Analyte monitoring system and methods

Information

  • Patent Grant
  • 10178954
  • Patent Number
    10,178,954
  • Date Filed
    Tuesday, May 9, 2017
    7 years ago
  • Date Issued
    Tuesday, January 15, 2019
    5 years ago
Abstract
Methods and systems for providing data communication in medical systems are disclosed.
Description
BACKGROUND

Analyte, e.g., glucose monitoring systems including continuous and discrete monitoring systems generally include a small, lightweight battery powered and microprocessor controlled system which is configured to detect signals proportional to the corresponding measured glucose levels using an electrometer. RF signals may be used to transmit the collected data. One aspect of certain analyte monitoring systems include a transcutaneous or subcutaneous analyte sensor configuration which is, for example, at least partially positioned through the skin layer of a subject whose analyte level is to be monitored. The sensor may use a two or three-electrode (work, reference and counter electrodes) configuration driven by a controlled potential (potentiostat) analog circuit connected through a contact system.


An analyte sensor may be configured so that a portion thereof is placed under the skin of the patient so as to contact analyte of the patient, and another portion or segment of the analyte sensor may be in communication with the transmitter unit. The transmitter unit may be configured to transmit the analyte levels detected by the sensor over a wireless communication link such as an RF (radio frequency) communication link to a receiver/monitor unit. The receiver/monitor unit may perform data analysis, among other functions, on the received analyte levels to generate information pertaining to the monitored analyte levels.


Transmission of control or command data over wireless communication link is often constrained to occur within a substantially short time duration. In turn, the time constraint in data communication imposes limits on the type and size of data that may be transmitted during the transmission time period.


In view of the foregoing, it would be desirable to have a method and apparatus for optimizing the RF communication link between two or more communication devices, for example, in a medical communication system.


SUMMARY

Devices and methods for analyte monitoring, e.g., glucose monitoring, are provided. Embodiments include transmitting information from a first location to a second, e.g., using a telemetry system such as RF telemetry. Systems herein include continuous analyte monitoring systems and discrete analyte monitoring system.


In one embodiment, a method including positioning a controller unit within a transmission range for close proximity communication, transmitting one or more predefined close proximity commands, and receiving a response packet in response to the transmitted one or more predefined close proximity commands, is disclosed, as well as devices and systems for the same.


These and other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a data monitoring and management system for practicing one or more embodiments of the present invention;



FIG. 2 is a block diagram of the transmitter unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present invention;



FIG. 3 is a block diagram of the receiver/monitor unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present invention;



FIG. 4 is a flowchart illustrating data packet procedure including rolling data for transmission in accordance with one embodiment of the present invention;



FIG. 5 is a flowchart illustrating data processing of the received data packet including the rolling data in accordance with one embodiment of the present invention;



FIG. 6 is a block diagram illustrating the sensor and the transmitter unit of the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 7 is a flowchart illustrating data communication using close proximity commands in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 8 is a flowchart illustrating sensor insertion detection routine in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 9 is a flowchart illustrating sensor removal detection routine in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 10 is a flowchart illustrating the pairing or synchronization routine in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 11 is a flowchart illustrating the pairing or synchronization routine in the data monitoring and management system of FIG. 1 in accordance with another embodiment of the present invention;



FIG. 12 is a flowchart illustrating the power supply determination in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention;



FIG. 13 is a flowchart illustrating close proximity command for RF communication control in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention; and



FIG. 14 is a flowchart illustrating analyte sensor identification routine in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION

As summarized above and as described in further detail below, in accordance with the various embodiments of the present invention, there is provided a method and system for positioning a controller unit within a transmission range for close proximity communication, transmitting one or more predefined close proximity commands, and receiving a response packet in response to the transmitted one or more predefined close proximity commands.



FIG. 1 illustrates a data monitoring and management system such as, for example, analyte (e.g., glucose) monitoring system 100 in accordance with one embodiment of the present invention. The subject invention is further described primarily with respect to a glucose monitoring system for convenience and such description is in no way intended to limit the scope of the invention. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes, e.g., lactate, and the like.


Analytes that may be monitored include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. More than one analyte may be monitored by a single system, e.g. a single analyte sensor.


The analyte monitoring system 100 includes a sensor 101, a transmitter unit 102 coupleable to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the transmitter unit 102 via a bi-directional communication link 103. The primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the primary receiver unit 104. Moreover, the data processing terminal 105 in one embodiment may be configured to receive data directly from the transmitter unit 102 via a communication link which may optionally be configured for bi-directional communication. Accordingly, transmitter unit 102 and/or receiver unit 104 may include a transceiver.


Also shown in FIG. 1 is an optional secondary receiver unit 106 which is operatively coupled to the communication link and configured to receive data transmitted from the transmitter unit 102. Moreover, as shown in the Figure, the secondary receiver unit 106 is configured to communicate with the primary receiver unit 104 as well as the data processing terminal 105. Indeed, the secondary receiver unit 106 may be configured for bi-directional wireless communication with each or one of the primary receiver unit 104 and the data processing terminal 105. As discussed in further detail below, in one embodiment of the present invention, the secondary receiver unit 106 may be configured to include a limited number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may be configured substantially in a smaller compact housing or embodied in a device such as a wrist watch, pager, mobile phone, PDA, for example. Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functionality as the primary receiver unit 104. The receiver unit may be configured to be used in conjunction with a docking cradle unit, for example for one or more of the following or other functions: placement by bedside, for re-charging, for data management, for night time monitoring, and/or bi-directional communication device.


In one aspect, sensor 101 may include two or more sensors, each configured to communicate with transmitter unit 102. Furthermore, while only one transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include one or more sensors, multiple transmitter units 102, communication links 103, and data processing terminals 105. Moreover, within the scope of the present invention, the analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each device is configured to be uniquely identified by each of the other devices in the system so that communication conflict is readily resolved between the various components within the analyte monitoring system 100.


In one embodiment of the present invention, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In certain embodiments, the transmitter unit 102 may be physically coupled to the sensor 101 so that both devices are integrated in a single housing and positioned on the user's body. The transmitter unit 102 may perform data processing such as filtering and encoding on data signals and/or other functions, each of which corresponds to a sampled analyte level of the user, and in any event transmitter unit 102 transmits analyte information to the primary receiver unit 104 via the communication link 103.


In one embodiment, the analyte monitoring system 100 is configured as a one-way RF communication path from the transmitter unit 102 to the primary receiver unit 104. In such embodiment, the transmitter unit 102 transmits the sampled data signals received from the sensor 101 without acknowledgement from the primary receiver unit 104 that the transmitted sampled data signals have been received. For example, the transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the primary receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring system 100 may be configured with a bi-directional RF (or otherwise) communication between the transmitter unit 102 and the primary receiver unit 104.


Additionally, in one aspect, the primary receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the primary receiver unit 104 is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.


In operation, upon completing the power-on procedure, the primary receiver unit 104 is configured to detect the presence of the transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the transmitter unit 102 and/or predetermined transmitter identification information. Upon successful synchronization with the corresponding transmitter unit 102, the primary receiver unit 104 is configured to begin receiving from the transmitter unit 102 data signals corresponding to the user's detected analyte level. More specifically, the primary receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.


Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs)), and the like, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected analyte level of the user.


Within the scope of the present invention, the data processing terminal 105 may include an infusion device such as an insulin infusion pump (external or implantable) or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate or otherwise couple to an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the transmitter unit 102.


Additionally, the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may each be configured for bi-directional wireless communication such that each of the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may be configured to communicate (that is, transmit data to and receive data from) with each other via the wireless communication link 103. More specifically, the data processing terminal 105 may in one embodiment be configured to receive data directly from the transmitter unit 102 via a communication link, where the communication link, as described above, may be configured for bi-directional communication.


In this embodiment, the data processing terminal 105 which may include an insulin pump, may be configured to receive the analyte signals from the transmitter unit 102, and thus, incorporate the functions of the receiver 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In one embodiment, the communication link 103 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements) while avoiding potential data collision and interference.



FIG. 2 is a block diagram of the transmitter of the data monitoring and detection system shown in FIG. 1 in accordance with one embodiment of the present invention. Referring to the Figure, the transmitter unit 102 in one embodiment includes an analog interface 201 configured to communicate with the sensor 101 (FIG. 1), a user input 202, and a temperature measurement section 203, each of which is operatively coupled to a transmitter processor 204 such as a central processing unit (CPU). As can be seen from FIG. 2, there are provided four contacts, three of which are electrodes—work electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213, each operatively coupled to the analog interface 201 of the transmitter unit 102 for connection to the sensor 101 (FIG. 1). In one embodiment, each of the work electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213 may be made using a conductive material that is either printed or etched or ablated, for example, such as carbon which may be printed, or a metal such as a metal foil (e.g., gold) or the like, which may be etched or ablated or otherwise processed to provide one or more electrodes. Fewer or greater electrodes and/or contact may be provided in certain embodiments.


Further shown in FIG. 2 are a transmitter serial communication section 205 and an RF transmitter 206, each of which is also operatively coupled to the transmitter processor 204. Moreover, a power supply 207 such as a battery is also provided in the transmitter unit 102 to provide the necessary power for the transmitter unit 102. Additionally, as can be seen from the Figure, clock 208 is provided to, among others, supply real time information to the transmitter processor 204.


In one embodiment, a unidirectional input path is established from the sensor 101 (FIG. 1) and/or manufacturing and testing equipment to the analog interface 201 of the transmitter unit 102, while a unidirectional output is established from the output of the RF transmitter 206 of the transmitter unit 102 for transmission to the primary receiver unit 104. In this manner, a data path is shown in FIG. 2 between the aforementioned unidirectional input and output via a dedicated link 209 from the analog interface 201 to serial communication section 205, thereafter to the processor 204, and then to the RF transmitter 206. As such, in one embodiment, via the data path described above, the transmitter unit 102 is configured to transmit to the primary receiver unit 104 (FIG. 1), via the communication link 103 (FIG. 1), processed and encoded data signals received from the sensor 101 (FIG. 1). Additionally, the unidirectional communication data path between the analog interface 201 and the RF transmitter 206 discussed above allows for the configuration of the transmitter unit 102 for operation upon completion of the manufacturing process as well as for direct communication for diagnostic and testing purposes.


As discussed above, the transmitter processor 204 is configured to transmit control signals to the various sections of the transmitter unit 102 during the operation of the transmitter unit 102. In one embodiment, the transmitter processor 204 also includes a memory (not shown) for storing data such as the identification information for the transmitter unit 102, as well as the data signals received from the sensor 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the transmitter processor 204. Furthermore, the power supply 207 may include a commercially available battery, which may be a rechargeable battery.


In certain embodiments, the transmitter unit 102 is also configured such that the power supply section 207 is capable of providing power to the transmitter for a minimum of about three months of continuous operation, e.g., after having been stored for about eighteen months such as stored in a low-power (non-operating) mode. In one embodiment, this may be achieved by the transmitter processor 204 operating in low power modes in the non-operating state, for example, drawing no more than approximately 1 μA of current. Indeed, in one embodiment, a step during the manufacturing process of the transmitter unit 102 may place the transmitter unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the transmitter unit 102 may be significantly improved. Moreover, as shown in FIG. 2, while the power supply unit 207 is shown as coupled to the processor 204, and as such, the processor 204 is configured to provide control of the power supply unit 207, it should be noted that within the scope of the present invention, the power supply unit 207 is configured to provide the necessary power to each of the components of the transmitter unit 102 shown in FIG. 2.


Referring back to FIG. 2, the power supply section 207 of the transmitter unit 102 in one embodiment may include a rechargeable battery unit that may be recharged by a separate power supply recharging unit (for example, provided in the receiver unit 104) so that the transmitter unit 102 may be powered for a longer period of usage time. Moreover, in one embodiment, the transmitter unit 102 may be configured without a battery in the power supply section 207, in which case the transmitter unit 102 may be configured to receive power from an external power supply source (for example, a battery) as discussed in further detail below.


Referring yet again to FIG. 2, the temperature measurement section 203 of the transmitter unit 102 is configured to monitor the temperature of the skin near the sensor insertion site. The temperature reading is used to adjust the analyte readings obtained from the analog interface 201. In certain embodiments, the RF transmitter 206 of the transmitter unit 102 may be configured for operation in the frequency band of approximately 315 MHz to approximately 322 MHz, for example, in the United States. In certain embodiments, the RF transmitter 206 of the transmitter unit 102 may be configured for operation in the frequency band of approximately 400 MHz to approximately 470 MHz. Further, in one embodiment, the RF transmitter 206 is configured to modulate the carrier frequency by performing Frequency Shift Keying and Manchester encoding. In one embodiment, the data transmission rate is about 19,200 symbols per second, with a minimum transmission range for communication with the primary receiver unit 104.


Referring yet again to FIG. 2, also shown is a leak detection circuit 214 coupled to the guard contact (G) 211 and the processor 204 in the transmitter unit 102 of the data monitoring and management system 100. The leak detection circuit 214 in accordance with one embodiment of the present invention may be configured to detect leakage current in the sensor 101 to determine whether the measured sensor data are corrupt or whether the measured data from the sensor 101 is accurate. Exemplary analyte systems that may be employed are described in, for example, U.S. Pat. Nos. 6,134,461, 6,175,752, 6,121,611, 6,560,471, 6,746,582, and elsewhere, the disclosure of each of which are incorporated by reference for all purposes.



FIG. 3 is a block diagram of the receiver/monitor unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 3, the primary receiver unit 104 includes an analyte test strip, e.g., blood glucose test strip, interface 301, an RF receiver 302, an input 303, a temperature monitor section 304, and a clock 305, each of which is operatively coupled to a receiver processor 307. As can be further seen from the Figure, the primary receiver unit 104 also includes a power supply 306 operatively coupled to a power conversion and monitoring section 308. Further, the power conversion and monitoring section 308 is also coupled to the receiver processor 307. Moreover, also shown are a receiver serial communication section 309, and an output 310, each operatively coupled to the receiver processor 307.


In one embodiment, the test strip interface 301 includes a glucose level testing portion to receive a manual insertion of a glucose test strip, and thereby determine and display the glucose level of the test strip on the output 310 of the primary receiver unit 104. This manual testing of glucose may be used to calibrate the sensor 101 or otherwise. The RF receiver 302 is configured to communicate, via the communication link 103 (FIG. 1) with the RF transmitter 206 of the transmitter unit 102, to receive encoded data signals from the transmitter unit 102 for, among others, signal mixing, demodulation, and other data processing. The input 303 of the primary receiver unit 104 is configured to allow the user to enter information into the primary receiver unit 104 as needed. In one aspect, the input 303 may include one or more keys of a keypad, a touch-sensitive screen, or a voice-activated input command unit. The temperature monitor section 304 is configured to provide temperature information of the primary receiver unit 104 to the receiver processor 307, while the clock 305 provides, among others, real time information to the receiver processor 307.


Each of the various components of the primary receiver unit 104 shown in FIG. 3 is powered by the power supply 306 which, in one embodiment, includes a battery. Furthermore, the power conversion and monitoring section 308 is configured to monitor the power usage by the various components in the primary receiver unit 104 for effective power management and to alert the user, for example, in the event of power usage which renders the primary receiver unit 104 in sub-optimal operating conditions. An example of such sub-optimal operating condition may include, for example, operating the vibration output mode (as discussed below) for a period of time thus substantially draining the power supply 306 while the processor 307 (thus, the primary receiver unit 104) is turned on. Moreover, the power conversion and monitoring section 308 may additionally be configured to include a reverse polarity protection circuit such as a field effect transistor (FET) configured as a battery activated switch.


The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 309 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones presently available. In a further embodiment, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.


Referring back to FIG. 3, the primary receiver unit 104 in one embodiment may also include a storage section such as a programmable, non-volatile memory device as part of the processor 307, or provided separately in the primary receiver unit 104, operatively coupled to the processor 307. The processor 307 may be configured to synchronize with a transmitter, e.g., using Manchester decoding or the like, as well as error detection and correction upon the encoded data signals received from the transmitter unit 102 via the communication link 103.


Additional description of the RF communication between the transmitter 102 and the primary receiver 104 (or with the secondary receiver 106) that may be employed in embodiments of the subject invention is disclosed in U.S. patent application Ser. No. 11/060,365 filed Feb. 16, 2005, now U.S. Pat. No. 8,771,183, entitled “Method and System for Providing Data Communication in Continuous Glucose Monitoring and Management System” the disclosure of which is incorporated herein by reference for all purposes.


Referring to the Figures, in one embodiment, the transmitter 102 (FIG. 1) may be configured to generate data packets for periodic transmission to one or more of the receiver units 104, 106, where each data packet includes in one embodiment two categories of data—urgent data and non-urgent data. For example, urgent data such as for example glucose data from the sensor and/or temperature data associated with the sensor may be packed in each data packet in addition to non-urgent data, where the non-urgent data is rolled or varied with each data packet transmission.


That is, the non-urgent data is transmitted at a timed interval so as to maintain the integrity of the analyte monitoring system without being transmitted over the RF communication link with each data transmission packet from the transmitter 102. In this manner, the non-urgent data, for example that are not time sensitive, may be periodically transmitted (and not with each data packet transmission) or broken up into predetermined number of segments and sent or transmitted over multiple packets, while the urgent data is transmitted substantially in its entirety with each data transmission.


Referring again to the Figures, upon receiving the data packets from the transmitter 102, the one or more receiver units 104, 106 may be configured to parse the received data packet to separate the urgent data from the non-urgent data, and also, may be configured to store the urgent data and the non-urgent data, e.g., in a hierarchical manner. In accordance with the particular configuration of the data packet or the data transmission protocol, more or less data may be transmitted as part of the urgent data, or the non-urgent rolling data. That is, within the scope of the present disclosure, the specific data packet implementation such as the number of bits per packet, and the like, may vary based on, among others, the communication protocol, data transmission time window, and so on.


In an exemplary embodiment, different types of data packets may be identified accordingly. For example, identification in certain exemplary embodiments may include—(1) single sensor, one minute of data, (2) two or multiple sensors, (3) dual sensor, alternate one minute data, and (4) response packet. For single sensor one minute data packet, in one embodiment, the transmitter 102 may be configured to generate the data packet in the manner, or similar to the manner, shown in Table 1 below.









TABLE 1







Single sensor, one minute of data










Number of Bits
Data Field














8
Transmit Time



14
Sensor1 Current Data



14
Sensor1 Historic Data



8
Transmit Status



12
AUX Counter



12
AUX Thermistor 1



12
AUX Thermistor 2



8
Rolling-Data-1










As shown in Table 1 above, the transmitter data packet in one embodiment may include 8 bits of transmit time data, 14 bits of current sensor data, 14 bits of preceding sensor data, 8 bits of transmitter status data, 12 bits of auxiliary counter data, 12 bits of auxiliary thermistor 1 data, 12 bits of auxiliary thermistor 1 data and 8 bits of rolling data. In one embodiment of the present invention, the data packet generated by the transmitter for transmission over the RF communication link may include all or some of the data shown above in Table 1.


Referring back, the 14 bits of the current sensor data provides the real time or current sensor data associated with the detected analyte level, while the 14 bits of the sensor historic or preceding sensor data includes the sensor data associated with the detected analyte level one minute ago. In this manner, in the case where the receiver unit 104, 106 drops or fails to successfully receive the data packet from the transmitter 102 in the minute by minute transmission, the receiver unit 104, 106 may be able to capture the sensor data of a prior minute transmission from a subsequent minute transmission.


Referring again to Table 1, the Auxiliary data in one embodiment may include one or more of the patient's skin temperature data, a temperature gradient data, reference data, and counter electrode voltage. The transmitter status field may include status data that is configured to indicate corrupt data for the current transmission (for example, if shown as BAD status (as opposed to GOOD status which indicates that the data in the current transmission is not corrupt)). Furthermore, the rolling data field is configured to include the non-urgent data, and in one embodiment, may be associated with the time-hop sequence number. In addition, the Transmitter Time field in one embodiment includes a protocol value that is configured to start at zero and is incremented by one with each data packet. In one aspect, the transmitter time data may be used to synchronize the data transmission window with the receiver unit 104, 106, and also, provide an index for the Rolling data field.


In a further embodiment, the transmitter data packet may be configured to provide or transmit analyte sensor data from two or more independent analyte sensors. The sensors may relate to the same or different analyte or property. In such a case, the data packet from the transmitter 102 may be configured to include 14 bits of the current sensor data from both sensors in the embodiment in which 2 sensors are employed. In this case, the data packet does not include the immediately preceding sensor data in the current data packet transmission. Instead, a second analyte sensor data is transmitted with a first analyte sensor data.









TABLE 2







Dual sensor data










Number of Bits
Data Field














8
Transmit Time



14
Sensor1 Current Data



14
Sensor2 Current Data



8
Transmit Status



12
AUX Counter



12
AUX Thermistor 1



12
AUX Thermistor 2



8
Rolling-Data-1










In a further embodiment, the transmitter data packet may be alternated with each transmission between two analyte sensors, for example, alternating between the data packet shown in Table 3 and Table 4 below.









TABLE 3







Sensor Data Packet Alternate 1










Number of Bits
Data Field














8
Transmitter Time



14
Sensor1 Current Data



14
Sensor1 Historic Data



8
Transmit Status



12
AUX Counter



12
AUX Thermistor 1



12
AUX Thermistor 2



8
Rolling-Data-1

















TABLE 4







Sensor Data Packet Alternate 2










Number of Bits
Data Field














8
Transmitter Time



14
Sensor1 Current Data



14
Sensor2 Current Data



8
Transmit Status



12
AUX Counter



12
AUX Thermistor 1



12
AUX Thermistor 2



8
Rolling-Data-1










As shown above in reference to Tables 3 and 4, the minute by minute data packet transmission from the transmitter 102 (FIG. 1) in one embodiment may alternate between the data packet shown in Table 3 and the data packet shown in Table 4. More specifically, the transmitter 102 may be configured in one embodiment transmit the current sensor data of the first sensor and the preceding sensor data of the first sensor (Table 3), as well as the rolling data, and further, at the subsequent transmission, the transmitter 102 may be configured to transmit the current sensor data of the first and the second sensor in addition to the rolling data (Table 4).


In one embodiment, the rolling data transmitted with each data packet may include a sequence of various predetermined types of data that are considered not-urgent or not time sensitive. That is, in one embodiment, the following list of data shown in Table 5 may be sequentially included in the 8 bits of transmitter data packet, and not transmitted with each data packet transmission of the transmitter (for example, with each 60 second data transmission from the transmitter 102).









TABLE 5







Rolling Data









Time Slot
Bits
Rolling-Data





0
8
Mode


1
8
Glucose1 Slope


2
8
Glucose2 Slope


3
8
Ref-R


4
8
Hobbs Counter, Ref-R


5
8
Hobbs Counter


6
8
Hobbs Counter


7
8
Sensor Count









As can be seen from Table 5 above, in one embodiment, a sequence of rolling data are appended or added to the transmitter data packet with each data transmission time slot. In one embodiment, there may be 256 time slots for data transmission by the transmitter 102 (FIG. 1), and where, each time slot is separated by approximately 60 second interval. For example, referring to the Table 5 above, the data packet in transmission time slot 0 (zero) may include operational mode data (Mode) as the rolling data that is appended to the transmitted data packet. At the subsequent data transmission time slot (for example, approximately 60 seconds after the initial time slot (0)), the transmitted data packet may include the analyte sensor 1 calibration factor information (Glucosel slope) as the rolling data. In this manner, with each data transmission, the rolling data may be updated over the 256 time slot cycle.


Referring again to Table 5, each rolling data field is described in further detail for various embodiments. For example, the Mode data may include information related to the different operating modes such as, but not limited to, the data packet type, the type of battery used, diagnostic routines, single sensor or multiple sensor input, type of data transmission (RF communication link or other data link such as serial connection). Further, the Glucosel-slope data may include an 8-bit scaling factor or calibration data for first sensor (scaling factor for sensor 1 data), while Glucose2-slope data may include an 8-bit scaling factor or calibration data for the second analyte sensor (in the embodiment including more than one analyte sensors).


In addition, the Ref-R data may include 12 bits of on-board reference resistor used to calibrate our temperature measurement in the thermistor circuit (where 8 bits are transmitted in time slot 3, and the remaining 4 bits are transmitted in time slot 4), and the 20-bit Hobbs counter data may be separately transmitted in three time slots (for example, in time slot 4, time slot 5 and time slot 6) to add up to 20 bits. In one embodiment, the Hobbs counter may be configured to count each occurrence of the data transmission (for example, a packet transmission at approximately 60 second intervals) and may be incremented by a count of one (1).


In one aspect, the Hobbs counter is stored in a nonvolatile memory of the transmitter unit 102 (FIG. 1) and may be used to ascertain the power supply status information such as, for example, the estimated battery life remaining in the transmitter unit 102. That is, with each sensor replacement, the Hobbs counter is not reset, but rather, continues the count with each replacement of the sensor 101 to establish contact with the transmitter unit 102 such that, over an extended usage time period of the transmitter unit 102, it may be possible to determine, based on the Hobbs count information, the amount of consumed battery life in the transmitter unit 102, and also, an estimated remaining life of the battery in the transmitter unit 102.


That is, in one embodiment, the 20 bit Hobbs counter is incremented by one each time the transmitter unit 102 transmits a data packet (for example, approximately each 60 seconds), and based on the count information in the Hobbs counter, in one aspect, the battery life of the transmitter unit 102 may be estimated. In this manner, in configurations of the transmitter unit 620 (see FIG. 6) where the power supply is not a replaceable component but rather, embedded within the housing the transmitter unit 620, it is possible to estimate the remaining life of the embedded battery within the transmitter unit 620. Moreover, the Hobbs counter is configured to remain persistent in the memory device of the transmitter unit 620 such that, even when the transmitter unit power is turned off or powered down (for example, during the periodic sensor replacement, RF transmission turned off period and the like), the Hobbs counter information is retained.


Referring to Table 5 above, the transmitted rolling data may also include 8 bits of sensor count information (for example, transmitted in time slot 7). The 8 bit sensor counter is incremented by one each time a new sensor is connected to the transmitter unit. The ASIC configuration of the transmitter unit (or a microprocessor based transmitter configuration or with discrete components) may be configured to store in a nonvolatile memory unit the sensor count information and transmit it to the primary receiver unit 104 (for example). In turn, the primary receiver unit 104 (and/or the secondary receiver unit 106) may be configured to determine whether it is receiving data from the transmitter unit that is associated with the same sensor (based on the sensor count information), or from a new or replaced sensor (which will have a sensor count incremented by one from the prior sensor count). In this manner, in one aspect, the receiver unit (primary or secondary) may be configured to prevent reuse of the same sensor by the user based on verifying the sensor count information associated with the data transmission received from the transmitter unit 102. In addition, in a further aspect, user notification may be associated with one or more of these parameters. Further, the receiver unit (primary or secondary) may be configured to detect when a new sensor has been inserted, and thus prevent erroneous application of one or more calibration parameters determined in conjunction with a prior sensor, that may potentially result in false or inaccurate analyte level determination based on the sensor data.



FIG. 4 is a flowchart illustrating a data packet procedure including rolling data for transmission in accordance with one embodiment of the present invention. Referring to FIG. 4, in one embodiment, a counter is initialized (for example, to T=0) (410). Thereafter the associated rolling data is retrieved from memory device, for example (420), and also, the time sensitive or urgent data is retrieved (430). In one embodiment, the retrieval of the rolling data (420) and the retrieval of the time sensitive data (430) may be retrieved at substantially the same time.


Referring back to FIG. 4, with the rolling data and the time sensitive data, for example, the data packet for transmission is generated (440), and upon transmission, the counter is incremented by one (450) and the routine returns to retrieval of the rolling data (420). In this manner, in one embodiment, the urgent time sensitive data as well as the non-urgent data may be incorporated in the same data packet and transmitted by the transmitter 102 (FIG. 1) to a remote device such as one or more of the receivers 104, 106. Furthermore, as discussed above, the rolling data may be updated at a predetermined time interval which is longer than the time interval for each data packet transmission from the transmitter 102 (FIG. 1).



FIG. 5 is a flowchart illustrating data processing of the received data packet including the rolling data in accordance with one embodiment of the present invention. Referring to FIG. 5, when the data packet is received (510) (for example, by one or more of the receivers 104, 106, in one embodiment), the received data packet is parsed so that the urgent data may be separated from the not-urgent data (stored in, for example, the rolling data field in the data packet) (520). Thereafter the parsed data is suitably stored in an appropriate memory or storage device (530).


In the manner described above, in accordance with one embodiment of the present invention, there is provided method and apparatus for separating non-urgent type data (for example, data associated with calibration) from urgent type data (for example, monitored analyte related data) to be transmitted over the communication link to minimize the potential burden or constraint on the available transmission time. More specifically, in one embodiment, non-urgent data may be separated from data that is required by the communication system to be transmitted immediately, and transmitted over the communication link together while maintaining a minimum transmission time window. In one embodiment, the non-urgent data may be parsed or broken up in to a number of data segments, and transmitted over multiple data packets. The time sensitive immediate data (for example, the analyte sensor data, temperature data, etc.), may be transmitted over the communication link substantially in its entirety with each data packet or transmission.



FIG. 6 is a block diagram illustrating the sensor and the transmitter unit of the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 6, in one aspect, a transmitter unit 620 is provided in a substantially water tight and sealed housing. The transmitter unit 620 includes respective contacts (wrk, ref, cntr, and grd) for respectively establishing electrical contact with one or more of the working electrode, the reference electrode, the counter electrode and the ground terminal (or guard trace) of the sensor 610. Also shown in FIG. 6 is a conductivity bar/trace 611 provided on the sensor 610. For example, in one embodiment, the conductivity bar/trace 611 may comprise a carbon trace on a substrate layer of the sensor 610. In this manner, in one embodiment, when the sensor 610 is coupled to the transmitter unit 620, electrical contact is established, for example, via the conductivity bar/trace 611 between the contact pads or points of the transmitter unit 620 (for example, at the counter electrode contact (cntr) and the ground terminal contact (grd) such that the transmitter unit 620 may be powered for data communication.


That is, during manufacturing of the transmitter unit 620, in one aspect, the transmitter unit 620 is configured to include a power supply such as battery 621. Further, during the initial non-use period (e.g., post manufacturing sleep mode), the transmitter unit 620 is configured such that it is not used and thus drained by the components of the transmitter unit 620. During the sleep mode, and prior to establishing electrical contact with the sensor 610 via the conductivity bar/trace 611, the transmitter unit 620 is provided with a low power signal from, for example, a low power voltage comparator 622, via an electronic switch 623 to maintain the low power state of, for example, the transmitter unit 620 components. Thereafter, upon connection with the sensor 610, and establishing electrical contact via the conductivity bar/trace 611, the embedded power supply 621 of the transmitter unit 620 is activated or powered up so that some of all of the components of the transmitter unit 620 are configured to receive the necessary power signals for operations related to, for example, data communication, processing and/or storage.


In one aspect, since the transmitter unit 620 is configured to a sealed housing without a separate replaceable battery compartment, in this manner, the power supply of the battery 621 is preserved during the post manufacturing sleep mode prior to use.


In a further aspect, the transmitter unit 620 may be disposed or positioned on a separate on-body mounting unit that may include, for example, an adhesive layer (on its bottom surface) to firmly retain the mounting unit on the skin of the user, and which is configured to receive or firmly position the transmitter unit 620 on the mounting unit during use. In one aspect, the mounting unit may be configured to at least partially retain the position of the sensor 610 in a transcutaneous manner so that at least a portion of the sensor is in fluid contact with the analyte of the user. Example embodiments of the mounting or base unit and its cooperation or coupling with the transmitter unit are provided, for example, in U.S. Pat. No. 6,175,752, incorporated herein by reference for all purposes.


In such a configuration, the power supply for the transmitter unit 620 may be provided within the housing of the mounting unit such that, the transmitter unit 620 may be configured to be powered on or activated upon placement of the transmitter unit 620 on the mounting unit and in electrical contact with the sensor 610. For example, the sensor 610 may be provided pre-configured or integrated with the mounting unit and the insertion device such that, the user may position the sensor 610 on the skin layer of the user using the insertion device coupled to the mounting unit. Thereafter, upon transcutaneous positioning of the sensor 610, the insertion device may be discarded or removed from the mounting unit, leaving behind the transcutaneously positioned sensor 610 and the mounting unit on the skin surface of the user.


Thereafter, when the transmitter unit 620 is positioned on, over or within the mounting unit, the battery or power supply provided within the mounting unit is configured to electrically couple to the transmitter unit 620 and/or the sensor 610. Given that the sensor 610 and the mounting unit are provided as replaceable components for replacement every 3, 5, 7 days or other predetermined time periods, the user is conveniently not burdened with verifying the status of the power supply providing power to the transmitter unit 620 during use. That is, with the power supply or battery replaced with each replacement of the sensor 610, a new power supply or battery will be provided with the new mounting unit for use with the transmitter unit 620.


Referring to FIG. 6 again, in one aspect, when the sensor 610 is removed from the transmitter unit 620 (or vice versa), the electrical contact is broken and the conductivity bar/trace 611 returns to an open circuit. In this case, the transmitter unit 620 may be configured, to detect such condition and generate a last gasp transmission sent to the primary receiver unit 104 (and/or the secondary receiver unit 106) indicating that the sensor 610 is disconnected from the transmitter unit 620, and that the transmitter unit 620 is entering a powered down (or low power off) state. And the transmitter unit 620 is powered down into the sleep mode since the connection to the power supply (that is embedded within the transmitter unit 620 housing) is broken.


In this manner, in one aspect, the processor 624 of the transmitter unit 620 may be configured to generate the appropriate one or more data or signals associated with the detection of sensor 610 disconnection for transmission to the receiver unit 104 (FIG. 1), and also, to initiate the power down procedure of the transmitter unit 620. In one aspect, the components of the transmitter unit 620 may be configured to include application specific integrated circuit (ASIC) design with one or more state machines and one or more nonvolatile and/or volatile memory units such as, for example, EEPROMs and the like.


Referring again to FIGS. 1 and 6, in one embodiment, the communication between the transmitter unit 620 (or 102 of FIG. 1) and the primary receiver unit 104 (and/or the secondary receiver unit 106) may be based on close proximity communication where bi-directional (or uni-directional) wireless communication is established when the devices are physically located in close proximity to each other. That is, in one embodiment, the transmitter unit 620 may be configured to receive very short range commands from the primary receiver unit 104 (FIG. 1) and perform one or more specific operations based on the received commands from the receiver unit 104.


In one embodiment, to maintain secure communication between the transmitter unit and the data receiver unit, the transmitter unit ASIC may be configured to generate a unique close proximity key at power on or initialization. In one aspect, the 4 or 8 bit key may be generated based on, for example, the transmitter unit identification information, and which may be used to prevent undesirable or unintended communication. In a further aspect, the close proximity key may be generated by the receiver unit based on, for example, the transmitter identification information received by the transmitter unit during the initial synchronization or pairing procedure of the transmitter and the receiver units.


Referring again to FIGS. 1 and 6, in one embodiment, the transmitter unit ASIC configuration may include a 32 KHz oscillator and a counter which may be configured to drive the state machine in the transmitter unit ASIC. The transmitter ASIC configuration may include a plurality of close proximity communication commands including, for example, new sensor initiation, pairing with the receiver unit, and RF communication control, among others. For example, when a new sensor is positioned and coupled to the transmitter unit so that the transmitter unit is powered on, the transmitter unit is configured to detect or receive a command from the receiver unit positioned in close proximity to the transmitter unit. For example, the receiver unit may be positioned within a couple of inches of the on-body position of the transmitter unit, and when the user activates or initiates a command associated with the new sensor initiation from the receiver unit, the transmitter unit is configured to receive the command from the receiver and, in its response data packet, transmit, among others, its identification information back to the receiver unit.


In one embodiment, the initial sensor initiation command does not require the use of the close proximity key. However, other predefined or preconfigured close-proximity commands may be configured to require the use of the 8 bit key (or a key of a different number of bits). For example, in one embodiment, the receiver unit may be configured to transmit a RF on/off command to turn on/off the RF communication module or unit in the transmitter unit 102.


Such RF on/off command in one embodiment includes the close proximity key as part of the transmitted command for reception by the transmitter unit.


During the period that the RF communication module or unit is turned off based on the received close proximity command, the transmitter unit does not transmit any data, including any glucose related data. In one embodiment, the glucose related data from the sensor which are not transmitted by the transmitter unit during the time period when the RF communication module or unit of the transmitter unit is turned off may be stored in a memory or storage unit of the transmitter unit for subsequent transmission to the receiver unit when the transmitter unit RF communication module or unit is turned back on based on the RF-on command from the receiver unit. In this manner, in one embodiment, the transmitter unit may be powered down (temporarily, for example, during air travel) without removing the transmitter unit from the on-body position.



FIG. 7 is a flowchart illustrating data communication using close proximity commands in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 7, the primary receiver unit 104 (FIG. 1) in one aspect may be configured to retrieve or generate a close proximity command (710) for transmission to the transmitter unit 102. To establish the transmission range (720), the primary receiver unit 104 may be positioned physically close to (that is, within a predetermined distance from) the transmitter unit 102. For example, the transmission range for the close proximity communication may be established at approximately one foot distance or less between the transmitter unit 102 and the primary receiver unit 104. When the transmitter unit 102 and the primary receiver unit 104 are within the transmission range, the close proximity command, upon initiation from the receiver unit 104 may be transmitted to the transmitter unit 102 (730).


Referring back to FIG. 7, in response to the transmitted close proximity command, a response data packet or other responsive communication may be received (740). In one aspect, the response data packet or other responsive communication may include identification information of the transmitter unit 102 transmitting the response data packer or other response communication to the receiver unit 104. In one aspect, the receiver unit 104 may be configured to generate a key (for example, an 8 bit key or a key of a predetermined length) based on the transmitter identification information (750), and which may be used in subsequent close proximity communication between the transmitter unit 102 and the receiver unit 104.


In one aspect, the data communication including the generated key may allow the recipient of the data communication to recognize the sender of the data communication and confirm that the sender of the data communication is the intended data sending device, and thus, including data which is desired or anticipated by the recipient of the data communication. In this manner, in one embodiment, one or more close proximity commands may be configured to include the generated key as part of the transmitted data packet. Moreover, the generated key may be based on the transmitter ID or other suitable unique information so that the receiver unit 104 may use such information for purposes of generating the unique key for the bi-directional communication between the devices.


While the description above includes generating the key based on the transmitter unit 102 identification information, within the scope of the present disclosure, the key may be generated based on one or more other information associated with the transmitter unit 102, and/or the receiver unit combination. In a further embodiment, the key may be encrypted and stored in a memory unit or storage device in the transmitter unit 102 for transmission to the receiver unit 104.



FIG. 8 is a flowchart illustrating sensor insertion detection routine in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 8, connection to an analyte sensor is detected (810), based on for example, a power up procedure where the sensor conduction trace 611 (FIG. 6) is configured to establish electrical contact with a predetermined one or more contact points on the transmitter unit 102. That is, when the sensor 101 (for example, the electrodes of the sensor) is correspondingly connected to the contact points on the transmitter unit 102, the transmitter unit 102 is configured to close the circuit connecting its power supply (for example, the battery 621 (FIG. 6)) to the components of the transmitter unit 102 and thereby exiting the power down or low power state into active or power up state.


In this manner, as discussed above, in one aspect, the transmitter unit 102 may be configured to include a power supply such as a battery 621 integrally provided within the sealed housing of the transmitter unit 102. When the transmitter unit 102 is connected or coupled to the respective electrodes of the analyte sensor that is positioned in a transcutaneous manner under the skin layer of the patient, the transmitter unit 102 is configured to wake up from its low power or sleep state (820), and power up the various components of the transmitter unit 102. In the active state, the transmitter unit 102 may be further configured to receive and process sensor signals received from the analyte sensor 101 (FIG. 1) (830), and thereafter, transmit the processed sensor signals (840) to, for example, the receiver unit 104 (FIG. 1).


Accordingly, in one aspect, the sensor 610 (FIG. 6) may be provided with a conduction trace 611 which may be used to wake up or exit the transmitter unit from its post manufacturing sleep mode into an active state, by for example, establishing a closed circuit with the power supply provided within the transmitter unit 102.



FIG. 9 is a flowchart illustrating sensor removal detection routine in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 9, when the sensor removal is detected (910) for example, based on detaching or removing the transmitter unit 102 that was in contact with the sensor 101, one or more status signal is generated (920), that includes, for example, an indication that the sensor removal state has been detected, and/or an indication that the transmitter unit 102 will enter a sleep mode or a powered down status. Thereafter, the generated status signal in one aspect is transmitted, for example, to the receiver unit 104 (930), and the transmitter unit 102 is configured to enter the power down mode or low power sleep mode (940).


In this manner, in one aspect, when the transmitter unit 102 is disconnected with an active sensor 101, the transmitter unit 102 is configured to notify the receiver unit 104 that the sensor 101 has been disconnected or otherwise, signals from the sensor 101 are no longer received by the transmitter unit 102. After transmitting the one or more signals to notify the receiver unit 104, the transmitter unit 102 in one embodiment is configured to enter sleep mode or low power state during which no data related to the monitored analyte level is transmitted to the receiver unit 104.



FIG. 10 is a flowchart illustrating the pairing or synchronization routine in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 10, in one embodiment, the transmitter unit 102 may be configured to receive a sensor initiate close proximity command (1010) from the receiver unit 104 positioned within the close transmission range. Based on the received sensor initiate command, the transmitter unit identification information may be retrieved (for example, from a nonvolatile memory) and transmitted (1020) to the receiver unit 104 or the sender of the sensor initiate command.


Referring back to FIG. 10, a communication key optionally encrypted is received (1030) in one embodiment, and thereafter, sensor related data is transmitted with the communication key on a periodic basis such as, every 60 seconds, five minutes, or any suitable predetermined time intervals (1040).


Referring now to FIG. 11, a flowchart illustrating the pairing or synchronization routine in the data monitoring and management system of FIG. 1 in accordance with another embodiment of the present invention is shown. That is, in one aspect, FIG. 11 illustrates the pairing or synchronization routine from the receiver unit 104. Referring back to FIG. 11, the sensor initiate command is transmitted to the transmitter unit 102 (1110) when the receiver unit 104 is positioned within a close transmission range. Thereafter, in one aspect, the transmitter identification information is received (1120) for example, from the transmitter unit that received the sensor initiate command. Thereafter, a communication key (optionally encrypted) may be generated and transmitted (1130) to the transmitter unit.


In the manner described above, in one embodiment, a simplified pairing or synchronization between the transmitter unit 102 and the receiver unit 104 may be established using, for example, close proximity commands between the devices. As described above, in one aspect, upon pairing or synchronization, the transmitter unit 102 may be configured to periodically transmit analyte level information to the receiver unit for further processing.



FIG. 12 is a flowchart illustrating the power supply determination in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. That is, in one embodiment, using a counter, the receiver unit 104 may be configured to determine the power supply level of the transmitter unit 102 battery so as to determine a suitable time for replacement of the power supply or the transmitter unit 102 itself. Referring to FIG. 12, periodic data transmission is detected (1210), and a corresponding count in the counter is incremented for example, by one with each detected data transmission (1220). In particular, a Hobbs counter may be used in the rolling data configuration described above to provide a count that is associated with the transmitter unit data transmission occurrence.


Referring to FIG. 12, the updated or incremented count stored in the Hobbs counter is periodically transmitted in the data packet from the transmitter unit 102 to the receiver unit 104 (1230). Moreover, the incremented or updated count may be stored (1240) in a persistent nonvolatile memory unit of the transmitter unit 102. Accordingly, based on the number of data transmission occurrences, the battery power supply level may be estimated, and in turn, which may provide an indication as to when the battery (and thus the transmitter unit in the embodiment where the power supply is manufactured to be embedded within the transmitter unit housing) needs to be replaced.


Moreover, in one aspect, the incremented count in the Hobbs counter is stored in a persistent nonvolatile memory such that, the counter is not reset or otherwise restarted with each sensor replacement.



FIG. 13 is a flowchart illustrating close proximity command for RF communication control in the data monitoring and management system of FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 13, a close proximity command associated with communication status, for example is received (1310). In one aspect, the command associated with the communication status may include, for example, a communication module turn on or turn off command for, for example, turning on or turning off the associated RF communication device of the transmitter unit 102. Referring to FIG. 13, the communication status is determined (1320), and thereafter, modified based on the received command (1330).


That is, in one aspect, using one or more close proximity commands, the receiver unit 104 may be configured to control the RF communication of the transmitter unit 102 to, for example, disable or turn off the RF communication functionality for a predetermined time period. This may be particularly useful when used in air travel or other locations such as hospital settings, where RF communication devices need to be disabled. In one aspect, the close proximity command may be used to either turn on or turn off the RF communication module of the transmitter unit 102, such that, when the receiver unit 104 is positioned in close proximity to the transmitter unit 102, and the RF command is transmitted, the transmitter unit 102 is configured, in one embodiment, to either turn off or turn on the RF communication capability of the transmitter unit 102.



FIG. 14 is a flowchart illustrating analyte sensor identification routine in accordance with one embodiment of the present invention. Referring to FIG. 14, periodically, sensor counter information is received (1410), for example included as rolling data discussed above. The received sensor counter information may be stored in one or more storage units such as a memory unit. When the sensor counter information is received, a stored sensor counter information is retrieved (1420), and the retrieved sensor counter information is compared with the received sensor counter information (1430). Based on the comparison between the retrieved sensor counter information and the received sensor counter information, one or more signal is generated and output (1440).


That is, in one aspect, the sensor counter in the transmitter unit 102 may be configured to increment by one with each new sensor replacement. Thus, in one aspect, the sensor counter information may be associated with a particular sensor from which monitored analyte level information is generated and transmitted to the receiver unit 104. Accordingly, in one embodiment, based on the sensor counter information, the receiver unit 104 may be configured to ensure that the analyte related data is generated and received from the correct analyte sensor transmitted from the transmitter unit 102.


An analyte monitoring system in one aspect includes a data processing unit, and a control unit in wireless communication with the data processing unit, the control unit configured to transmit one or more predefined close proximity commands to the data processing unit, where the data processing unit is configured to perform one or more predefined functions in response to the received one or more predefined close proximity commands.


The data processing unit may include a close proximity receiver coupled to an antenna for receiving the one or more predefined close proximity commands from the control unit.


In one aspect, the data processing unit may be configured to transmit one or more signals related to a monitored analyte level in response to the received one or more predefined close proximity commands.


Further, the communication of the one or more predefined close proximity commands may be performed when the data processing unit and the control unit are within a predetermined distance from each other, where the predetermined distance may include a distance of less than one foot.


Also, there may be provided a memory unit, which may include an EEPROM or any other suitable type of nonvolatile or volatile memory, or combinations thereof.


In one embodiment, the control unit may include an application specific integrated circuit (ASIC) configuration.


The analyte sensor may be coupled to the data processing unit, where the data processing unit may receive one or more signals from the analyte sensor, and where the control unit and the data processing unit may be in wireless communication using RF communication protocol.


A method in accordance with one embodiment includes positioning a controller unit within a transmission range for close proximity communication, transmitting one or more predefined close proximity commands, and receiving a response packet in response to the transmitted one or more predefined close proximity commands.


The method may include generating a communication key associated with the response packet, where the communication key may be generated based at least in part on a transmitter unit identification information, and further, where the transmitter unit identification information may be included in the response packet.


The transmission range in one embodiment may include a distance of less than one foot.


The method may also include storing one or more of the predefined close proximity commands or the response packet, where storing may include storing the commands or the response packet in a nonvolatile memory device.


The method may include receiving one or more signals from the analyte sensor, and further, where the transmitting and receiving include RF communication protocol.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. An analyte monitoring device, comprising: an analyte sensor for positioning in fluid contact with bodily fluid under a skin surface to monitor an analyte level in the bodily fluid; andsensor electronics operatively coupled to the analyte sensor and configured to:
  • 2. The device of claim 1, wherein the sensor electronics further includes a memory, and is configured to update a memory location in the memory with each communication to the remote location.
  • 3. The device of claim 2, wherein the identification information communicated by the sensor electronics to the remote location include one or more of sensor electronics information and analyte sensor parameter information.
  • 4. The device of claim 3, wherein the analyte sensor parameter information includes a sensor calibration parameter stored in the memory of the sensor electronics.
  • 5. The device of claim 1, wherein the remote location and the sensor electronics are in wireless communication using a radio frequency communication protocol.
  • 6. The device of claim 1, wherein the sensor electronics includes a current to frequency conversion unit operatively coupled to the analyte sensor, the current to frequency conversion unit configured to receive current signals from the analyte sensor which are representative of the monitored analyte level, and to convert the received current signals to respective counts.
  • 7. The device of claim 1, wherein the remote location includes a display configured to output data related to the response data packet communicated from the sensor electronics.
  • 8. The device of claim 1, wherein the analyte sensor includes a plurality of electrodes comprising at least one working electrode having an analyte-responsive enzyme bonded to a polymer disposed on the working electrode.
  • 9. The device of claim 8, wherein the working electrode comprises a mediator.
  • 10. The device of claim 9, wherein the mediator is crosslinked with the polymer disposed on the working electrode.
  • 11. A system, comprising: an analyte sensor for positioning in fluid contact with bodily fluid under a skin surface to monitor an analyte level in the bodily fluid;a remote location to provide predefined commands; andsensor electronics operatively coupled to the analyte sensor and configured to:
  • 12. The system of claim 11, wherein the sensor electronics further includes a memory, and is configured to update a memory location in the memory with each communication to the remote location.
  • 13. The system of claim 12, wherein the identification information communicated by the sensor electronics to the remote location include one or more of sensor electronics information and analyte sensor parameter information.
  • 14. The system of claim 13, wherein the analyte sensor parameter information includes a sensor calibration parameter stored in the memory of the sensor electronics.
  • 15. The system of claim 11, wherein the remote location and the sensor electronics are in wireless communication using a radio frequency communication protocol.
  • 16. The system of claim 11, wherein the sensor electronics includes a current to frequency conversion unit operatively coupled to the analyte sensor, the current to frequency conversion unit configured to receive current signals from the analyte sensor which are representative of the monitored analyte level, and to convert the received current signals to respective counts.
  • 17. The system of claim 11, wherein the remote location includes a display configured to output data related to the response data packet communicated from the sensor electronics.
  • 18. The system of claim 11, wherein the analyte sensor includes a plurality of electrodes comprising at least one working electrode having an analyte-responsive enzyme bonded to a polymer disposed on the working electrode.
  • 19. The system of claim 18, wherein the working electrode comprises a mediator.
  • 20. The system of claim 19, wherein the mediator is crosslinked with the polymer disposed on the working electrode.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/709,392 filed May 11, 2015, now U.S. Pat. No. 9,649,057, which is a continuation of U.S. patent application Ser. No. 13/906,288 filed May 30, 2013, now U.S. Pat. No. 9,035,767, which is a continuation of U.S. patent application Ser. No. 12/117,698 filed May 8, 2008, now U.S. Pat. No. 8,456,301, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/916,776 filed May 8, 2007, entitled “Analyte Monitoring System and Methods”, the disclosures of each of which are incorporated herein by reference for all purposes.

US Referenced Citations (2076)
Number Name Date Kind
2755036 Mikko Jul 1956 A
3260656 Ross, Jr. Jul 1966 A
3304413 Lehmann et al. Feb 1967 A
3581062 Aston May 1971 A
3651318 Czekajewski Mar 1972 A
3653841 Klein Apr 1972 A
3698386 Fried Oct 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3768014 Smith et al. Oct 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3919051 Koch et al. Nov 1975 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4003379 Ellinwood, Jr. Jan 1977 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4021718 Konrad May 1977 A
4031449 Trombly Jun 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4154231 Russell May 1979 A
4168205 Danniger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4193026 Finger et al. Mar 1980 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4240889 Yoda et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4271449 Grogan Jun 1981 A
4318784 Higgins et al. Mar 1982 A
4327725 Cortese et al. May 1982 A
4331869 Rollo May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4392933 Nakamura et al. Jul 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4407959 Tsuji et al. Oct 1983 A
4417588 Houghton et al. Nov 1983 A
4418148 Oberhardt Nov 1983 A
4420564 Tsuji et al. Dec 1983 A
4425920 Bourland et al. Jan 1984 A
4427004 Miller et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4441968 Emmer et al. Apr 1984 A
4444892 Malmros Apr 1984 A
4445090 Melocik et al. Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4464170 Clemens et al. Aug 1984 A
4467811 Clark, Jr. Aug 1984 A
4469110 Slama Sep 1984 A
4475901 Kraegen et al. Oct 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4483924 Tsuji et al. Nov 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4512348 Uchigaki et al. Apr 1985 A
4522690 Venkatsetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4569589 Neufeld Feb 1986 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4583035 Sloan Apr 1986 A
4595011 Phillips Jun 1986 A
4595479 Kimura et al. Jun 1986 A
4601707 Albisser et al. Jul 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia et al. Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardien Jan 1987 A
4633881 Moore et al. Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4648408 Hutcheson et al. Mar 1987 A
4650547 Gough Mar 1987 A
4653513 Dombrowski Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4658463 Sugita et al. Apr 1987 A
4671288 Gough Jun 1987 A
4674652 Aten et al. Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685903 Cable et al. Aug 1987 A
4686624 Blum et al. Aug 1987 A
4703324 White Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4750496 Reinhardt Jun 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4803625 Fu et al. Feb 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
4835372 Gombrich et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4837049 Byers et al. Jun 1989 A
4840893 Hill et al. Jun 1989 A
RE32974 Porat et al. Jul 1989 E
4844076 Lesho et al. Jul 1989 A
4845035 Fanta et al. Jul 1989 A
4847785 Stephens Jul 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4856340 Garrison Aug 1989 A
4857713 Brown Aug 1989 A
4858617 Sanders Aug 1989 A
4870561 Love et al. Sep 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874499 Smith et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4890621 Hakky Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4899839 Dessertine et al. Feb 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4920969 Suzuki May 1990 A
4920977 Haynes May 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4931795 Gord Jun 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4936956 Wrighton Jun 1990 A
4938860 Wogoman Jul 1990 A
4942127 Wada et al. Jul 1990 A
4944299 Silvian Jul 1990 A
4945045 Forrest et al. Jul 1990 A
4950378 Nagata Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4957115 Selker Sep 1990 A
4958632 Duggan Sep 1990 A
4968400 Shimomura et al. Nov 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4979509 Hakky Dec 1990 A
4986271 Wilkins Jan 1991 A
4990845 Gord Feb 1991 A
4991582 Byers et al. Feb 1991 A
4994068 Hufnagie Feb 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5001054 Wagner Mar 1991 A
5002054 Ash et al. Mar 1991 A
5007427 Suzuki et al. Apr 1991 A
5016172 Dessertine May 1991 A
5016201 Bryan et al. May 1991 A
5019974 Beckers May 1991 A
5034192 Wrighton et al. Jul 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5036861 Sembrowich et al. Aug 1991 A
5037527 Hayashi et al. Aug 1991 A
5049487 Phillips et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5051688 Murase et al. Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5061941 Lizzi et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5068536 Rosenthal Nov 1991 A
5070535 Hochmair et al. Dec 1991 A
5073500 Saito et al. Dec 1991 A
5077476 Rosenthal Dec 1991 A
5078854 Burgess et al. Jan 1992 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5084828 Kaufman et al. Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5094951 Rosenberg Mar 1992 A
5095904 Seligman et al. Mar 1992 A
5096560 Takai et al. Mar 1992 A
5096836 Macho et al. Mar 1992 A
5097834 Skrabal Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5111539 Hiruta et al. May 1992 A
5111818 Suzuji et al. May 1992 A
5112455 Cozzette et al. May 1992 A
5114678 Crawford et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5120421 Glass et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5124661 Zellin et al. Jun 1992 A
5126034 Carter et al. Jun 1992 A
5126247 Palmer et al. Jun 1992 A
5130009 Marsoner et al. Jul 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5134391 Okada Jul 1992 A
5135003 Souma Aug 1992 A
5135004 Adams et al. Aug 1992 A
5139023 Stanley et al. Aug 1992 A
5140393 Hijikihigawa et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5168046 Hamamoto et al. Dec 1992 A
5174291 Schoonen et al. Dec 1992 A
5176644 Srisathapat et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5182707 Cooper et al. Jan 1993 A
5184359 Tsukamura et al. Feb 1993 A
5185256 Nankai et al. Feb 1993 A
5190041 Palti Mar 1993 A
5192415 Yoshioka et al. Mar 1993 A
5192416 Wang et al. Mar 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5197322 Indravudh Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5200051 Cozzette et al. Apr 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5206145 Cattell Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5215887 Saito Jun 1993 A
5216597 Beckers Jun 1993 A
5217442 Davis Jun 1993 A
5217595 Smith et al. Jun 1993 A
5227042 Zawodzinski et al. Jul 1993 A
5229282 Yoshioka et al. Jul 1993 A
5236143 Dragon Aug 1993 A
5237993 Skrabal Aug 1993 A
5245314 Kah et al. Sep 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5251126 Kahn et al. Oct 1993 A
5257971 Lord et al. Nov 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5261401 Baker et al. Nov 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5265888 Yamamoto et al. Nov 1993 A
5266179 Nankai et al. Nov 1993 A
5269212 Peters et al. Dec 1993 A
5271815 Wong Dec 1993 A
5272060 Hamamoto et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5278079 Gubinski et al. Jan 1994 A
5279294 Anderson et al. Jan 1994 A
5282950 Dietze et al. Feb 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5289497 Jackobson et al. Feb 1994 A
5291887 Stanley et al. Mar 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5307263 Brown Apr 1994 A
5309919 Snell et al. May 1994 A
5310885 Maier et al. May 1994 A
5320098 Davidson Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5324303 Strong et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5326449 Cunningham Jul 1994 A
5333615 Craelius et al. Aug 1994 A
5337258 Dennis Aug 1994 A
5337747 Neftei Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356348 Bellio et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5358135 Robbins et al. Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5364797 Olson et al. Nov 1994 A
5366609 White et al. Nov 1994 A
5368028 Palti Nov 1994 A
5370622 Livingston et al. Dec 1994 A
5371687 Holmes, II et al. Dec 1994 A
5371734 Fischer Dec 1994 A
5371787 Hamilton Dec 1994 A
5372133 Hogen Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5377258 Bro Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5379764 Barnes et al. Jan 1995 A
5380422 Negishis et al. Jan 1995 A
5382346 Uenoyama et al. Jan 1995 A
5387327 Khan Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5393903 Gratzel et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5399823 McCusker Mar 1995 A
5400782 Beaubiah Mar 1995 A
5400794 Gorman Mar 1995 A
5408999 Singh et al. Apr 1995 A
5410326 Goldstein Apr 1995 A
5410471 Alyfuku et al. Apr 1995 A
5410474 Fox Apr 1995 A
5411647 Johnson et al. May 1995 A
5413690 Kost et al. May 1995 A
5422246 Koopal et al. Jun 1995 A
5425868 Pedersen Jun 1995 A
5429602 Hauser Jul 1995 A
5431160 Wilkins Jul 1995 A
5431691 Snell et al. Jul 1995 A
5431921 Thombre Jul 1995 A
5433710 Van Antwerp et al. Jul 1995 A
5437973 Vadgama et al. Aug 1995 A
5437999 Dieboid et al. Aug 1995 A
5438271 White et al. Aug 1995 A
5438983 Falcone Aug 1995 A
5445611 Eppstein et al. Aug 1995 A
5445920 Saito Aug 1995 A
5456692 Smith, Jr. et al. Oct 1995 A
5456940 Funderburk Oct 1995 A
5458140 Eppstein et al. Oct 1995 A
5460618 Harreld Oct 1995 A
5462051 Oka et al. Oct 1995 A
5462525 Srisathapat et al. Oct 1995 A
5462645 Albery et al. Oct 1995 A
5466218 Srisathapat et al. Nov 1995 A
5467778 Catt et al. Nov 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5476460 Montalvo Dec 1995 A
5477855 Schindler et al. Dec 1995 A
5482473 Lord et al. Jan 1996 A
5484404 Schulman et al. Jan 1996 A
5487751 Radons et al. Jan 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5499243 Hall Mar 1996 A
5501956 Wada et al. Mar 1996 A
5505709 Funderburk Apr 1996 A
5505713 Van Antwerp et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5508171 Walling et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514103 Srisathapat et al. May 1996 A
5514253 Davis et al. May 1996 A
5514718 Lewis et al. May 1996 A
5518006 Mawhirt et al. May 1996 A
5520787 Hanagan et al. May 1996 A
5522865 Schulman et al. Jun 1996 A
5525511 D'Costa Jun 1996 A
5526120 Jina et al. Jun 1996 A
5527307 Srisathapat et al. Jun 1996 A
5529676 Maley et al. Jun 1996 A
5531878 Vadgama et al. Jul 1996 A
5532686 Urbas et al. Jul 1996 A
5538511 Van Antwerp et al. Jul 1996 A
5544196 Tiedmann, Jr. et al. Aug 1996 A
5545152 Funderburk et al. Aug 1996 A
5545191 Mann et al. Aug 1996 A
5549113 Halleck et al. Aug 1996 A
5549115 Morgan et al. Aug 1996 A
5552027 Birkle et al. Sep 1996 A
5554166 Lange et al. Sep 1996 A
5556524 Albers Sep 1996 A
5558638 Evers et al. Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5569212 Brown Oct 1996 A
5573647 Maley et al. Nov 1996 A
5575895 Ikeda et al. Nov 1996 A
5580527 Bell et al. Dec 1996 A
5580794 Allen Dec 1996 A
5581206 Chevallier et al. Dec 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5594906 Holmes, II et al. Jan 1997 A
5596150 Arndy et al. Jan 1997 A
5596994 Bro Jan 1997 A
5600301 Robinson, III Feb 1997 A
5601435 Quy Feb 1997 A
5601694 Maley et al. Feb 1997 A
5605152 Slate et al. Feb 1997 A
5609575 Larson et al. Mar 1997 A
5611900 Worden et al. Mar 1997 A
5615135 Waclawsky et al. Mar 1997 A
5615671 Schoonen et al. Apr 1997 A
5616222 Maley et al. Apr 1997 A
5617851 Lipkovker Apr 1997 A
5623925 Swenson et al. Apr 1997 A
5623933 Amano et al. Apr 1997 A
5628309 Brown May 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5629981 Nerlikar May 1997 A
5634468 Platt et al. Jun 1997 A
5637095 Nason et al. Jun 1997 A
5640764 Strojnik Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5643212 Coutre et al. Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5650062 Ikeda et al. Jul 1997 A
5651767 Schulman et al. Jul 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5659454 Vermesse Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665065 Colman et al. Sep 1997 A
5665222 Heller et al. Sep 1997 A
5667983 Abel et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5678571 Brown Oct 1997 A
5679690 Andre et al. Oct 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5686717 Knowles et al. Nov 1997 A
5695623 Michel et al. Dec 1997 A
5695949 Galen et al. Dec 1997 A
5701894 Cherry et al. Dec 1997 A
5704922 Brown Jan 1998 A
5707502 McCaffrey et al. Jan 1998 A
5708247 McAleer et al. Jan 1998 A
5710630 Essenpreis et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5711868 Maley et al. Jan 1998 A
5718234 Warden et al. Feb 1998 A
5720733 Brown Feb 1998 A
5720862 Hamamoto et al. Feb 1998 A
5721783 Anderson Feb 1998 A
5722397 Eppstein Mar 1998 A
5724030 Urbas et al. Mar 1998 A
5726646 Bane et al. Mar 1998 A
5727548 Hill et al. Mar 1998 A
5729225 Ledzius Mar 1998 A
5730124 Yamauchi Mar 1998 A
5730654 Brown Mar 1998 A
5733313 Barreras, Sr. et al. Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5741688 Oxenboll et al. Apr 1998 A
5746217 Erickson et al. May 1998 A
5748103 Flach et al. May 1998 A
5749907 Mann May 1998 A
5750926 Schulman et al. May 1998 A
5758290 Nealon et al. May 1998 A
5769873 Zadeh Jun 1998 A
5770028 Maley et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5771890 Tamada Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5777060 Van Antwerp Jul 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5781024 Blomberg et al. Jul 1998 A
5782814 Brown et al. Jul 1998 A
5785681 Indravudh Jul 1998 A
5786439 Van Antwerp et al. Jul 1998 A
5786584 Button et al. Jul 1998 A
5788678 Van Antwerp Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5792117 Brown Aug 1998 A
5793292 Ivey Aug 1998 A
5800420 Gross et al. Sep 1998 A
5804047 Karube et al. Sep 1998 A
5804048 Wong et al. Sep 1998 A
5807315 Van Antwerp et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820570 Erickson et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5825488 Kohl et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5827183 Kurnik et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5828943 Brown Oct 1998 A
5830064 Bradish et al. Nov 1998 A
5830129 Baer et al. Nov 1998 A
5830132 Robinson Nov 1998 A
5830341 Gilmartin Nov 1998 A
5832448 Brown Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5834224 Ruger et al. Nov 1998 A
5837454 Cozzette et al. Nov 1998 A
5837546 Allen et al. Nov 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5843140 Strojnik Dec 1998 A
5846702 Deng et al. Dec 1998 A
5846744 Athey et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5854078 Asher et al. Dec 1998 A
5854189 Kruse et al. Dec 1998 A
5856758 Joffe et al. Jan 1999 A
5857967 Frid et al. Jan 1999 A
5857983 Douglas et al. Jan 1999 A
5860917 Comanor et al. Jan 1999 A
5872713 Douglas et al. Feb 1999 A
5876484 Raskin et al. Mar 1999 A
5879163 Brown et al. Mar 1999 A
5879311 Duchon et al. Mar 1999 A
5880829 Kauhaniemi et al. Mar 1999 A
5882494 Van Antwerp Mar 1999 A
5885211 Eppstein et al. Mar 1999 A
5887133 Brown et al. Mar 1999 A
5891049 Cyrus et al. Apr 1999 A
5897493 Brown Apr 1999 A
5898025 Burg et al. Apr 1999 A
5899855 Brown May 1999 A
5913310 Brown Jun 1999 A
5917346 Gord Jun 1999 A
5918603 Brown Jul 1999 A
5919141 Money et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931791 Saltzstein et al. Aug 1999 A
5933136 Brown Aug 1999 A
5935099 Petterson Aug 1999 A
5935224 Svancarek et al. Aug 1999 A
5939609 Knapp et al. Aug 1999 A
5940801 Brown Aug 1999 A
5942979 Luppino Aug 1999 A
5945345 Blatt et al. Aug 1999 A
5947921 Johnson et al. Sep 1999 A
5948512 Kubota et al. Sep 1999 A
5950632 Reber et al. Sep 1999 A
5951300 Brown Sep 1999 A
5951485 Cyrus et al. Sep 1999 A
5951492 Douglas et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951836 McAleer et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5954700 Kovelman Sep 1999 A
5956501 Brown Sep 1999 A
5957854 Besson et al. Sep 1999 A
5957890 Mann et al. Sep 1999 A
5957958 Schulman et al. Sep 1999 A
5960403 Brown Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5968839 Blatt et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5977476 Guha et al. Nov 1999 A
5981294 Blatt et al. Nov 1999 A
5989409 Kurnik et al. Nov 1999 A
5994476 Shin et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997476 Brown Dec 1999 A
5999848 Gord et al. Dec 1999 A
5999849 Gord et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6002954 Van Antwerp et al. Dec 1999 A
6002961 Mitragotri et al. Dec 1999 A
6004441 Fujiwara et al. Dec 1999 A
6011984 Van Antwerp et al. Jan 2000 A
6014577 Henning et al. Jan 2000 A
6018678 Mitragotri et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026320 Carlson et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6027692 Galen et al. Feb 2000 A
6028413 Brockmann Feb 2000 A
6032059 Henning et al. Feb 2000 A
6032199 Lim et al. Feb 2000 A
6033866 Guo et al. Mar 2000 A
6035237 Schulman et al. Mar 2000 A
6040194 Chick et al. Mar 2000 A
6041253 Kost et al. Mar 2000 A
6043437 Schulman et al. Mar 2000 A
6049727 Crothall Apr 2000 A
6052565 Ishikura et al. Apr 2000 A
6055316 Perlman et al. Apr 2000 A
6056718 Funderburk et al. May 2000 A
6063459 Velte May 2000 A
6066243 Anderson et al. May 2000 A
6066448 Wohlstadter et al. May 2000 A
6067474 Schulman et al. May 2000 A
6068615 Brown et al. May 2000 A
6071249 Cunningham et al. Jun 2000 A
6071251 Cunningham et al. Jun 2000 A
6071294 Simons et al. Jun 2000 A
6071391 Gotoh et al. Jun 2000 A
6073031 Helstab et al. Jun 2000 A
6081736 Colvin et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6084523 Gelnovatch et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6091987 Thompson Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6093167 Houben et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6096364 Bok et al. Aug 2000 A
6097480 Kaplan Aug 2000 A
6097831 Wieck et al. Aug 2000 A
6099484 Douglas et al. Aug 2000 A
6101478 Brown Aug 2000 A
6103033 Say et al. Aug 2000 A
6106780 Douglas et al. Aug 2000 A
6110148 Brown et al. Aug 2000 A
6110152 Kovelman Aug 2000 A
6113578 Brown Sep 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6125978 Ando et al. Oct 2000 A
6130623 MacLellan et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6134504 Douglas et al. Oct 2000 A
6139718 Kurnik et al. Oct 2000 A
6141573 Kurnik et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6144869 Berner et al. Nov 2000 A
6144871 Saito et al. Nov 2000 A
6144922 Douglas et al. Nov 2000 A
6148094 Kinsella Nov 2000 A
6150128 Uretsky Nov 2000 A
6151517 Honigs et al. Nov 2000 A
6151586 Brown Nov 2000 A
6153062 Saito et al. Nov 2000 A
6153069 Pottgen et al. Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6162639 Douglas Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167362 Brown et al. Dec 2000 A
6168563 Brown Jan 2001 B1
6170318 Lewis Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6180416 Kurnik et al. Jan 2001 B1
6186145 Brown Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6193873 Ohara et al. Feb 2001 B1
6196970 Brown Mar 2001 B1
6198957 Green Mar 2001 B1
6200265 Walsh et al. Mar 2001 B1
6201979 Kurnik et al. Mar 2001 B1
6201980 Darrow et al. Mar 2001 B1
6203495 Bardy et al. Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6207400 Kwon Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6210272 Brown Apr 2001 B1
6210976 Sabbadini Apr 2001 B1
6212416 Ward et al. Apr 2001 B1
6218809 Downs et al. Apr 2001 B1
6219565 Cupp et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6224745 Baltruschat May 2001 B1
6232130 Wolf May 2001 B1
6232370 Kubota et al. May 2001 B1
6233471 Berner et al. May 2001 B1
6233539 Brown May 2001 B1
6239925 Ardrey et al. May 2001 B1
6241862 McAleer et al. Jun 2001 B1
6246330 Nielsen Jun 2001 B1
6246992 Brown Jun 2001 B1
6248065 Brown Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6248093 Moberg Jun 2001 B1
6251260 Heller et al. Jun 2001 B1
6252032 Van Antwerp et al. Jun 2001 B1
6253804 Safabash Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6256643 Cork et al. Jul 2001 B1
6259587 Sheldon et al. Jul 2001 B1
6259937 Schulman et al. Jul 2001 B1
6260022 Brown Jul 2001 B1
6266645 Simpson Jul 2001 B1
6267724 Taylor Jul 2001 B1
6268161 Han et al. Jul 2001 B1
6270445 Dean, Jr. et al. Aug 2001 B1
6270455 Brown Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6280416 Van Antwerp et al. Aug 2001 B1
6280587 Matsumoto Aug 2001 B1
6281006 Heller et al. Aug 2001 B1
6283943 Dy et al. Sep 2001 B1
6284126 Kurnik et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6291200 LeJeune et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6294281 Heller Sep 2001 B1
6294997 Paratore et al. Sep 2001 B1
6295463 Stenzler Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6298254 Tamada Oct 2001 B2
6299347 Pompei Oct 2001 B1
6299578 Kurnik et al. Oct 2001 B1
6299757 Feldman et al. Oct 2001 B1
6301499 Carlson et al. Oct 2001 B1
6304766 Colvin, Jr. et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6307867 Roobol et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6313749 Horne et al. Nov 2001 B1
6314317 Willis Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6319540 Van Antwerp et al. Nov 2001 B1
6326160 Dunn et al. Dec 2001 B1
6329161 Heller et al. Dec 2001 B1
6329929 Weijand et al. Dec 2001 B1
6330426 Brown et al. Dec 2001 B2
6330464 Colvin, Jr. et al. Dec 2001 B1
6331518 Hemm et al. Dec 2001 B2
6334778 Brown Jan 2002 B1
6336900 Alleckson et al. Jan 2002 B1
6338790 Feldman et al. Jan 2002 B1
6340421 Vachon et al. Jan 2002 B1
6341232 Conn et al. Jan 2002 B1
6356776 Berner et al. Mar 2002 B1
6359270 Bridson Mar 2002 B1
6359594 Junod Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366793 Bell et al. Apr 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6370410 Kurnik et al. Apr 2002 B2
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6383767 Polak May 2002 B1
6385473 Haines et al. May 2002 B1
6387048 Schulman et al. May 2002 B1
6391643 Chen et al. May 2002 B1
6393318 Conn et al. May 2002 B1
6398562 Butler et al. Jun 2002 B1
6400974 Lesho Jun 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6416471 Kumar et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6434409 Pfeiffer et al. Aug 2002 B1
6438414 Conn et al. Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6442637 Hawkins et al. Aug 2002 B1
6442672 Ganapathy Aug 2002 B1
6443942 Van Antwerp et al. Sep 2002 B2
6449255 Waclawsky et al. Sep 2002 B1
6454710 Ballerstadt et al. Sep 2002 B1
6462162 Van Antwerp et al. Oct 2002 B2
6464848 Matsumoto Oct 2002 B1
6466810 Ward et al. Oct 2002 B1
6468222 Mault et al. Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6472122 Schulman et al. Oct 2002 B1
6475750 Han et al. Nov 2002 B1
6477395 Schulman et al. Nov 2002 B2
6478736 Mault Nov 2002 B1
6480730 Darrow et al. Nov 2002 B2
6480744 Ferek-Petric Nov 2002 B2
6482156 Iliff Nov 2002 B2
6482158 Mault Nov 2002 B2
6482604 Kwon Nov 2002 B2
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6485138 Kubota et al. Nov 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6494830 Wessel Dec 2002 B1
6496728 Li et al. Dec 2002 B2
6496729 Thompson Dec 2002 B2
6497655 Linberg et al. Dec 2002 B1
6505059 Kollias et al. Jan 2003 B1
6505121 Russel Jan 2003 B1
6512939 Colvin et al. Jan 2003 B1
6513532 Mault et al. Feb 2003 B2
6514718 Heller et al. Feb 2003 B2
6515593 Stark et al. Feb 2003 B1
6520326 McIvor et al. Feb 2003 B2
6529755 Kurnik et al. Mar 2003 B2
6529772 Carlson et al. Mar 2003 B2
6530915 Eppstein et al. Mar 2003 B1
6533733 Ericson et al. Mar 2003 B1
6534322 Sabbadini Mar 2003 B1
6534323 Sabbadini Mar 2003 B1
6535753 Raskas Mar 2003 B1
6537243 Henning et al. Mar 2003 B1
6540675 Aceti et al. Apr 2003 B2
6541266 Modzelweskei et al. Apr 2003 B2
6544212 Galley et al. Apr 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6546269 Kurnik Apr 2003 B1
6549796 Sohrab Apr 2003 B2
6551276 Mann et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6553244 Lesho et al. Apr 2003 B2
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561975 Pool et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6564807 Schulman et al. May 2003 B1
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6571200 Mault May 2003 B1
6572545 Knobbe et al. Jun 2003 B2
6574510 Von Arx et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6576117 Iketaki et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579231 Phipps Jun 2003 B1
6579498 Eglise Jun 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6580364 Munch et al. Jun 2003 B1
6584335 Haar et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6587705 Kim et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6591126 Roeper et al. Jul 2003 B2
6594514 Berner et al. Jul 2003 B2
6595919 Berner et al. Jul 2003 B2
6595929 Stivoric et al. Jul 2003 B2
6599243 Woltermann et al. Jul 2003 B2
6602678 Kwon et al. Aug 2003 B2
6602909 Jarowski Aug 2003 B1
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6608562 Kimura et al. Aug 2003 B1
6610012 Mault Aug 2003 B2
6611206 Eshelman et al. Aug 2003 B2
6612306 Mault Sep 2003 B1
6615078 Burson et al. Sep 2003 B1
6616613 Goodman Sep 2003 B1
6618603 Varalli et al. Sep 2003 B2
6620106 Mault Sep 2003 B2
6627058 Chan Sep 2003 B1
6627154 Goodman et al. Sep 2003 B1
6629934 Mault et al. Oct 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6635167 Batman et al. Oct 2003 B1
6641533 Causey, III et al. Nov 2003 B2
6642015 Vachon et al. Nov 2003 B2
6645142 Braig et al. Nov 2003 B2
6645368 Beaty et al. Nov 2003 B1
6648821 Lebel et al. Nov 2003 B2
6653091 Dunn et al. Nov 2003 B1
6654625 Say et al. Nov 2003 B1
6656114 Poulson et al. Dec 2003 B1
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6671554 Gibson et al. Dec 2003 B2
6673625 Satcher, Jr. et al. Jan 2004 B2
6682938 Satcher, Jr. et al. Jan 2004 B1
6683040 Bragulla et al. Jan 2004 B2
6687522 Tamada Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6690276 Marino Feb 2004 B1
6692446 Hoek Feb 2004 B2
6693069 Korber et al. Feb 2004 B2
6694158 Polak Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6698269 Baber et al. Mar 2004 B2
6701270 Miller et al. Mar 2004 B1
6702857 Brauker et al. Mar 2004 B2
6704587 Kumar et al. Mar 2004 B1
6708057 Marganroth Mar 2004 B2
6711423 Colvin, Jr. Mar 2004 B2
6723046 Lichtenstein et al. Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6730025 Platt May 2004 B1
6731976 Penn et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6734162 Van Antwerp et al. May 2004 B2
6735183 O'Toole et al. May 2004 B2
6735479 Fabian et al. May 2004 B2
6736777 Kim et al. May 2004 B2
6736797 Larsen et al. May 2004 B1
6737401 Kim et al. May 2004 B2
6738654 Sohrab May 2004 B2
6740075 Lebel et al. May 2004 B2
6741163 Roberts May 2004 B1
6741876 Scecina et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6748445 Darcey et al. Jun 2004 B1
6749587 Flaherty Jun 2004 B2
6750311 Van Antwerp et al. Jun 2004 B1
6758810 Lebel et al. Jul 2004 B2
6766183 Walsh et al. Jul 2004 B2
6766201 Von Arx et al. Jul 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6770729 Van Antwerp et al. Aug 2004 B2
6771995 Kurnik et al. Aug 2004 B2
6773563 Matsumoto Aug 2004 B2
6780156 Haueter et al. Aug 2004 B2
6780297 Matsumoto et al. Aug 2004 B2
6780871 Glick et al. Aug 2004 B2
6784274 Van Antwerp et al. Aug 2004 B2
6790178 Mault et al. Sep 2004 B1
6794195 Colvin, Jr. Sep 2004 B2
6800451 Daniloff et al. Oct 2004 B2
6804544 Van Antwerp et al. Oct 2004 B2
6804558 Haller et al. Oct 2004 B2
6809507 Morgan et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6810309 Sadler et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6811659 Vachon Nov 2004 B2
6812031 Carlsson Nov 2004 B1
6813519 Lebel et al. Nov 2004 B2
6816742 Kim et al. Nov 2004 B2
6835553 Han et al. Dec 2004 B2
RE38681 Kurnik et al. Jan 2005 E
6840912 Kloepfer et al. Jan 2005 B2
6844023 Schulman et al. Jan 2005 B2
6849237 Housefield et al. Feb 2005 B2
6850790 Berner et al. Feb 2005 B2
6852104 Blomquist Feb 2005 B2
6852500 Hoss et al. Feb 2005 B1
6852694 Van Antwerp et al. Feb 2005 B2
6853854 Proniewicz et al. Feb 2005 B1
6856928 Harmon Feb 2005 B2
6858403 Han et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6862466 Ackerman Mar 2005 B2
6872200 Mann et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6881551 Heller et al. Apr 2005 B2
6882940 Potts et al. Apr 2005 B2
6885883 Parris et al. Apr 2005 B2
6889331 Soerensen et al. May 2005 B2
6892085 McIvor et al. May 2005 B2
6893396 Schulze et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6899683 Mault et al. May 2005 B2
6899684 Mault et al. May 2005 B2
6902207 Lickliter Jun 2005 B2
6902905 Burson et al. Jun 2005 B2
6904301 Raskas Jun 2005 B2
6907127 Kravitz et al. Jun 2005 B1
6915147 Lebel et al. Jul 2005 B2
6918874 Hatch et al. Jul 2005 B1
6922578 Eppstein et al. Jul 2005 B2
RE38775 Kurnik et al. Aug 2005 E
6923764 Aceti et al. Aug 2005 B2
6923936 Swanson et al. Aug 2005 B2
6926670 Rich et al. Aug 2005 B2
6927246 Noronha et al. Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6936029 Mann et al. Aug 2005 B2
6937222 Numao Aug 2005 B2
6940403 Kail, IV Sep 2005 B2
6940590 Colvin, Jr. et al. Sep 2005 B2
6941163 Ford et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6952603 Gerber et al. Oct 2005 B2
6954673 Von Arx et al. Oct 2005 B2
6955650 Mault et al. Oct 2005 B2
6957102 Silver et al. Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6968375 Brown Nov 2005 B1
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6978182 Mazar et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6983176 Gardner et al. Jan 2006 B2
6985870 Martucci et al. Jan 2006 B2
6987474 Freeman et al. Jan 2006 B2
6990317 Arnold Jan 2006 B2
6990366 Say et al. Jan 2006 B2
6991096 Gottlieb et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6997920 Mann et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999810 Berner et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7004901 Fish Feb 2006 B2
7005857 Stiene et al. Feb 2006 B2
7009511 Mazar et al. Mar 2006 B2
7011630 Desai et al. Mar 2006 B2
7018366 Easter Mar 2006 B2
7018568 Tierney Mar 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7024236 Ford et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7027621 Prokoski Apr 2006 B1
7027931 Jones et al. Apr 2006 B1
7029444 Shin et al. Apr 2006 B2
7039810 Nichols May 2006 B1
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7043305 KenKnight et al. May 2006 B2
7049277 Bagulla et al. May 2006 B2
7052251 Nason et al. May 2006 B2
7052472 Miller et al. May 2006 B1
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7058453 Nelson et al. Jun 2006 B2
7060030 Von Arx et al. Jun 2006 B2
7060031 Webb et al. Jun 2006 B2
7068227 Ying Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7082334 Boute et al. Jul 2006 B2
7089780 Sunshine et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7114502 Schulman et al. Oct 2006 B2
7124027 Ernst et al. Oct 2006 B1
7125382 Zhou et al. Oct 2006 B2
7133710 Acosta et al. Nov 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7150975 Tamada et al. Dec 2006 B2
7154398 Chen et al. Dec 2006 B2
7155112 Uno et al. Dec 2006 B2
7155290 Von Arx et al. Dec 2006 B2
7163511 Conn et al. Jan 2007 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7181505 Haller et al. Feb 2007 B2
7183068 Burson et al. Feb 2007 B2
7183102 Monfre et al. Feb 2007 B2
7189341 Li et al. Mar 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7203549 Schommer et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7221977 Weaver et al. May 2007 B1
7222054 Geva May 2007 B2
7226442 Sheppard et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7228162 Ward et al. Jun 2007 B2
7228163 Ackerman Jun 2007 B2
7228182 Healy et al. Jun 2007 B2
7233817 Yen Jun 2007 B2
7237712 DeRocco et al. Jul 2007 B2
7241266 Zhou et al. Jul 2007 B2
7258665 Kohls et al. Aug 2007 B2
7261691 Asomani Aug 2007 B1
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7286894 Grant et al. Oct 2007 B1
7291107 Hellwig et al. Nov 2007 B2
7295867 Berner et al. Nov 2007 B2
7297112 Zhou et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7324850 Persen et al. Jan 2008 B2
7335294 Heller et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7384397 Zhang et al. Jun 2008 B2
7387010 Sunshine et al. Jun 2008 B2
7398183 Holland et al. Jul 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7408132 Wambsganss et al. Aug 2008 B2
7419573 Gundel Sep 2008 B2
7424318 Brister et al. Sep 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7492254 Bandy et al. Feb 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7506046 Rhodes Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7565197 Haubrich et al. Jul 2009 B2
7569030 Lebel et al. Aug 2009 B2
7574266 Dudding et al. Aug 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7602310 Mann et al. Oct 2009 B2
7604178 Stewart Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7653425 Hayter et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7659823 Killian et al. Feb 2010 B1
7668596 Von Arx et al. Feb 2010 B2
7699775 Desai et al. Apr 2010 B2
7701052 Borland et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7741734 Joannopoulos et al. Jun 2010 B2
7766829 Sloan et al. Aug 2010 B2
7768387 Fennell et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7774145 Brauker et al. Aug 2010 B2
7778680 Goode, Jr. et al. Aug 2010 B2
7779332 Karr et al. Aug 2010 B2
7782192 Jeckelmann et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7791467 Mazar et al. Sep 2010 B2
7792562 Shults et al. Sep 2010 B2
7804197 Iisaka et al. Sep 2010 B2
7811231 Jin et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7826382 Sicurello et al. Nov 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7831310 Lebel et al. Nov 2010 B2
7833151 Khait et al. Nov 2010 B2
7860574 Von Arx et al. Dec 2010 B2
7882611 Shah et al. Feb 2011 B2
7889069 Fifolt et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7905833 Brister et al. Mar 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914450 Goode, Jr. et al. Mar 2011 B2
7916013 Stevenson Mar 2011 B2
7948369 Fennell et al. May 2011 B2
7955258 Goscha et al. Jun 2011 B2
7970448 Shults et al. Jun 2011 B2
7974672 Shults et al. Jul 2011 B2
7978063 Baldus et al. Jul 2011 B2
7999674 Kamen Aug 2011 B2
8000918 Fjield et al. Aug 2011 B2
8010174 Goode et al. Aug 2011 B2
8010256 Oowada Aug 2011 B2
8072310 Everhart Dec 2011 B1
8090445 Ginggen Jan 2012 B2
8093991 Stevenson et al. Jan 2012 B2
8094009 Allen et al. Jan 2012 B2
8098159 Batra et al. Jan 2012 B2
8098160 Howarth et al. Jan 2012 B2
8098161 Lavedas Jan 2012 B2
8098201 Choi et al. Jan 2012 B2
8098208 Ficker et al. Jan 2012 B2
8102021 Degani Jan 2012 B2
8102154 Bishop et al. Jan 2012 B2
8102263 Yeo et al. Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103241 Young et al. Jan 2012 B2
8103325 Swedlow et al. Jan 2012 B2
8111042 Bennett Feb 2012 B2
8115488 McDowell Feb 2012 B2
8116681 Baarman Feb 2012 B2
8116683 Baarman Feb 2012 B2
8117481 Anselmi et al. Feb 2012 B2
8120493 Burr Feb 2012 B2
8123686 Fennell et al. Feb 2012 B2
8124452 Sheats Feb 2012 B2
8130093 Mazar et al. Mar 2012 B2
8131351 Kalgren et al. Mar 2012 B2
8131365 Zhang et al. Mar 2012 B2
8131565 Dicks et al. Mar 2012 B2
8132037 Fehr et al. Mar 2012 B2
8135352 Langsweirdt et al. Mar 2012 B2
8136735 Arai et al. Mar 2012 B2
8138925 Downie et al. Mar 2012 B2
8140160 Pless et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8140299 Siess Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150516 Levine et al. Apr 2012 B2
8179266 Hermle May 2012 B2
8233456 Kopikare et al. Jul 2012 B1
8260393 Kamath et al. Sep 2012 B2
8282549 Brauker et al. Oct 2012 B2
8417312 Kamath et al. Apr 2013 B2
8427298 Fennell et al. Apr 2013 B2
8478389 Brockway et al. Jul 2013 B1
8560037 Goode, Jr. et al. Oct 2013 B2
8622903 Jin et al. Jan 2014 B2
8638411 Park et al. Jan 2014 B2
8698615 Fennell et al. Apr 2014 B2
8849459 Ramey et al. Sep 2014 B2
8914090 Jain et al. Dec 2014 B2
8937540 Fennell Jan 2015 B2
9402584 Fennell Aug 2016 B2
20010011224 Brown Aug 2001 A1
20010011795 Ohtsuka et al. Aug 2001 A1
20010016310 Brown et al. Aug 2001 A1
20010016682 Berner et al. Aug 2001 A1
20010016683 Darrow et al. Aug 2001 A1
20010020124 Tamada Sep 2001 A1
20010029340 Mault et al. Oct 2001 A1
20010032278 Brown et al. Oct 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010037069 Carlson et al. Nov 2001 A1
20010037366 Webb et al. Nov 2001 A1
20010039504 Linberg et al. Nov 2001 A1
20010041830 Varalli et al. Nov 2001 A1
20010041831 Starkweather et al. Nov 2001 A1
20010044581 Mault Nov 2001 A1
20010044588 Mault Nov 2001 A1
20010047125 Quy Nov 2001 A1
20010047127 New et al. Nov 2001 A1
20010049096 Brown Dec 2001 A1
20010049470 Mault et al. Dec 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020002328 Tamada Jan 2002 A1
20020004640 Conn et al. Jan 2002 A1
20020010414 Coston et al. Jan 2002 A1
20020013522 Lav et al. Jan 2002 A1
20020013538 Teller Jan 2002 A1
20020016530 Brown Feb 2002 A1
20020016719 Nemeth et al. Feb 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020019584 Schulze et al. Feb 2002 A1
20020019586 Teller et al. Feb 2002 A1
20020019748 Brown Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020026111 Ackerman Feb 2002 A1
20020026937 Mault Mar 2002 A1
20020027164 Mault et al. Mar 2002 A1
20020028995 Mault Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020045808 Ford et al. Apr 2002 A1
20020046300 Hanko et al. Apr 2002 A1
20020047867 Mault et al. Apr 2002 A1
20020049482 Fabian et al. Apr 2002 A1
20020053637 Conn et al. May 2002 A1
20020062069 Mault May 2002 A1
20020063060 Gascoyne et al. May 2002 A1
20020065454 Lebel et al. May 2002 A1
20020068858 Braig et al. Jun 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020072858 Cheng Jun 2002 A1
20020074162 Su et al. Jun 2002 A1
20020077765 Mault Jun 2002 A1
20020077766 Mault Jun 2002 A1
20020081559 Brown et al. Jun 2002 A1
20020083461 Hutcheson et al. Jun 2002 A1
20020084196 Liamos et al. Jul 2002 A1
20020085719 Crosbie Jul 2002 A1
20020087056 Aceti et al. Jul 2002 A1
20020091312 Berner et al. Jul 2002 A1
20020091796 Higginson et al. Jul 2002 A1
20020093969 Lin et al. Jul 2002 A1
20020099854 Jorgensen Jul 2002 A1
20020103425 Mault Aug 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020107433 Mault Aug 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020109600 Mault et al. Aug 2002 A1
20020109621 Khair et al. Aug 2002 A1
20020117639 Paolini et al. Aug 2002 A1
20020118528 Su et al. Aug 2002 A1
20020119711 Van Antwerp et al. Aug 2002 A1
20020124017 Mault Sep 2002 A1
20020126036 Flaherty et al. Sep 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133378 Mault et al. Sep 2002 A1
20020147135 Schnell Oct 2002 A1
20020161286 Gerber et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169635 Shillingburg Nov 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020177764 Sohrab Nov 2002 A1
20020185130 Wright et al. Dec 2002 A1
20020188748 Blackwell et al. Dec 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030004403 Drinan et al. Jan 2003 A1
20030009203 Lebel et al. Jan 2003 A1
20030023182 Mault et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030028120 Mault et al. Feb 2003 A1
20030032077 Itoh et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032868 Graskov et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030035371 Reed et al. Feb 2003 A1
20030040683 Rule et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030050537 Wessel Mar 2003 A1
20030050546 Desai et al. Mar 2003 A1
20030060689 Kohls et al. Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065257 Mault et al. Apr 2003 A1
20030065273 Mault et al. Apr 2003 A1
20030065274 Mault et al. Apr 2003 A1
20030065275 Mault et al. Apr 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030076792 Theimer Apr 2003 A1
20030081370 Haskell et al. May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030105407 Pearce et al. Jun 2003 A1
20030108976 Braig et al. Jun 2003 A1
20030114897 Von Arx Jun 2003 A1
20030119457 Standke Jun 2003 A1
20030122021 McConnell et al. Jul 2003 A1
20030125612 Fox et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135100 Kim et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030146841 Koenig Aug 2003 A1
20030153820 Berner et al. Aug 2003 A1
20030153821 Berner et al. Aug 2003 A1
20030158472 Sohrab Aug 2003 A1
20030158707 Doi Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030175806 Rule et al. Sep 2003 A1
20030175992 Toranto et al. Sep 2003 A1
20030176183 Drucker et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030179705 Kojima Sep 2003 A1
20030181851 Mann et al. Sep 2003 A1
20030181852 Mann et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030187525 Mann et al. Oct 2003 A1
20030191376 Samuels et al. Oct 2003 A1
20030191431 Mann et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030195462 Mann et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199791 Boecker et al. Oct 2003 A1
20030199903 Boecker et al. Oct 2003 A1
20030203498 Neel et al. Oct 2003 A1
20030204290 Sadler et al. Oct 2003 A1
20030208110 Mault et al. Nov 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030208114 Ackerman Nov 2003 A1
20030208133 Mault Nov 2003 A1
20030208409 Mault Nov 2003 A1
20030212317 Kovatchev et al. Nov 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030212579 Brown et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030226695 Mault Dec 2003 A1
20030229514 Brown Dec 2003 A2
20030232370 Trifiro Dec 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040017300 Kotzin et al. Jan 2004 A1
20040018486 Dunn et al. Jan 2004 A1
20040030226 Quy Feb 2004 A1
20040030531 Miller et al. Feb 2004 A1
20040030581 Levin et al. Feb 2004 A1
20040039255 Simonsen et al. Feb 2004 A1
20040039256 Kawatahara et al. Feb 2004 A1
20040039298 Abreu et al. Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040059201 Ginsberg Mar 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040069164 Nakamura et al. Apr 2004 A1
20040072357 Stiene et al. Apr 2004 A1
20040073095 Causey, III Apr 2004 A1
20040096959 Stiene et al. May 2004 A1
20040100376 Lye et al. May 2004 A1
20040105411 Boatwright et al. Jun 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say Jun 2004 A1
20040108226 Polychronakos et al. Jun 2004 A1
20040116786 Iijima et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040122530 Hansen et al. Jun 2004 A1
20040128161 Mazar et al. Jul 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040133390 Osorio et al. Jul 2004 A1
20040136361 Holloway et al. Jul 2004 A1
20040136377 Miyazaki et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040147872 Thompson Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040152961 Carlson et al. Aug 2004 A1
20040153585 Kawatahara et al. Aug 2004 A1
20040162473 Sohrab Aug 2004 A1
20040164961 Bal et al. Aug 2004 A1
20040167383 Kim et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040172284 Sullivan et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040176913 Kawatahara et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193020 Chiba Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040199056 Husemann et al. Oct 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040202576 Aceti et al. Oct 2004 A1
20040204055 Nousiainen Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040206916 Colvin, Jr. et al. Oct 2004 A1
20040208780 Faries, Jr. et al. Oct 2004 A1
20040212536 Mori et al. Oct 2004 A1
20040221057 Darcey et al. Nov 2004 A1
20040225199 Evanyk et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040235446 Flaherty et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040248204 Moerman Dec 2004 A1
20040249250 McGee et al. Dec 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040249254 Racchini et al. Dec 2004 A1
20040249999 Connolly et al. Dec 2004 A1
20040253736 Stout et al. Dec 2004 A1
20040254429 Yang Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260363 Arx et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040263354 Mann et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050003470 Nelson et al. Jan 2005 A1
20050004439 Shin et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050010087 Banet et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050016276 Guan et al. Jan 2005 A1
20050017864 Tsoukalis Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027179 Berner et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050027181 Goode, Jr. et al. Feb 2005 A1
20050027462 Goode, Jr. et al. Feb 2005 A1
20050027463 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050033132 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050049473 Desai et al. Mar 2005 A1
20050054909 Petisce et al. Mar 2005 A1
20050059372 Arayashiki et al. Mar 2005 A1
20050065464 Talbot Mar 2005 A1
20050070777 Cho et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096512 Fox et al. May 2005 A1
20050096516 Soykan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050112544 Xu et al. May 2005 A1
20050113648 Yang et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050113657 Alarcon et al. May 2005 A1
20050113658 Jacobson et al. May 2005 A1
20050113886 Fischell et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050118726 Schultz et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050124873 Shults et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050137471 Haar et al. Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050143636 Zhang et al. Jun 2005 A1
20050148003 Kieth et al. Jul 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050161346 Simpson et al. Jul 2005 A1
20050171503 Van Den Berghe et al. Aug 2005 A1
20050171513 Mann et al. Aug 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177036 Shults et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050181012 Saint et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182358 Veit et al. Aug 2005 A1
20050182451 Griffin et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050203707 Tsutsui et al. Sep 2005 A1
20050204134 Von Arx et al. Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050215871 Feldman et al. Sep 2005 A1
20050215872 Berner et al. Sep 2005 A1
20050221504 Petruno et al. Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050242479 Petisce et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245904 Estes et al. Nov 2005 A1
20050251033 Scarantino et al. Nov 2005 A1
20050251083 Carr-Brendel et al. Nov 2005 A1
20050259514 Iseli et al. Nov 2005 A1
20050261660 Choi Nov 2005 A1
20050267780 Ray et al. Dec 2005 A1
20050271546 Gerber et al. Dec 2005 A1
20050271547 Gerber et al. Dec 2005 A1
20050272640 Doyle, III et al. Dec 2005 A1
20050272985 Kotulla et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001550 Mann et al. Jan 2006 A1
20060001551 Kraft et al. Jan 2006 A1
20060003398 Heller et al. Jan 2006 A1
20060004270 Bedard et al. Jan 2006 A1
20060004271 Peyser et al. Jan 2006 A1
20060007017 Mann et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060029177 Cranford, Jr. et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060036187 Vos et al. Feb 2006 A1
20060040402 Brauker et al. Feb 2006 A1
20060052679 Kotulla et al. Mar 2006 A1
20060058588 Zdeblick Mar 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060063218 Bartkowiak et al. Mar 2006 A1
20060074564 Bartowiak et al. Apr 2006 A1
20060129733 Solbelman Jun 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060154642 Scannell Jul 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060193375 Lee et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060198426 Partyka Sep 2006 A1
20060200112 Paul Sep 2006 A1
20060202805 Schulman et al. Sep 2006 A1
20060202859 Mastrototaro et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224109 Steil et al. Oct 2006 A1
20060224141 Rush Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060247710 Goetz et al. Nov 2006 A1
20060247985 Liamos et al. Nov 2006 A1
20060253296 Liisberg et al. Nov 2006 A1
20060258918 Burd et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060263763 Simpson et al. Nov 2006 A1
20060264785 Dring et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060270922 Brauker et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060276714 Holt et al. Dec 2006 A1
20060287691 Drew Dec 2006 A1
20060290496 Peeters et al. Dec 2006 A1
20060293607 Alt et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070017983 Frank et al. Jan 2007 A1
20070026440 Broderick et al. Feb 2007 A1
20070027381 Stafford Feb 2007 A1
20070027507 Burdett et al. Feb 2007 A1
20070032706 Kamath et al. Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070053341 Lizzi Mar 2007 A1
20070055799 Koehler et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070060869 Tolle et al. Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070066877 Arnold et al. Mar 2007 A1
20070071681 Gadkar et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070090511 Borland et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106133 Satchwell et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070135697 Reggiardo Jun 2007 A1
20070149873 Say et al. Jun 2007 A1
20070149874 Say et al. Jun 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070151869 Heller et al. Jul 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070161879 Say et al. Jul 2007 A1
20070161880 Say et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070168224 Letzt et al. Jul 2007 A1
20070170893 Kao et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173712 Shah et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070179349 Hoyme et al. Aug 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070179370 Say et al. Aug 2007 A1
20070179372 Say et al. Aug 2007 A1
20070191699 Say et al. Aug 2007 A1
20070191700 Say et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203408 Say et al. Aug 2007 A1
20070203410 Say et al. Aug 2007 A1
20070203411 Say et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208245 Brauker et al. Sep 2007 A1
20070208247 Say et al. Sep 2007 A1
20070213610 Say et al. Sep 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070215491 Heller et al. Sep 2007 A1
20070218097 Heller et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070222609 Duron et al. Sep 2007 A1
20070232877 He Oct 2007 A1
20070232880 Siddiqui et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244380 Say et al. Oct 2007 A1
20070244383 Talbot et al. Oct 2007 A1
20070249919 Say et al. Oct 2007 A1
20070249920 Say et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070255321 Gerber et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070271285 Eichorn et al. Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070299617 Willis Dec 2007 A1
20080004515 Jennewine et al. Jan 2008 A1
20080004601 Jennewine et al. Jan 2008 A1
20080009304 Fry Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080018433 Pitt-Pladdy Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027586 Hern et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080055070 Bange et al. Mar 2008 A1
20080058625 McGarraugh et al. Mar 2008 A1
20080060955 Goodnow Mar 2008 A1
20080062055 Cunningham et al. Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064943 Talbot et al. Mar 2008 A1
20080067627 Boeck et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080081977 Hayter et al. Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080092638 Brenneman et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080119705 Patel et al. May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080161666 Feldman et al. Jul 2008 A1
20080167543 Say et al. Jul 2008 A1
20080167572 Stivoric et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080179187 Ouyang et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080212600 Yoo Sep 2008 A1
20080214900 Fennell et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080234943 Ray et al. Sep 2008 A1
20080235469 Drew Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080254544 Modzelewski et al. Oct 2008 A1
20080255434 Hayter et al. Oct 2008 A1
20080255437 Hayter Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080255808 Hayter Oct 2008 A1
20080256048 Hayter Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080267823 Wang et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080278333 Fennell et al. Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287762 Hayter Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080288180 Hayter Nov 2008 A1
20080288204 Hayter et al. Nov 2008 A1
20080294024 Cosentino et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300919 Charlton et al. Dec 2008 A1
20080300920 Brown et al. Dec 2008 A1
20080301158 Brown et al. Dec 2008 A1
20080301436 Yao et al. Dec 2008 A1
20080301665 Charlton et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312518 Jina et al. Dec 2008 A1
20080312841 Hayter Dec 2008 A1
20080312842 Hayter Dec 2008 A1
20080312844 Hayter et al. Dec 2008 A1
20080312845 Hayter et al. Dec 2008 A1
20080320587 Vauclair et al. Dec 2008 A1
20090005665 Hayter et al. Jan 2009 A1
20090005666 Shin et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090033482 Hayter et al. Feb 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090040022 Finkenzeller Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054747 Fennell Feb 2009 A1
20090055149 Hayter et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062767 VanAntwerp et al. Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090094680 Gupta et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105554 Stahmann et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105570 Sloan et al. Apr 2009 A1
20090105571 Fennell et al. Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112478 Mueller, Jr. et al. Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090146826 Gofman et al. Jun 2009 A1
20090149717 Brauer et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090189738 Hermle Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198118 Hayter et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204340 Feldman et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090234200 Husheer Sep 2009 A1
20090237216 Twitchell, Jr. Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090267765 Greene et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090289796 Blumberg Nov 2009 A1
20090296742 Sicurello et al. Dec 2009 A1
20090298182 Schulat et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010329 Taub et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100025238 Gottlieb et al. Feb 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100057040 Hayter Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100057042 Hayter Mar 2010 A1
20100057044 Hayter Mar 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100110931 Shim et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100119881 Patel et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168545 Kamath et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100190435 Cook et al. Jul 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100213080 Celentano et al. Aug 2010 A1
20100235439 Goodnow et al. Sep 2010 A1
20100267161 Wu et al. Oct 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100332142 Shadforth et al. Dec 2010 A1
20110004276 Blair et al. Jan 2011 A1
20110031986 Bhat et al. Feb 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110125040 Crawford et al. May 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110152637 Kateraas et al. Jun 2011 A1
20110184268 Taub Jul 2011 A1
20110191059 Farrell et al. Aug 2011 A1
20110230741 Liang et al. Sep 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110270112 Manera et al. Nov 2011 A1
20110287528 Fern et al. Nov 2011 A1
20120108931 Taub et al. May 2012 A1
20120148054 Rank et al. Jun 2012 A1
20120215092 Harris, III et al. Aug 2012 A1
20130035575 Mayou et al. Feb 2013 A1
20130235166 Jones et al. Sep 2013 A1
Foreign Referenced Citations (165)
Number Date Country
4234553 Jan 1995 DE
0010375 Apr 1980 EP
0026995 Apr 1981 EP
0048090 Mar 1982 EP
0078636 May 1983 EP
0080304 Jun 1983 EP
0098592 Jan 1984 EP
0125139 Nov 1984 EP
0127958 Dec 1984 EP
0136362 Apr 1985 EP
0170375 Feb 1986 EP
0177743 Apr 1986 EP
0184909 Jun 1986 EP
0206218 Dec 1986 EP
0230472 Aug 1987 EP
0241309 Oct 1987 EP
0245073 Nov 1987 EP
0255291 Feb 1988 EP
0278647 Aug 1988 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0359831 Mar 1990 EP
0368209 May 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0400918 Dec 1990 EP
0453283 Oct 1991 EP
0470290 Feb 1992 EP
0504835 Sep 1992 EP
0286118 Jan 1995 EP
0653718 May 1995 EP
0680727 Nov 1995 EP
0724859 Aug 1996 EP
0800082 Oct 1997 EP
0805574 Nov 1997 EP
0880936 Dec 1998 EP
0970655 Jan 2000 EP
0973289 Jan 2000 EP
0678308 May 2000 EP
1034734 Sep 2000 EP
1048264 Nov 2000 EP
1579690 Nov 2002 EP
1292218 Mar 2003 EP
1077634 Jul 2003 EP
1445746 Aug 2004 EP
1445893 Aug 2004 EP
1568309 Aug 2005 EP
1666091 Jun 2006 EP
1703697 Sep 2006 EP
1704893 Sep 2006 EP
1897487 Nov 2009 EP
1897492 Nov 2009 EP
2113864 Nov 2009 EP
1897488 Dec 2009 EP
1681992 Apr 2010 EP
1448489 Aug 2010 EP
1971396 Aug 2010 EP
2201969 Mar 2011 EP
1413245 Jun 2011 EP
2153382 Feb 2012 EP
2284773 Feb 2012 EP
1394171 May 1975 GB
1579690 Nov 1980 GB
1599241 Sep 1981 GB
2073891 Oct 1981 GB
2154003 Aug 1985 GB
2194892 Mar 1988 GB
2204408 Nov 1988 GB
2225637 Jun 1990 GB
2254436 Oct 1992 GB
2409951 Jul 2005 GB
1281988 Jan 1987 SU
WO-1985005119 Nov 1985 WO
WO-1986000513 Jan 1986 WO
WO-1987000513 Jan 1987 WO
WO-1987006040 Oct 1987 WO
WO-1989002246 Mar 1989 WO
WO-1989005119 Jun 1989 WO
WO-1989008713 Sep 1989 WO
WO-1990000367 Jan 1990 WO
WO-1990005300 May 1990 WO
WO-1990005910 May 1990 WO
WO-1991001680 Feb 1991 WO
WO-1991004704 Apr 1991 WO
WO-1991015993 Oct 1991 WO
WO-1992001947 Feb 1992 WO
WO-1992013271 Aug 1992 WO
WO-1994020602 Sep 1994 WO
WO-1994027140 Nov 1994 WO
WO-1995028878 Feb 1995 WO
WO-1995006240 Mar 1995 WO
WO-1996007908 Mar 1996 WO
WO-1996025089 Aug 1996 WO
WO-1996030431 Oct 1996 WO
WO-1996035370 Nov 1996 WO
WO-1997002847 Jan 1997 WO
WO-1997019344 May 1997 WO
WO-1997020207 Jun 1997 WO
WO-1997033513 Sep 1997 WO
WO-1997041421 Nov 1997 WO
WO-1997042882 Nov 1997 WO
WO-1997042883 Nov 1997 WO
WO-1997042886 Nov 1997 WO
WO-1997042888 Nov 1997 WO
WO-1997043962 Nov 1997 WO
WO-1997046868 Dec 1997 WO
WO-1998009167 Mar 1998 WO
WO-1998024366 Jun 1998 WO
WO-1998035053 Aug 1998 WO
WO-1998052045 Nov 1998 WO
WO-1998052293 Nov 1998 WO
WO-1999005966 Feb 1999 WO
WO-1999032883 Jul 1999 WO
WO-1999056613 Nov 1999 WO
WO-2000013580 Mar 2000 WO
WO-2000018294 Apr 2000 WO
WO-2000019887 Apr 2000 WO
WO-2000020626 Apr 2000 WO
WO-2000033065 Jun 2000 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000060350 Oct 2000 WO
WO-2000062664 Oct 2000 WO
WO-2000062665 Oct 2000 WO
WO-2000074753 Dec 2000 WO
WO-2000078210 Dec 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001024038 Apr 2001 WO
WO-2001033216 May 2001 WO
WO-2001052727 Jul 2001 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2001057238 Aug 2001 WO
WO-2001057239 Aug 2001 WO
WO-2001067009 Sep 2001 WO
WO-2002013686 Feb 2002 WO
WO-2002016905 Feb 2002 WO
WO-2002017210 Feb 2002 WO
WO-2002058537 Aug 2002 WO
WO-2002078512 Oct 2002 WO
WO-2003036583 May 2003 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2003085372 Oct 2003 WO
WO-2004047445 Jun 2004 WO
WO-2004061420 Jul 2004 WO
WO-2004098405 Nov 2004 WO
WO-2005010756 Feb 2005 WO
WO-2005045744 May 2005 WO
WO-2005089103 Sep 2005 WO
WO-2005117269 Dec 2005 WO
WO-2006024671 Mar 2006 WO
WO-2006032653 Mar 2006 WO
WO-2006037109 Apr 2006 WO
WO-2006064397 Jun 2006 WO
WO-2006124099 Nov 2006 WO
WO-2007002189 Jan 2007 WO
WO-2007007459 Jan 2007 WO
WO-2007027381 Mar 2007 WO
WO-2008086541 Jul 2008 WO
WO-2008150428 Dec 2008 WO
WO-2008153825 Dec 2008 WO
WO-2009075697 Jun 2009 WO
WO-2010077329 Aug 2010 WO
WO-2011022418 Feb 2011 WO
Non-Patent Literature Citations (290)
Entry
U.S. Appl. No. 14/490,537, Office Action dated May 23, 2017.
U.S. Appl. No. 14/928,326, Office Action dated Jun. 12, 2017.
U.S. Appl. No. 15/435,214, Office Action dated May 8, 2017.
Abruna, H. D., et al., “Rectifying Interfaces Using Two-Layer Films of Electrochemically Polymerized Vinylpyridine and Vinylbipyridine Complexes of Ruthenium and Iron on Electrodes”, Journal of the American Chemical Society, vol. 103, No. 1, 1981, pp. 1-5.
Albery, W. J., et al., “Amperometric Enzyme Electrodes Part II: Conducting Salts as Electrode Materials for the Oxidation of Glucose Oxidase”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 223-235.
Albery, W. J., et al., “Amperometric Enzyme Electrodes”, Philosophical Transactions of The Royal Society of London, vol. 316, 1987, pp. 107-119.
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325.
Anderson, L. B., et al., “Thin-Layer Electrochemistry: Steady-State Methods of Studying Rate Processes”, Journal of ElectroAnalytical Chemistry, vol. 10, 1965, pp. 295-305.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Bartlett, P. N., et al., “Covalent Binding of Electron Relays to Glucose Oxidase”, Journal of the Chemical Society, Chemical Communications, 1987, pp. 1603-1604.
Bartlett, P. N., et al., “Modification of Glucose Oxidase by Tetrathiafulvalene”, Journal of the Chemical Society, Chemical Communications, 1990, pp. 1135-1136.
Bartlett, P. N., et al., “Strategies for the Development of Amperometric Enzyme Electrodes”, Biosensors, vol. 3, 1987/88, pp. 359-379.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bergman, R., et al., “Physiological Evaluation of Factors Controlling Glucose Tolerance in Man: Measurement of Insulin Sensitivity and Beta-cell Glucose Sensitivity From the Response to Intravenous Glucose”, J. Clin. Invest., The American Society for Clinical Investigation, Inc., vol. 68, 1981, pp. 1456-1467.
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463.
Boedeker Plastics, Inc., “Polyethylene Specifications”, Web Page of Boedeker.com, 2007, pp. 1-3.
Brandt, J., et al., “Covalent Attachment of Proteins to Polysaccharide Carriers by Means of Benzoquinone”, Biochimica et Biophysica Acta, vol. 386, 1975, pp. 196-202.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Brownlee, M., et al., “A Glucose-Controlled Insulin-Delivery System: Semisynthetic Insulin Bound to Lectin”, Science, vol. 206, 1979, 1190-1191.
Cass, A. E., et al., “Ferricinum Ion As an Electron Acceptor for Oxido-Reductases”, Journal of ElectroAnalytical Chemistry, vol. 190, 1985, pp. 117-127.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Castner, J. F., et al., “Mass Transport and Reaction Kinetic Parameters Determined Electrochemically for Immobilized Glucose Oxidase”, Biochemistry, vol. 23 No. 10, 1984, 2203-2210.
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Claremont, D. J., et al., “Biosensors for Continuous In Vivo Glucose Monitoring”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 10, 1988.
Clark Jr., L. C., et al., “Differential Anodic Enzyme Polarography for the Measurement of Glucose”, Oxygen Transport to Tissue: Instrumentation, Methods, and Physiology, 1973, pp. 127-133.
Clark Jr., L. C., et al., “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Annals New York Academy of Sciences, 1962, pp. 29-45.
Clark Jr., L. C., et al., “Long-term Stability of Electroenzymatic Glucose Sensors Implanted in Mice”, American Society of Artificial Internal Organs Transactions, vol. XXXIV, 1988, pp. 259-265.
Clarke, W. L., et al., “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose”, Diabetes Care, vol. 10, No. 5, 1987, pp. 622-628.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Csoregi, E., et al., “Design, Characterization, and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode”, Analytical Chemistry, vol. 66 No. 19, 1994, pp. 3131-3138.
Csoregi, E., et al., “On-Line Glucose Monitoring by Using Microdialysis Sampling and Amperometric Detection Based on ‘Wired’ Glucose Oxidase in Carbon Paste”, Mikrochimica Acta, vol. 121, 1995, pp. 31-40.
Dai, W. S., et al., “Hydrogel Membranes with Mesh Size Asymmetry Based on the Gradient Crosslinking of Poly(vinyl alcohol),” Journal of Membrane Science, vol. 156, 1999, pp. 67-79.
Davis, G., “Electrochemical Techniques for the Development of Amperometric Biosensors”, Biosensors, vol. 1, 1985, pp. 161-178.
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 1. Electron Transfer from Glucose Oxidase to Metal Electrodes via Electron Relays, Bound Covalently to the Enzyme”, The Journal of Physical Chemistry, vol. 91, No. 6, 1987, pp. 1285-1289.
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 2. Methods for Bonding Electron-Transfer Relays to Glucose Oxidase and D-Amino-Acid Oxidase”, Journal of the American Chemical Society, vol. 110, No. 8, 1988, pp. 2615-2620.
Degani, Y., et al., “Electrical Communication Between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers”, Journal of the American Chemical Society, vol. 111, 1989, pp. 2357-2358.
Denisevich, P., et al., “Unidirectional Current Flow and Charge State Trapping at Redox Polymer Interfaces on Bilayer Electrodes: Principles, Experimental Demonstration, and Theory”, Journal of the American Chemical Society, vol. 103, 1981, pp. 4727-4737.
Dicks, J. M., et al., “Ferrocene Modified Polypyrrole with Immobilised Glucose Oxidase and its Application in Amperometric Glucose Microbiosensors”, Annales de Biologie Clinique, vol. 47, 1989, pp. 607-619.
Diem, P., et al., “Clinical Performance of a Continuous Viscometric Affinity Sensor for Glucose”, Diabetes Technology & Therapeutics, vol. 6, 2004, pp. 790-799.
Ellis, C. D., et al., “Selectivity and Directed Charge Transfer through an Electroactive Metallopolymer Film”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7480-7483.
Engstrom, R. C., “Electrochemical Pretreatment of Glassy Carbon Electrodes”, Analytical Chemistry, vol. 54, No. 13, 1982, pp. 2310-2314.
Engstrom, R. C., et al., “Characterization of Electrochemically Pretreated Glassy Carbon Electrodes”, Analytical Chemistry, vol. 56, No. 2, 1984, pp. 136-141.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Feldman, B., et al., “Electron Transfer Kinetics at Redox Polymer/Solution Interfaces Using Microelectrodes and Twin Electrode Thin Layer Cells”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 63-81.
Fischer, H., et al., “Intramolecular Electron Transfer Medicated by 4,4′-Bypyridine and Related Bridging Groups”, Journal of the American Chemical Society, vol. 98, No. 18, 1976, pp. 5512-5517.
Flentge, F., et al., “An Enzyme-Reactor for Electrochemical Monitoring of Choline and Acetylcholine: Applications in High-Performance Liquid Chromatography, Bran Tissue, Microdialysis and Cerebrospinal Fluid,” Analytical Biochemistry, vol. 204, 1992, pp. 305-310.
Foulds, N. C., et al., “Enzyme Entrapment in Electrically Conducting Polymers: Immobilisation of Glucose Oxidase in Polypyrrole and its Application in Amperometric Glucose Sensors”, Journal of the Chemical Society, Faraday Transactions 1, vol. 82, 1986, pp. 1259-1264.
Foulds, N. C., et al., “Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers”, Analytical Chemistry, vol. 60, No. 22, 1988, pp. 2473-2478.
Frew, J. E., et al., “Electron-Transfer Biosensors”, Philosophical Transactions of The Royal Society of London, vol. 316, 1987, pp. 95-106.
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50.
Godsland, I. F., et al., “Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels,” Clinical Science, vol. 101, 2001, pp. 1-9.
Gorton, L., et al., “Selective Detection in Flow Analysis Based on the Combination of Immobilized Enzymes and Chemically Modified Electrodes”, Analytica Chimica Acta, vol. 250, 1991, pp. 203-248.
Graham, N. B., “Poly(ethylene oxide) and Related Hydrogels,” Hydrogels in Medicine and Pharmacy, vol. II: Polymers, Chapter 4, 1987, pp. 95-113.
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263.
Gregg, B. A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone”, Journal of Physical Chemistry, vol. 95, No. 15, 1991, 5970-5975.
Hale, P. D., et al., “A New Class of Amperometric Biosensor Incorporating a Polymeric Electron-Transfer Mediator”, Journal of the American Chemical Society, vol. 111, No. 9, 1989, pp. 3482-3484.
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007.
Hawkridge, F. M., et al., “Indirect Coulometric Titration of Biological Electron Transport Components”, Analytical Chemistry, vol. 45, No. 7, 1973, pp. 1021-1027.
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587.
Heller, A., “Electrical Wiring of Redox Enzymes”, Accounts of Chemical Research vol. 23, No. 5, 1990, 128-134.
Heller, A., et al., “Amperometric Biosensors Based on Three-Dimensional Hydrogel-Forming Epoxy Networks”, Sensors and Actuators B, vol. 13-14, 1993, pp. 180-183.
Ianniello, R. M., et al., “Differential Pulse Voltammetric Study of Direct Electron Transfer in Glucose Oxidase Chemically Modified Graphite Electrodes”, Analytical Chemistry, vol. 54, No. 7, 1982, pp. 1098-1101.
Ianniello, R. M., et al., “Immobilized Enzyme Chemically Modified Electrode as an Amperometric Sensor”, Analytical Chemistry, vol. 53, No. 13, 1981, pp. 2090-2095.
Ikeda, T., et al., “Glucose Oxidase-Immobilized Benzoquinone-Carbon Paste Electrode as a Glucose Sensor”, Agricultural and Biological Chemistry, vol. 49, No. 2, 1985, pp. 541-543.
Ikeda, T., et al., “Kinetics of Outer-Sphere Electron Transfers Between Metal Complexes in Solutions and Polymeric Films on Modified Electrodes”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7422-7425.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, J. M., et al., “Potential-Dependent Enzymatic Activity in an Enzyme Thin-Layer Cell”, Analytical Chemistry, vol. 54, No. 8, 1982, pp. 1377-1383.
Johnson, K. W., “Reproducible Electrodeposition of Biomolecules for the Fabrication of Miniature Electroenzymatic Biosensors”, Sensors and Actuators B, vol. 5, 1991, pp. 85-89.
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzyniatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714.
Johnson P. C. “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jonsson, G., et al., “An Amperometric Glucose Sensor Made by Modification of a Graphite Electrode Surface With Immobilized Glucose Oxidase and Adsorbed Mediator”, Biosensors, vol. 1, 1985, pp. 355-368.
Josowicz, M., et al., “Electrochemical Pretreatment of Thin Film Platinum Electrodes”, Journal of the Electrochemical Society, vol. 135 No. 1, 1988, pp. 112-115.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Katakis, I., et al., “Electrostatic Control of the Electron Transfer Enabling Binding of Recombinant Glucose Oxidase and Redox Polyelectrolytes”, Journal of the American Chemical Society, vol. 116, No. 8, 1994, pp. 3617-3618.
Katakis, I., et al., “L-α-Glycerophosphate and L-Lactate Electrodes Based on the Electrochemical ‘Wiring’ of Oxidases”, Analytical Chemistry, vol. 64, No. 9, 1992, pp. 1008-1013.
Kemp, G. J., “Theoretical Aspects of One-Point Calibration: Causes and Effects of Some Potential Errors, and Their Dependence on Concentration,” Clinical Chemistry, vol. 30, No. 7, 1984, pp. 1163-1167.
Kenausis, G., et al., “‘Wiring’ of Glucose Oxidase and Lactate Oxidase Within a Hydrogel Made with Poly(vinyl pyridine) complexed with [Os(4,4′-dimethoxy-2,2′-bipyridine)2Cl]+/2+”, Journal of the Chemical Society, Faraday Transactions, vol. 92, No. 20, 1996, pp. 4131-4136.
Kerner, W., et al., “The Function of a Hydrogen Peroxide-Detecting Electroenzymatic Glucose Electrode is Markedly Impaired in Human Subcutaneous Tissue and Plasma,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 473-482.
Kondepati, V., et al., “Recent Progress in Analytical Instrumentation for Glycemic Control in Diabetic and Critically Ill Patients”, Analytical Bioanalytical Chemistry, vol. 388, 2007, pp. 545-563.
Korf, J., et al., “Monitoring of Glucose and Lactate Using Microdialysis: Applications in Neonates and Rat Brain,” Developmental Neuroscience, vol. 15, 1993, pp. 240-246.
Koudelka, M., et al., “In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 31-36.
Kulys, J., et al., “Mediatorless Peroxidase Electrode and Preparation of Bienzyme Sensors”, Bioelectrochemistry and Bioenergetics, vol. 24, 1990, pp. 305-311.
Lager, W., et al., “Implantable Electrocatalytic Glucose Sensor”, Hormone Metabolic Research, vol. 26, 1994, pp. 526-530.
Laurell, T., “A Continuous Glucose Monitoring System Based on Microdialysis”, Journal of Medical Engineering & Technolou, vol. 16, No. 5, 1992, pp. 187-193.
Lindner, E., et al., “Flexible (Kapton-Based) Microsensor Arrays of High Stability for Cardiovascular Applications”, Journal of the Chemical Society, Faraday Transactions, vol. 89, No. 2, 1993, pp. 361-367.
Lo, B., et al., “Key Technical Challenges and Current Implementations of Body Sensor Networks”, Body Sensor Networks, 2005, pp. 1-5.
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Marko-Varga, G., et al., “Enzyme-Based Biosensor as a Selective Detection Unit in Column Liquid Chromatography”, Journal of Chromatography A, vol. 660, 1994, pp. 153-167.
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
Mauras, N., et al., “Lack of Accuracy of Continuous Glucose Sensors in Healthy, Nondiabetic Children: Results of the Diabetes Research in Children Network (DirecNet) Accuracy Study,” Journal of Pediatrics, 2004, pp. 770-775.
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
McNeil, C. J., et al., “Thermostable Reduced Nicotinamide Adenine Dinucleotide Oxidase: Application to Amperometric Enzyme Assay”, Analytical Chemistry, vol. 61, No. 1, 1989, pp. 25-29.
Miyawaki, O., et al., “Electrochemical and Glucose Oxidase Coenzyme Activity of Flavin Adenine Dinucleotide Covalently Attached to Glassy Carbon at the Adenine Amino Group”, Biochimica et Biophysica Acta, vol. 838, 1985, pp. 60-68.
Moatti-Sirat, D., et al., “Evaluating In Vitro and In Vivo the Interference of Ascorbate and Acetaminophen on Glucose Detection by a Needle-Type Glucose Sensor”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 345-352.
Moatti-Sirat, D., et al., “Reduction of Acetaminophen Interference in Glucose Sensors by a Composite Nafion Membrane: Demonstration in Rats and Man”, Diabetologia, vol. 37, 1994, pp. 610-616.
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330.
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Nagy, G., et al., “A New Type of Enzyme Electrode: The Ascorbic Acid Eliminator Electrode”, Life Sciences, vol. 31, No. 23, 1982, pp. 2611-2616.
Nakamura, S., et al., “Effect of Periodate Oxidation on the Structure and Properties of Glucose Oxidase”, Biochimica et Biophysica Acta., vol. 445, 1976, pp. 294-308.
Narasimham, K., et al., “p-Benzoquinone Activation of Metal Oxide Electrodes for Attachment of Enzymes”, Enzyme and Microbial Technology, vol. 7, 1985, pp. 283-286.
Ohara, T. J., “Osmium Bipyridyl Redox Polymers Used in Enzyme Electrodes”, Platinum Metals Review, vol. 39, No. 2, 1995, pp. 54-62.
Ohara, T. J., et al., “‘Wired’ Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances”, Analytical Chemistry, vol. 66, No. 15, 1994, pp. 2451-2457.
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2Cl]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517.
Olievier, C. N., et al., “In Vivo Measurement of Carbon Dioxide Tension with a Miniature Electrodes”, Pflugers Archiv: European Journal of Physiology, vol. 373, 1978, pp. 269-272.
Paddock, R. M., et al., “Electrocatalytic Reduction of Hydrogen Peroxide via Direct Electron Transfer From Pyrolytic Graphite Electrodes to Irreversibly Adsorbed Cyctochrome C Peroxidase”, Journal of ElectroAnalytical Chemistry, vol. 260, 1989, pp. 487-494.
Palleschi, G., et al., “A Study of Interferences in Glucose Measurements in Blood by Hydrogen Peroxide Based Glucose Probes”, Analytical Biochemistry, vol. 159, 1986, pp. 114-121.
Pankratov, I., et al., “Sol-Gel Derived Renewable-Surface Biosensors”, Journal of ElectroAnalytical Chemistry, vol. 393, 1995, pp. 35-41.
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pathak, C., et al., “Rapid Photopolymerization of Immunoprotective Gels in Contact with Cells and Tissue”, Journal of the American Chemical Society, vol. 114, No. 21, 1992, pp. 8311-8312.
Pickup, J., “Developing Glucose Sensors for In Vivo Use”, Tibtech, vol. 11, 1993, pp. 285-291.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pickup, J., et al., “Potentially-Implantable, Amperometric Glucose Sensors with Mediated Electron Transfer: Improving the Operating Stability”, Biosensors, vol. 4, 1989, pp. 109-119.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V., et al., “A Glucose Monitoring System for on Line Estimation in Man of Blood Glucose Concentration Using a Miniaturized Glucose Sensor Implanted in the Subcutaneous Tissue and a Wearable Control Unit”, Diabetolgia, vol. 36, 1993, pp. 658-663.
Poitout, V., et al., “Calibration in Dogs of a Subcutaneous Miniaturized Glucose Sensor Using a Glucose Meter for Blood Glucose Determination”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 587-592.
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300.
Pollak, A., et al., “Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels”, Journal of the American Chemical Society, vol. 102, No. 20, 1980, pp. 6324-6336.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386.
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576.
Reusch, W., “Other Topics: Organometallic Chemistry: Organometallic Compounds: Main Group Organometallic Compounds,” Virtual Textbook of Organic Chemistry, 1999, Rev. 2007, 25 pages.
Rodriguez, N., et al., “Flexible Communication and Control Protocol for Injectable Neuromuscular Interfaces”, IEEE Transactions on Biomedical Circuits and Systems, vol. 1, No. 1, 2007, pp. 19-27.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sacks (ED), “Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus,” The National Academy of Clinical Biochemistry Presents Laboratory Medicine Practice Guidelines, vol. 13, 2002, pp. 8-11, 21-23, 52-56, 63.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salditt, P., “Trends in Medical Device Design and Manufacturing”, SMTA News and Journal of Surface Mount Technology, vol. 17, 2004, pp. 19-24.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Samuels, G. J., et al., “An Electrode-Supported Oxidation Catalyst Based on Ruthenium (IV). pH ‘Encapsulation’ in a Polymer Film”, Journal of the American Chemical Society, vol. 103, No. 2, 1981, pp. 307-312.
Sasso, S. V., et al., “Electropolymerized 1,2-Diaminobenzene as a Means to Prevent Interferences and Fouling and to Stabilize Immobilized Enzyme in Electrochemical Biosensors”, Analytical Chemistry, vol. 62, No. 11, 1990, pp. 1111-1117.
Scheller, F. W., et al., “Second Generation Biosensors,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 245-253.
Scheller, F., et al., “Enzyme Electrodes and Their Application”, Philosophical Transactions of The Royal Society of London B, vol. 316, 1987, pp. 85-94.
Schmehl, R. H., et al., “The Effect of Redox Site Concentration on the Rate of Mediated Oxidation of Solution Substrates by a Redox Copolymer Film”, Journal of ElectroAnalytical Chemistry, vol. 152, 1983, pp. 97-109.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sittampalam, G., et al., “Surface-Modified Electrochemical Detector for Liquid Chromatography”, Analytical Chemistry, vol. 55, No. 9, 1983, pp. 1608-1610.
Skoog, D. A., et al., “Evaluation of Analytical Data,” Fundamentals of Analytical Chemistry, 1966, pp. 55.
Slattery, C., et al., “A Reference Design for High-Performance, Low-Cost Weigh Scales”, Analog Dialogue 39-12, 2005 pp. 1-6.
Soegijoko, S., et al., “External Artificial Pancreas: A New Control Unit Using Microprocessor”, Hormone and Metabolic Research Supplement Series, vol. 12, 1982, pp. 165-169.
Sprules, S. D., et al., “Evaluation of a New Disposable Screen-Printed Sensor Strip for the Measurement of NADH and Its Modification to Produce a Lactate Biosensor Employing Microliter Volumes”, Electroanalysis, vol. 8, No. 6, 1996, pp. 539-543.
Sternberg, F., et al., “Calibration Problems of Subcutaneous Glucosensors when Applied ‘In-Situ’ in Man”, Hormone and Metabolic Research, vol. 26, 1994, pp. 523-526.
Sternberg, R., et al., “Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development”, Analytical Chemistry, vol. 60, No. 24, 1988, pp. 2781-2786.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Suekane, M., “Immobilization of Glucose Isomerase”, Zettschrift fur Allgemeine Mikrobiologie, vol. 22, No. 8, 1982, pp. 565-576.
Tajima, S., et al., “Simultaneous Determination of Glucose and 1,5-Anydroglucitol”, Chemical Abstracts, vol. 111, No. 25, 1989, pp. 394.
Takamura, A., et al., Drug release from Poly(vinyl alcohol) Gel Prepared by Freeze-Thaw Procedure, Journal of Controlled Release, vol. 20, 1992, pp. 21-27.
Tarasevich, M. R., “Bioelectrocatalysis”, Comprehensive Treatise of Electrochemistry, vol. 10, 1985, pp. 231-295.
Tatsuma, T., et al., “Enzyme Monolayer- and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen Peroxide and Glucose”, Analytical Chemistry, vol. 61, No. 21, 1989, pp. 2352-2355.
Taylor, C., et al., “‘Wiring’ of Glucose Oxidase Within a Hydrogel Made with Polyvinyl Imidazole Complexed with [(Os-4,4′-dimethoxy-2,2′-bipyridine)Cl]+/2+”, Journal of ElectroAnalytical Chemistry, vol. 396, 1995, pp. 511-515.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Travenol Laboratories, Inc., An Introduction to “Eugly”, Book 1, 1985, pp. 1-22.
Trojanowicz, M., et al., “Enzyme Entrapped Polypyrrole Modified Electrode for Flow-Injection Determination of Glucose”, Biosensors & Bioelectronics, vol. 5, 1990, pp. 149-156.
Tsalikian, E., et al., “Accuracy of the GlucoWatch G2® Biographer and the Continuous Glucose Monitoring System During Hypoglycemia: Experience of the Diabetes Research in Children Network”, Diabetes Care, vol. 27, No. 3, 2004, pp. 722-726.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Turner, R. F., et al., “A Biocompatible Enzyme Electrode for Continuous in vivo Glucose Monitoring in Whole Blood”, Sensors and Actuators B, vol. 1, 1990, pp. 561-564.
Tuzhi, P., et al., “Constant Potential Pretreatment of Carbon Fiber Electrodes for In Vivo Electrochemistry”, Analytical Letters, vol. 24, No. 6, 1991, pp. 935-945.
Umana, M., “Protein-Modified Electrochemically Active Biomaterial Surface”, U.S. Army Research Office, Analytical and Chemical Sciences Research Triangle Institute, 1988, pp. 1-9.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Urban, G., et al., “Miniaturized Thin-Film Biosensors Using Covalently Immobilized Glucose Oxidase”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562.
Velho, G., et al., “In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors”, Diabetes, vol. 38, No. 2, 1989, pp. 164-171.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Von Woedtke, T., et al., “In Situ Calibration of Implanted Electrochemical Glucose Sensors”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 943-952.
Vreeke, M. S., et al., “Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox Centers of Various Peroxidases to Electrodes through a Three-Dimensional Electron-Relaying Polymer Network”, Diagnostic Biosensors Polymers, Chapter 15, 1993, pp. 180-193.
Vreeke, M., et al., “Hydrogen Peroxide and β-Nicotinamide Adenine Dinucleotide Sensing Amperometric Electrodes Based on Electrical Connection of Horseradish Peroxidase Redox Centers to Electrodes through a Three-Dimensional Electron Relaying Polymer Network”, Analytical Chemistry, vol. 64, No. 24, 1992, pp. 3084-3090.
Wang, D. L., et al., “Miniaturized Flexible Amperometric Lactate Probe”, Analytical Chemistry, vol. 65, No. 8, 1993, pp. 1069-1073.
Wang, J., et al., “Activation of Glassy Carbon Electrodes by Alternating Current Electrochemical Treatment”, Analytica Chimica Acta, vol. 167, 1985, pp. 325-334.
Wang, J., et al., “Amperometric Biosensing of Organic Peroxides with Peroxidase-Modified Electrodes”, Analytica Chimica Acta, vol. 254, 1991, pp. 81-88.
Wang, J., et al., “Screen-Printable Sol-Gel Enzyme-Containing Carbon Inks”, Analytical Chemistry, vol. 68, No. 15, 1996, pp. 2705-2708.
Wang, J., et al., “Sol-Gel-Derived Metal-Dispersed Carbon Composite Amperometric Biosensors”, Electroanalysis, vol. 9, No. 1, 1997, pp. 52-55.
Williams, D. L., et al., “Electrochemical-Enzymatic Analysis of Blood Glucose and Lactate”, Analytical Chemistry, vol. 42, No. 1, 1970, pp. 118-121.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Yabuki, S., et al., “Electro-Conductive Enzyme Membrane”, Journal of the Chemical Society, Chemical Communications, 1989, pp. 945-946.
Yang, C., et al., “A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes,” Journal of Membrane Science, vol. 237, 2004, pp. 145-161.
Yang, L., et al., “Determination of Oxidase Enzyme Substrates Using Cross-Flow Thin-Layer Amperometry”, Electroanalysis, vol. 8, No. 8-9, 1996, pp. 716-721.
Yao, S. J., et al., “The Interference of Ascorbate and Urea in Low-Potential Electrochemical Glucose Sensing”, Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, Part 2, 1990, pp. 487-489.
Yao, T., “A Chemically-Modified Enzyme Membrane Electrode as an Amperometric Glucose Sensor”, Analytica Chimica Acta, vol. 148, 1983, pp. 27-33.
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241.
Yildiz, A., et al., “Evaluation of an Improved Thin-Layer Electrode”, Analytical Chemistry, vol. 40, No. 7, 1968, pp. 1018-1024.
Zamzow, K., et al., “New Wearable Continuous Blood Glucose Monitor (BGM) and Artificial Pancreas (AP)”, Diabetes, vol. 39, 1990, pp. 5A-20A.
Zhang, Y., et al., “Application of Cell Culture Toxicity Tests to the Development of Implantable Biosensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 653-661.
Zhang, Y., et al., “Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor”, Analytical Chemistry, vol. 66, No. 7, 1994, pp. 1183-1188.
Canadian Patent Application No. 2,683,721, Examiner's Report dated Nov. 3, 2015.
Canadian Patent Application No. 2,686,641, Examiner's Report dated Dec. 29, 2016.
European Patent Application No. 08755195.8, Examination Report dated Jan. 5, 2016.
European Patent Application No. 08755195.8, Extended European Search Report dated Oct. 18, 2013.
PCT Application No. PCT/US2008/063110, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Nov. 26, 2009.
PCT Application No. PCT/US2008/063110, International Search Report and Written Opinion of the International Searching Authority dated Nov. 21, 2008.
U.S. Appl. No. 12/117,665, Notice of Allowance dated Feb. 23, 2011.
U.S. Appl. No. 12/117,665, Office Action dated Jan. 20, 2011.
U.S. Appl. No. 12/117,665, Office Action dated Jun. 28, 2010.
U.S. Appl. No. 12/117,677, Advisory Action dated Aug. 15, 2012.
U.S. Appl. No. 12/117,677, Advisory Action dated Jul. 27, 2011.
U.S. Appl. No. 12/117,677, Office Action dated Apr. 14, 2011.
U.S. Appl. No. 12/117,677, Office Action dated Jun. 9, 2010.
U.S. Appl. No. 12/117,677, Office Action dated Mar. 9, 2012.
U.S. Appl. No. 12/117,677, Office Action dated May 5, 2013.
U.S. Appl. No. 12/117,677, Office Action dated Nov. 1, 2013.
U.S. Appl. No. 12/117,677, Office Action dated Nov. 4, 2010.
U.S. Appl. No. 12/117,677, Office Action dated Oct. 14, 2011.
U.S. Appl. No. 12/117,681, Notice of Allowance dated Feb. 20, 2013.
U.S. Appl. No. 12/117,681, Office Action dated Apr. 5, 2010.
U.S. Appl. No. 12/117,681, Office Action dated Mar. 5, 2012.
U.S. Appl. No. 12/117,681, Office Action dated Oct. 25, 2012.
U.S. Appl. No. 12/117,681, Office Action dated Sep. 14, 2010.
U.S. Appl. No. 12/117,685, Advisory Action dated Jun. 7, 2010.
U.S. Appl. No. 12/117,685, Office Action dated Apr. 8, 2011.
U.S. Appl. No. 12/117,685, Office Action dated Aug. 16, 2010.
U.S. Appl. No. 12/117,685, Office Action dated Aug. 7, 2013.
U.S. Appl. No. 12/117,685, Office Action dated Mar. 22, 2010.
U.S. Appl. No. 12/117,685, Office Action dated May 31, 2012.
U.S. Appl. No. 12/117,685, Office Action dated Sep. 2, 2009.
U.S. Appl. No. 12/117,685, Office Action dated Sep. 27, 2012.
U.S. Appl. No. 12/117,694, Advisory Action dated Nov. 16, 2012.
U.S. Appl. No. 12/117,694, Office Action dated Aug. 7, 2012.
U.S. Appl. No. 12/117,694, Office Action dated Dec. 9, 2011.
U.S. Appl. No. 12/117,694, Office Action dated Oct. 1, 2013.
U.S. Appl. No. 12/117,698, Notice of Allowance dated Feb. 5, 2013.
U.S. Appl. No. 12/117,698, Office Action dated Apr. 5, 2010.
U.S. Appl. No. 12/117,698, Office Action dated Mar. 7, 2012.
U.S. Appl. No. 12/117,698, Office Action dated Nov. 13, 2012.
U.S. Appl. No. 12/117,698, Office Action dated Sep. 15, 2010.
U.S. Appl. No. 12/495,219, Notice of Allowance dated Nov. 8, 2013.
U.S. Appl. No. 12/495,219, Office Action dated Jun. 25, 2010.
U.S. Appl. No. 12/495,219, Office Action dated Mar. 8, 2011.
U.S. Appl. No. 12/550,208, Advisory Action dated Dec. 4, 2014.
U.S. Appl. No. 12/550,208, Advisory Action dated Dec. 6, 2012.
U.S. Appl. No. 12/550,208, Office Action dated Apr. 12, 2012.
U.S. Appl. No. 12/550,208, Office Action dated Dec. 31, 2013.
U.S. Appl. No. 12/550,208, Office Action dated Jul. 31, 2014.
U.S. Appl. No. 12/550,208, Office Action dated Jul. 9, 2015.
U.S. Appl. No. 12/550,208, Office Action dated Mar. 20, 2013.
U.S. Appl. No. 12/550,357, Notice of Allowance dated Dec. 29, 2011.
U.S. Appl. No. 12/550,357, Office Action dated Jan. 25, 2011.
U.S. Appl. No. 12/550,357, Office Action dated Jul. 20, 2011.
U.S. Appl. No. 13/089,309, Notice of Allowance dated Sep. 17, 2012.
U.S. Appl. No. 13/089,309, Office Action dated Feb. 24, 2012.
U.S. Appl. No. 13/555,066, Notice of Allowance dated Aug. 6, 2013.
U.S. Appl. No. 13/555,066, Office Action dated Dec. 28, 2012.
U.S. Appl. No. 13/906,288, Advisory Action dated Sep. 25, 2014.
U.S. Appl. No. 13/906,288, Notice of Allowance dated Mar. 3, 2015.
U.S. Appl. No. 13/906,288, Office Action dated Jan. 22, 2015.
U.S. Appl. No. 13/906,288, Office Action dated May 28, 2014.
U.S. Appl. No. 13/906,288, Office Action dated Oct. 25, 2013.
U.S. Appl. No. 13/914,555, Notice of Allowance dated Aug. 3, 2015.
U.S. Appl. No. 13/914,555, Office Action dated Apr. 8, 2015.
U.S. Appl. No. 13/914,555, Office Action dated Dec. 31, 2014.
U.S. Appl. No. 13/914,555, Office Action dated Jan. 7, 2014.
U.S. Appl. No. 13/914,555, Office Action dated Jun. 10, 2014.
U.S. Appl. No. 14/087,751, Notice of Allowance dated Feb. 3, 2015.
U.S. Appl. No. 14/087,751, Office Action dated Jan. 2, 2015.
U.S. Appl. No. 14/087,751, Office Action dated Nov. 21, 2014.
U.S. Appl. No. 14/195,449, Notice of Allowance dated Oct. 5, 2016.
U.S. Appl. No. 14/195,449, Office Action dated Apr. 5, 2016.
U.S. Appl. No. 14/226,780, Office Action dated Sep. 8, 2015.
U.S. Appl. No. 14/678,226, Notice of Allowance dated Dec. 23, 2015.
U.S. Appl. No. 14/678,226, Notice of Allowance dated Feb. 24, 2016.
U.S. Appl. No. 14/678,226, Office Action dated Jul. 30, 2015.
U.S. Appl. No. 14/678,226, Office Action dated Oct. 7, 2015.
U.S. Appl. No. 14/709,392, Advisory Action dated Sep. 20, 2016.
U.S. Appl. No. 14/709,392, Notice of Allowance dated Jan. 5, 2017.
U.S. Appl. No. 14/709,392, Office Action dated Jan. 5, 2016.
U.S. Appl. No. 14/709,392, Office Action dated Jul. 14, 2016.
U.S. Appl. No. 14/709,392, Office Action dated Jul. 6, 2015.
U.S. Appl. No. 14/928,395, Office Action dated May 6, 2016.
U.S. Appl. No. 14/928,395, Office Action dated Nov. 16, 2016.
European Patent Application No. 17167461.7, Extended European Search Report dated Aug. 4, 2017.
U.S. Appl. No. 14/928,395, Office Action dated Jul. 12, 2017.
U.S. Appl. No. 14/928,326, Office Action dated Dec. 5, 2017.
U.S. Appl. No. 15/435,214, Office Action dated Oct. 19, 2017.
Related Publications (1)
Number Date Country
20170245760 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
60916776 May 2007 US
Continuations (3)
Number Date Country
Parent 14709392 May 2015 US
Child 15591073 US
Parent 13906288 May 2013 US
Child 14709392 US
Parent 12117698 May 2008 US
Child 13906288 US