988, pp. 2615-2620. |
Degani, Y., et al., “Electrical Communication Between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers”, Journal of the American Chemical Society, vol. 111, 1989, pp. 2357-2358. |
Denisevich, P., et al., “Unidirectional Current Flow and Charge State Trapping at Redox Polymer Interfaces on Bilayer Electrodes: Principles, Experimental Demonstration, and Theory”, Journal of the American Chemical Society, vol. 103, 1981, pp. 4727-4737. |
Dicks, J. M., et al., “Ferrocene Modified Polypyrrole with Immobilised Glucose Oxidase and its Application in Amperometric Glucose Microbiosensors”, Annales de Biologie Clinique, vol. 47, 1989, pp. 607-619. |
Diem, P., et al., “Clinical Performance of a Continuous Viscometric Affinity Sensor for Glucose”, Diabetes Technology & Therapeutics, vol. 6, 2004, pp. 790-799. |
Ellis, C. D., et al., “Selectivity and Directed Charge Transfer through an Electroactive Metallopolymer Film”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7480-7483. |
Engstrom, R. C., “Electrochemical Pretreatment of Glassy Carbon Electrodes”, Analytical Chemistry, vol. 54, No. 13, 1982, pp. 2310-2314. |
Engstrom, R. C., et al., “Characterization of Electrochemically Pretreated Glassy Carbon Electrodes”, Analytical Chemistry, vol. 56, No. 2, 1984, pp. 136-141. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Feldman, B., et al., “Electron Transfer Kinetics at Redox Polymer/Solution Interfaces Using Microelectrodes and Twin Electrode Thin Layer Cells”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 63-81. |
Fischer, H., et al., “Intramolecular Electron Transfer Medicated by 4,4′-Bypyridine and Related Bridging Groups”, Journal of the American Chemical Society, vol. 98, No. 18, 1976, pp. 5512-5517. |
Flentge, F., et al., “An Enzyme-Reactor for Electrochemical Monitoring of Choline and Acetylcholine: Applications in High-Performance Liquid Chromatography, Bran Tissue, Microdialysis and Cerebrospinal Fluid,” Analytical Biochemistry, vol. 204, 1992, pp. 305-310. |
Foulds, N. C., et al., “Enzyme Entrapment in Electrically Conducting Polymers: Immobilisation of Glucose Oxidase in Polypyrrole and its Application in Amperometric Glucose Sensors”, Journal of the Chemical Society, Faraday Transactions 1, vol. 82, 1986, pp. 1259-1264. |
Foulds, N. C., et al., “Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers”, Analytical Chemistry, vol. 60, No. 22, 1988, pp. 2473-2478. |
Frew, J. E., et al., “Electron-Transfer Biosensors”, Philosophical Transactions of the Royal Society of London, vol. 316, 1987, pp. 95-106. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Godsland, I. F., et al., “Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: the Importance of Basal Glucose Levels,” Clinical Science, vol. 101, 2001, pp. 1-9. |
Gorton, L., et al., “Selective Detection in Flow Analysis Based on the Combination of Immobilized Enzymes and Chemically Modified Electrodes”, Analytica Chimica Acta, vol. 250, 1991, pp. 203-248. |
Graham, N. B., “Poly(ethylene oxide) and Related Hydrogels,” Hydrogels in Medicine and Pharmacy, vol. II: Polymers, Chapter 4, 1987, pp. 95-113. |
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263. |
Gregg, B. A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone”, Journal of Physical Chemistry, vol. 95, No. 15, 1991, 5970-5975. |
Hale, P. D., et al., “A New Class of Amperometric Biosensor Incorporating a Polymeric Electron-Transfer Mediator”, Journal of the American Chemical Society, vol. 111, No. 9, 1989, pp. 3482-3484. |
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007. |
Hawkridge, F. M., et al., “Indirect Coulometric Titration of Biological Electron Transport Components”, Analytical Chemistry, vol. 45, No. 7, 1973, pp. 1021-1027. |
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587. |
Heller, A., “Electrical Wiring of Redox Enzymes”, Accounts of Chemical Research vol. 23, No. 5, 1990, 128-134. |
Heller, A., et al., “Amperometric Biosensors Based on Three-Dimensional Hydrogel-Forming Epoxy Networks”, Sensors and Actuators B, vol. 13-14, 1993, pp. 180-183. |
Ianniello, R. M., et al., “Differential Pulse Voltammetric Study of Direct Electron Transfer in Glucose Oxidase Chemically Modified Graphite Electrodes”, Analytical Chemistry, vol. 54, No. 7, 1982, pp. 1098-1101. |
Ianniello, R. M., et al., “Immobilized Enzyme Chemically Modified Electrode as an Amperometric Sensor”, Analytical Chemistry, vol. 53, No. 13, 1981, pp. 2090-2095. |
Ikeda, T., et al., “Glucose Oxidase-Immobilized Benzoquinone-Carbon Paste Electrode as a Glucose Sensor”, Agricultural and Biological Chemistry, vol. 49, No. 2, 1985, pp. 541-543. |
Ikeda, T., et al., “Kinetics of Outer-Sphere Electron Transfers Between Metal Complexes in Solutions and Polymeric Films on Modified Electrodes”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7422-7425. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—an Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, J. M., et al., “Potential-Dependent Enzymatic Activity in an Enzyme Thin-Layer Cell”, Analytical Chemistry, vol. 54, No. 8, 1982, pp. 1377-1383. |
Johnson, K. W., “Reproducible Electrodeposition of Biomolecules for the Fabrication of Miniature Electroenzymatic Biosensors”, Sensors and Actuators B, vol. 5, 1991, pp. 85-89. |
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jonsson, G., et al., “An Amperometric Glucose Sensor Made by Modification of a Graphite Electrode Surface With Immobilized Glucose Oxidase and Adsorbed Mediator”, Biosensors, vol. 1, 1985, pp. 355-368. |
Josowicz, M., et al., “Electrochemical Pretreatment of Thin Film Platinum Electrodes”, Journal of the Electrochemical Society, vol. 135 No. 1, 1988, pp. 112-115. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Katakis, I., et al., “Electrostatic Control of the Electron Transfer Enabling Binding of Recombinant Glucose Oxidase and Redox Polyelectrolytes”, Journal of the American Chemical Society, vol. 116, No. 8, 1994, pp. 3617-3618. |
Katakis, I., et al., “L-α-Glycerophosphate and L-Lactate Electrodes Based on the Electrochemical ‘Wiring’ of Oxidases”, Analytical Chemistry, vol. 64, No. 9, 1992, pp. 1008-1013. |
Kemp, G. J., “Theoretical Aspects of One-Point Calibration: Causes and Effects of Some Potential Errors, and Their Dependence on Concentration,” Clinical Chemistry, vol. 30, No. 7, 1984, pp. 1163-1167. |
Kenausis, G., et al., “‘Wiring’ of Glucose Oxidase and Lactate Oxidase Within a Hydrogel Made with Poly(vinyl pyridine) complexed with [Os(4,4′-dimethoxy-2,2′-bipyridine)2Cl]+/2+ ”, Journal of the Chemical Society, Faraday Transactions, vol. 92, No. 20, 1996, pp. 4131-4136. |
Kerner, W., et al., “The Function of a Hydrogen Peroxide-Detecting Electroenzymatic Glucose Electrode is Markedly Impaired in Human Subcutaneous Tissue and Plasma,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 473-482. |
Kondepati, V., et al., “Recent Progress in Analytical Instrumentation for Glycemic Control in Diabetic and Critically Ill Patients”, Analytical Bioanalytical Chemistry, vol. 388, 2007, pp. 545-563. |
Korf, J., et al., “Monitoring of Glucose and Lactate Using Microdialysis: Applications in Neonates and Rat Brain,” Developmental Neuroscience, vol. 15, 1993, pp. 240-246. |
Koudelka, M., et al., “In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 31-36. |
Kulys, J., et al., “Mediatorless Peroxidase Electrode and Preparation of Bienzyme Sensors”, Bioelectrochemistry and Bioenergetics, vol. 24, 1990, pp. 305-311. |
Lager, W., et al., “Implantable Electrocatalytic Glucose Sensor”, Hormone Metabolic Research, vol. 26, 1994, pp. 526-530. |
Laurell, T., “A Continuous Glucose Monitoring System Based on Microdialysis”, Journal of Medical Engineering & Technology, vol. 16, No. 5, 1992, pp. 187-193. |
Lindner, E., et al., “Flexible (Kapton-Based) Microsensor Arrays of High Stability for Cardiovascular Applications”, Journal of the Chemical Society, Faraday Transactions, vol. 89, No. 2, 1993, pp. 361-367. |
Lo, B., et al., “Key Technical Challenges and Current Implementations of Body Sensor Networks”, Body Sensor Networks, 2005, pp. 1-5. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
Marko-Varga, G., et al., “Enzyme-Based Biosensor as a Selective Detection Unit in Column Liquid Chromatography”, Journal of Chromatography A, vol. 660, 1994, pp. 153-167. |
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144. |
Mauras, N., et al., “Lack of Accuracy of Continuous Glucose Sensors in Healthy, Nondiabetic Children: Results of the Diabetes Research in Children Network (DirecNet) Accuracy Study,” Journal of Pediatrics, 2004, pp. 770-775. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
McNeil, C. J., et al., “Thermostable Reduced Nicotinamide Adenine Dinucleotide Oxidase: Application to Amperometric Enzyme Assay”, Analytical Chemistry, vol. 61, No. 1, 1989, pp. 25-29. |
Miyawaki, O., et al., “Electrochemical and Glucose Oxidase Coenzyme Activity of Flavin Adenine Dinucleotide Covalently Attached to Glassy Carbon at the Adenine Amino Group”, Biochimica et Biophysica Acta, vol. 838, 1985, pp. 60-68. |
Moatti-Sirat, D., et al., “Evaluating In Vitro and In Vivo the Interference of Ascorbate and Acetaminophen on Glucose Detection by a Needle-Type Glucose Sensor”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 345-352. |
Moatti-Sirat, D., et al., “Reduction of Acetaminophen Interference in Glucose Sensors by a Composite Nafion Membrane: Demonstration in Rats and Man”, Diabetologia, vol. 37, 1994, pp. 610-616. |
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Nagy, G., et al., “A New Type of Enzyme Electrode: the Ascorbic Acid Eliminator Electrode”, Life Sciences, vol. 31, No. 23, 1982, pp. 2611-2616. |
Nakamura, S., et al., “Effect of Periodate Oxidation on the Structure and Properties of Glucose Oxidase”, Biochimica et Biophysica Acta., vol. 445, 1976, pp. 294-308. |
Narasimham, K., et al., “p-Benzoquinone Activation of Metal Oxide Electrodes for Attachment of Enzymes”, Enzyme and Microbial Technology, vol. 7, 1985, pp. 283-286. |
Ohara, T. J., “Osmium Bipyridyl Redox Polymers Used in Enzyme Electrodes”, Platinum Metals Review, vol. 39, No. 2, 1995, pp. 54-62. |
Ohara, T. J., et al., “‘Wired’ Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances”, Analytical Chemistry, vol. 66, No. 15, 1994, pp. 2451-2457. |
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2Cl]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517. |
Olievier, C. N., et al., “In Vivo Measurement of Carbon Dioxide Tension with a Miniature Electrodes”, Pflugers Archiv: European Journal of Physiology, vol. 373, 1978, pp. 269-272. |
Paddock, R. M., et al., “Electrocatalytic Reduction of Hydrogen Peroxide via Direct Electron Transfer From Pyrolytic Graphite Electrodes to Irreversibly Adsorbed Cyctochrome C Peroxidase”, Journal of ElectroAnalytical Chemistry, vol. 260, 1989, pp. 487-494. |
Palleschi, G., et al., “A Study of Interferences in Glucose Measurements in Blood by Hydrogen Peroxide Based Glucose Probes”, Analytical Biochemistry, vol. 159, 1986, pp. 114-121. |
Pankratov, I., et al., “Sol-Gel Derived Renewable-Surface Biosensors”, Journal of ElectroAnalytical Chemistry, vol. 393, 1995, pp. 35-41. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pathak, C., et al., “Rapid Photopolymerization of Immunoprotective Gels in Contact with Cells and Tissue”, Journal of the American Chemical Society, vol. 114, No. 21, 1992, pp. 8311-8312. |
Pickup, J., “Developing Glucose Sensors for In Vivo Use”, Tibtech, vol. 11, 1993, pp. 285-291. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/1988, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: an Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pickup, J., et al., “Potentially-Implantable, Amperometric Glucose Sensors with Mediated Electron Transfer: Improving the Operating Stability”, Biosensors, vol. 4, 1989, pp. 109-119. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Poitout, V., et al., “A Glucose Monitoring System for on Line Estimation in Man of Blood Glucose Concentration Using a Miniaturized Glucose Sensor Implanted in the Subcutaneous Tissue and a Wearable Control Unit”, Diabetolgia, vol. 36, 1993, pp. 658-663. |
Poitout, V., et al., “Calibration in Dogs of a Subcutaneous Miniaturized Glucose Sensor Using a Glucose Meter for Blood Glucose Determination”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 587-592. |
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300. |
Pollak, A., et al., “Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels”, Journal of the American Chemical Society, vol. 102, No. 20, 1980, pp. 6324-6336. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386. |
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576. |
Reusch, W., “Other Topics: Organometallic Chemistry: Organometallic Compounds: Main Group Organometallic Compounds,” Virtual Textbook of Organic Chemistry, 1999, Rev. 2007, 25 pages. |
Rodriguez, N., et al., “Flexible Communication and Control Protocol for Injectable Neuromuscular Interfaces”, IEEE Transactions on Biomedical Circuits and Systems, vol. 1, No. 1, 2007, pp. 19-27. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sacks (Ed), “Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus,” The National Academy of Clinical Biochemistry Presents Laboratory Medicine Practice Guidelines, vol. 13, 2002, pp. 8-11, 21-23, 52-56, 63. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salditt, P., “Trends in Medical Device Design and Manufacturing”, SMTA News and Journal of Surface Mount Technology, vol. 17, 2004, pp. 19-24. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Samuels, G. J., et al., “An Electrode-Supported Oxidation Catalyst Based on Ruthenium (IV). pH ‘Encapsulation’ in a Polymer Film”, Journal of the American Chemical Society, vol. 103, No. 2, 1981, pp. 307-312. |
Sasso, S. V., et al., “Electropolymerized 1,2-Diaminobenzene as a Means to Prevent Interferences and Fouling and to Stabilize Immobilized Enzyme in Electrochemical Biosensors”, Analytical Chemistry, vol. 62, No. 11, 1990, pp. 1111-1117. |
Scheller, F. W., et al., “Second Generation Biosensors,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 245-253. |
Scheller, F., et al., “Enzyme Electrodes and Their Application”, Philosophical Transactions of The Royal Society of London B, vol. 316, 1987, pp. 85-94. |
Schmehl, R. H., et al., “The Effect of Redox Site Concentration on the Rate of Mediated Oxidation of Solution Substrates by a Redox Copolymer Film”, Journal of ElectroAnalytical Chemistry, vol. 152, 1983, pp. 97-109. |
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: a Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sittampalam, G., et al., “Surface-Modified Electrochemical Detector for Liquid Chromatography”, Analytical Chemistry, vol. 55, No. 9, 1983, pp. 1608-1610. |
Skoog, D. A., et al., “Evaluation of Analytical Data,” Fundamentals of Analytical Chemistry, 1966, pp. 55. |
Soegijoko, S., et al., “External Artificial Pancreas: a New Control Unit Using Microprocessor”, Hormone and Metabolic Research Supplement Series, vol. 12, 1982, pp. 165-169. |
Sprules, S. D., et al., “Evaluation of a New Disposable Screen-Printed Sensor Strip for the Measurement of NADH and Its Modification to Produce a Lactate Biosensor Employing Microliter Volumes”, Electroanalysis, vol. 8, No. 6, 1996, pp. 539-543. |
Sternberg, F., et al., “Calibration Problems of Subcutaneous Glucosensors when Applied ‘In-Situ’ in Man”, Hormone and Metabolic Research, vol. 26, 1994, pp. 523-526. |
Sternberg, R., et al., “Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development”, Analytical Chemistry, vol. 60, No. 24, 1988, pp. 2781-2786. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Suekane, M., “Immobilization of Glucose Isomerase”, Zettschrift fur Allgemeine Mikrobiologie, vol. 22, No. 8, 1982, pp. 565-576. |
Tajima, S., et al., “Simultaneous Determination of Glucose and 1,5-Anydroglucitol”, Chemical Abstracts, vol. 111, No. 25, 1989, pp. 394. |
Takamura, A., et al., Drug release from Poly(vinyl alcohol) Gel Prepared by Freeze-Thaw Procedure, Journal of Controlled Release, vol. 20, 1992, pp. 21-27. |
Tarasevich, M. R., “Bioelectrocatalysis”, Comprehensive Treatise of Electrochemistry, vol. 10, 1985, pp. 231-295. |
Tatsuma, T., et al., “Enzyme Monolayer—and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen Peroxide and Glucose”, Analytical Chemistry, vol. 61, No. 21, 1989, pp. 2352-2355. |
Taylor, C., et al., “‘Wiring’ of Glucose Oxidase Within a Hydrogel Made with Polyvinyl Imidazole Complexed with [(Os-4,4′-dimethoxy-2,2′-bipyridine)C1]+/2+”, Journal of ElectroAnalytical Chemistry, vol. 396, 1995, pp. 511-515. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Travenol Laboratories, Inc., An Introduction to “Eugly”, Book 1, 1985, pp. 1-22. |
Trojanowicz, M., et al., “Enzyme Entrapped Polypyrrole Modified Electrode for Flow-Injection Determination of Glucose”, Biosensors & Bioelectronics, vol. 5, 1990, pp. 149-156. |
Tsalikian, E., et al., “Accuracy of the GlucoWatch G2® Biographer and the Continuous Glucose Monitoring System During Hypoglycemia: Experience of the Diabetes Research in Children Network”, Diabetes Care, vol. 27, No. 3, 2004, pp. 722-726. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Turner, R. F., et al., “A Biocompatible Enzyme Electrode for Continuous in vivo Glucose Monitoring in Whole Blood”, Sensors and Actuators B, vol. 1, 1990, pp. 561-564. |
Tuzhi, P., et al., “Constant Potential Pretreatment of Carbon Fiber Electrodes for In Vivo Electrochemistry”, Analytical Letters, vol. 24, No. 6, 1991, pp. 935-945. |
Umana, M., “Protein-Modified Electrochemically Active Biomaterial Surface”, U.S. Army Research Office, Analytical and Chemical Sciences Research Triangle Institute, 1988, pp. 1-9. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Urban, G., et al., “Miniaturized Thin-Film Biosensors Using Covalently Immobilized Glucose Oxidase”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. |
Velho, G., et al., “In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors”, Diabetes, vol. 38, No. 2, 1989, pp. 164-171. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Von Woedtke, T., et al., “In Situ Calibration of Implanted Electrochemical Glucose Sensors”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 943-952. |
Vreeke, M. S., et al., “Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox Centers of Various Peroxidases to Electrodes through a Three-Dimensional Electron-Relaying Polymer Network”, Diagnostic Biosensors Polymers, Chapter 15, 1993, pp. 180-193. |
Vreeke, M., et al., “Hydrogen Peroxide and β-Nicotinamide Adenine Dinucleotide Sensing Amperometric Electrodes Based on Electrical Connection of Horseradish Peroxidase Redox Centers to Electrodes through a Three-Dimensional Electron Relaying Polymer Network”, Analytical Chemistry, vol. 64, No. 24, 1992, pp. 3084-3090. |
Wang, D. L., et al., “Miniaturized Flexible Amperometric Lactate Probe”, Analytical Chemistry, vol. 65, No. 8, 1993, pp. 1069-1073. |
Wang, J., et al., “Activation of Glassy Carbon Electrodes by Alternating Current Electrochemical Treatment”, Analytica Chimica Acta, vol. 167, 1985, pp. 325-334. |
Wang, J., et al., “Amperometric Biosensing of Organic Peroxides with Peroxidase-Modified Electrodes”, Analytica Chimica Acta, vol. 254, 1991, pp. 81-88. |
Wang, J., et al., “Screen-Printable Sol-Gel Enzyme-Containing Carbon Inks”, Analytical Chemistry, vol. 68, No. 15, 1996, pp. 2705-2708. |
Wang, J., et al., “Sol-Gel-Derived Metal-Dispersed Carbon Composite Amperometric Biosensors”, Electroanalysis, vol. 9, No. 1, 1997, pp. 52-55. |
Williams, D. L., et al., “Electrochemical-Enzymatic Analysis of Blood Glucose and Lactate”, Analytical Chemistry, vol. 42, No. 1, 1970, pp. 118-121. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
Yabuki, S., et al., “Electro-Conductive Enzyme Membrane”, Journal of the Chemical Society, Chemical Communications, 1989, pp. 945-946. |
Yang, C., et al., “A Comparison of Physical Properties and Fuel Cell Performance of Nation and Zirconium Phosphate/Nafion Composite Membranes,” Journal of Membrane Science, vol. 237, 2004, pp. 145-161. |
Yang, L., et al., “Determination of Oxidase Enzyme Substrates Using Cross-Flow Thin-Layer Amperometry”, Electroanalysis, vol. 8, No. 8-9, 1996, pp. 716-721. |
Yao, S. J., et al., “The Interference of Ascorbate and Urea in Low-Potential Electrochemical Glucose Sensing”, Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, Part 2, 1990, pp. 487-489. |
Yao, T., “A Chemically-Modified Enzyme Membrane Electrode as an Amperometric Glucose Sensor”, Analytica Chimica Acta, vol. 148, 1983, pp. 27-33. |
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241. |
Yildiz, A., et al., “Evaluation of an Improved Thin-Layer Electrode”, Analytical Chemistry, vol. 40, No. 7, 1968, pp. 1018-1024. |
Zamzow, K., et al., “New Wearable Continuous Blood Glucose Monitor (BGM) and Artificial Pancreas (AP)”, Diabetes, vol. 39, 1990, pp. 5A-20A. |
Zhang, Y., et al., “Application of Cell Culture Toxicity Tests to the Development of Implantable Biosensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 653-661. |
Zhang, Y., et al., “Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor”, Analytical Chemistry, vol. 66, No. 7, 1994, pp. 1183-1188. |
PCT Application No. PCT/US2010/047413, International Search Report and Written Opinion of the International Searching Authority dated Dec. 27, 2010. |
PCT Application No. PCT/US2010/047413, Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012. |
U.S. Appl. No. 12/873,298, Advisory Action dated Nov. 28, 2012. |
U.S. Appl. No. 12/873,298, Notice of Allowance dated Nov. 24, 2014. |
U.S. Appl. No. 12/873,298, Office Action dated Apr. 26, 2012. |
U.S. Appl. No. 12/873,298, Office Action dated Aug. 29, 2012. |
Number | Date | Country | |
---|---|---|---|
20220283042 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
61247537 | Sep 2009 | US | |
61238557 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12873298 | Aug 2010 | US |
Child | 14669842 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16589819 | Oct 2019 | US |
Child | 17504986 | US | |
Parent | 14669842 | Mar 2015 | US |
Child | 16589819 | US |