The present invention relates to devices and methods for monitoring an analyte in a fluid sample (e.g. blood glucose) and providing visual and/or auditory feedback to a user of the devices.
Diabetes is a widespread condition, affecting millions worldwide. In the United States alone, an estimated 23.6 million people, or 7.8% of the population, have the condition. Diabetes accounts for an estimated $174 billion annually in direct and indirect medical costs. Depending on the type (Type 1, Type 2, and the like), diabetes may be associated with one or more symptoms such as fatigue, blurred vision, and unexplained weight loss, and may further be associated with one more complications such as hypoglycemia, hyperglycemia, ketoacidosis, neuropathy, and nephropathy.
To help delay or prevent these undesirable complications, it may be necessary for people with diabetes to monitor one or more blood analyte levels, such as blood glucose. Glucose testing allows a patient to ensure that his or her blood glucose is at a safe level, which in turn may help monitor the effectiveness of diet, medication, and exercise in controlling the patient's diabetes, and may also help reduce the risk of developing one or more diabetes-related conditions (e.g., blindness, kidney damage and nerve damage). Many of the currently available glucose meters, however, require numerous components and complicated steps to complete a test, and may result in a frustrating or otherwise negative user experience (which may reduce the likelihood of user compliance). As such, it may be desirable to produce safe and effective analyte concentration meters that may make sampling discrete and easier for the user.
Described here are analyte measurement devices and systems for providing feedback to a user. In some variations, an analyte measurement device may be configured to produce a plurality of auditory prompts to a user, and these prompts may convey information, instructions, and/or encouragement to a user. In some variations, the analyte measurement device may be able to change a set of auditory prompts outputted by the analyte measurement device. In some of these variations, a system may comprise an analyte measurement device comprising a housing, a speaker and a control unit. In these variations, the housing may comprise a releasable housing portion and the releasable housing portion may comprise an auditory identifier that is associated with an auditory prompt set. The control unit may be configured to detect the auditory identifier, set the auditory prompt set associated with the detected auditory identifier as an active prompt set, and instruct the speaker to output at least one auditory prompt from the active prompt set. In some variations, the control unit may comprise a processor and/or a memory unit.
In some variations the system may further comprise a plurality of releasable housing portions. In some of these variations, each of the releasable housing portions may be associated with an auditory prompt set comprising at least one auditory prompt that differs from at least one auditory prompt associated with the other releasable housing portions of the plurality of releasable housing portions. In some embodiments, the auditory prompt set associated with a releasable housing portion may be stored on the memory unit. In other embodiments, the auditory prompt set associated with the releasable housing portion may be stored on the releasable housing portion or on a server. The control unit may also comprise a speech unit and instructing the speaker to output at least one auditory prompt from the active prompt set may comprise transmitting a signal associated with the at least one auditory prompt from the speech unit to the speaker. In some variations, the analyte measurement devices described here may further comprise a display and/or a microphone. In some embodiments, the analyte measurement device may be an integrated meter. In some variations, the system may further comprise a cartridge.
In some embodiments, a system may comprise an analyte measurement device comprising a housing, a speaker, a control unit, and a skin. In these variations, the skin may be configured to releasably attach to the housing and may comprise an auditory identifier that may be associated with an auditory prompt set. The control unit may be configured to detect the auditory identifier, set the auditory prompt set associated with the detected auditory identifier as an active prompt set, and instruct the speaker to output at least one auditory prompt from the active prompt set. In some variations, the control unit may comprise a processor and/or a memory unit.
In some variations the system may further comprise a plurality of skins. In some of these variations, each skin may be associated with an auditory prompt set comprising at least one auditory prompt that differs from at least one auditory prompt associated with the other skins of the plurality of skins. In some embodiments, the auditory prompt set associated with a skin may be stored on the memory unit. In other embodiments, the auditory prompt set associated with the skin may be stored on the skin or on a server. The control unit may also comprise a speech unit and instructing the speaker to output at least one auditory prompt from the active prompt set may comprise transmitting a signal associated with the at least one auditory prompt from the speech unit to the speaker. In some variations, the analyte measurement devices described here may further comprise a display and/or a microphone. In some embodiments, the analyte measurement device may be an integrated meter. In some variations, the system may further comprise a cartridge.
Described here are analyte measurement systems and devices, and methods of using the same. Generally, the devices described here comprise an analyte measurement device configured to audibly communicate with a user. In some embodiments, the analyte measurement devices audibly and/or visually communicate with the user by outputting prompts or receiving commands. In some variations, the analyte measurement devices may be configured with an auditory and/or visual output based on one or more removable components of the analyte measurement device. In these variations, the systems may comprise an analyte measurement device and one or more removable components (e.g., a removable portion of a housing, a cartridge, a skin, or the like).
Analyte Measurement Devices
Generally, the analyte measurement devices described here are configured to perform one or more steps of an analyte measurement operation in which the concentration of one or more analytes in a fluid sample is measured. For example, an analyte measurement device may be configured to perform one or more of the following operations: collect a fluid sample from a sampling site, transport the fluid sample to an analysis site, and analyze the fluid sample. When the analyte measurement device is configured to collect a fluid sample from a sampling site, the device may be configured to collect a fluid sample from any suitable sampling site. Examples of suitable sampling sites include, but are not limited to, one or more body sites (e.g., fingers, toes, other skin surfaces, or the like) or one or more artificial containers (e.g., a vial holding a control solution or a body fluid sample). The fluid sample may comprise any suitable fluid, such as, for example, one or more solutions (e.g., a control solution), mixtures, body fluids (e.g., blood, saliva, or the like), combinations thereof and the like. Analysis of a fluid sample may include determining the concentration of one or more analytes in the sample, such as one or more hormones, proteins, enzymes, toxins, drugs, other molecules, or the like. In some variations, the analyte measurement devices described here may be configured to measure the glucose concentration of one or more blood samples or other glucose-containing solutions.
In some variations, an analyte measurement device as described here may be fully integrated, in that the device may contain all of the components necessary for collecting, transporting, and analyzing a fluid sample. For example, the systems described here may comprise one or more of the devices described in U.S. patent application Ser. No. 13/566,886, filed Aug. 3, 2012 and titled “DEVICES AND METHODS FOR BODY FLUID SAMPLING AND ANALYSIS,” U.S. Pat. No. 7,004,928, filed Apr. 23, 2002 and titled “AUTONOMOUS, AMBULATORY ANALYTE MONITOR OR DRUG DELIVERY DEVICE,” and U.S. Pat. No. 8,012,103 and titled “CATALYSTS FOR BODY FLUID SAMPLE EXTRACTION,” the contents of each of which are hereby incorporated by reference in their entirety. It should also be appreciated that the analyte measurement devices described here may be configured to perform only a subset of the collecting, transporting, and analyzing operations associated with analysis of a fluid sample.
For example, the analyte measurement device may comprise a fully integrated meter. The meter may comprise a meter housing and one or more cartridges, which will be described in more detail below. In some variations, the meter may be configured to collect and analyze a plurality of fluid samples. For example, in some variations, a cartridge may comprise one or more cells, some or all of which may contain one or more sampling arrangements for collecting a fluid sample, as described in more detail below. The meter may be further configured to audibly, visually or otherwise provide one or more results from the sample analysis. Some portions of the meter may be reusable, while other portions of the meter may be disposable. For example, in some variations, the meter housing is reusable while the cartridge is disposable. In these variations, new cartridges may be inserted into or otherwise engage with a meter housing to conduct a new series of tests. In other variations, both the meter housing and the cartridge may be disposable.
A cover or door (104) may be opened to reveal a cartridge-receiving chamber (106), as shown in
Any suitable cartridge may be used with the meters. For example, in some variations, the meter may comprise one or more of the cartridges described in U.S. patent application Ser. No. 11/529,614, titled “MULTI-SITE BODY FLUID SAMPLING AND ANALYSIS CARTRIDGE,” and U.S. Pat. No. 8,231,832, titled “ANALYTE CONCENTRATION DETECTION DEVICES AND METHODS,” the contents of each of which is hereby incorporated by reference in its entirety. A suitable variation of a cartridge that may be used with the meter described above is illustrated in
The meter housing (118) may be configured to house a speaker and/or a microphone (not shown) and a control unit (not shown), although it should be appreciated that the speaker, microphone, and/or control unit may in some instances be partially housed in the housing (118), may be externally attached to the housing (118), or may be part of a separate device (i.e., headphones, cellular phone, computer, tablet, etc.) that communicates with the meter either wirelessly or through a wired connection. As depicted in
As mentioned above, the analyte measurement devices described here are generally configured to provide some form of feedback (auditory, visual, tactile, etc.) to a user. Generally, the analyte measurement devices described here may comprise a control unit comprising a memory unit (which can include one or more computer-readable storage mediums), one or more processors (CPU's), and a speech unit. The one or more processors may execute various software programs and/or sets of instructions stored in the memory unit to perform various functions for the device and to process data. In some examples, the memory unit, processor and speech unit may be implemented on a single chip. In other examples, they can be implemented on separate chips. Depending on the desired functionality of the device, the device may further comprise any number of components, including but not limited to, circuitry of any kind (e.g., RF circuitry, audio circuitry, display circuitry, lighting circuitry, integrated circuits, etc.), a speaker, a microphone, a tactile output generator (e.g., a vibrational element), a display (including a touch-sensitive display system), one or more external ports, etc. The device may include all of the above listed components, or any sub combination of the components. Additionally, the various components described may be implemented across two or more devices (e.g., an analyte measurement device and a cellular phone), of which one or more may include a home computer, or a remote server accessed by a local area network or by the internet. In an example where two or more devices are used, the devices can communicate with each other to facilitate operation of the devices. The communication may or may not be encrypted.
The analyte measurement devices may also be configured to receive, compile, store, and access data. In some variations, the analyte measurement device may be configured to access and/or receive data from different sources. The analyte measurement device may be configured to receive data directly entered by a user and/or it may be configured to receive data from separate devices (e.g. a cellular phone, tablet, computer, etc.) and/or from a storage medium (flash drive, memory card, etc.). The analyte measurement device may receive the data through a network connection, as discussed in more detail below, or through a physical connection with the device or storage medium (e.g. through USB or any other type of port). The analyte measurement device may compile the data using a processor and may store the data on a memory unit within the access device, or it may transmit the data to an external server for storage. Furthermore, the analyte measurement device may later access the stored data using the processor.
The analyte measurement device may be configured to receive various types of data. For example, the analyte measurement device may be configured to receive a user's personal data (e.g., gender, weight, birthday, age, height, diagnosis date, anniversary date using the device, etc.), a user's testing history (e.g., number of tests completed, time each test was completed, date each test was completed, pre or post prandial test markings, how many tests a user has completed consecutively, etc.), a user's results history (e.g., glucose level at time test was taken), a user's diet information (e.g., what a user had to eat each day, number of alcoholic beverages, amount of carbohydrates consumed, etc.), a user's exercise information (e.g., if a user exercised, when the user exercised, duration of exercise, what type of exercise the user completed (e.g. biking, swimming, running, etc.), exertion level of the exercise (e.g., low, medium, high), a user's heart rate during exercise, etc.), general health information of other similarly situated patients (e.g., typical test results for a similar user at a similar time of day, average of test results for a similar user after exercise, etc.), or any other information that may be relevant to a user's treatment. In some variations, the analyte measurement device may be configured to create, receive, and/or store user profiles. A user profile may contain any of the user specific information previously described. Additionally, the analyte measurement device may be configured to receive general information useful in determining when testing occurs (e.g., time of day, date, location) as is described in more detail in U.S. patent application Ser. No. 12/457,332, titled “MEDICAL DIAGNOSTIC DEVICES AND METHODS,” the content of which is hereby incorporated by reference in its entirety. While the above mentioned information may be received by the analyte measurement device, in some embodiments the analyte measurement device may be configured to calculate any of the above data from information it has received using software stored on the device itself, or externally.
In some embodiments, the analyte measurement device may be configured to identify patterns in user behavior, use the identified patterns to predict future user behavior, and provide prompts to the user relating to the identified patterns, as is described in more detail in U.S. patent application Ser. No. 12/457,332, titled “MEDICAL DIAGNOSTIC DEVICES AND METHODS,” which was previously incorporated by reference in its entirety. In some instances, the analyte measurement device may use the patterns to help warn about, or prevent the occurrence of one or more glucose events. A glucose event may occur any time a user's glucose is above or below an expected level or is outside a specified range. In some embodiments, a glucose event may be a hypoglycemic event or a hyperglycemic event. In some variations, the analyte measurement device may be configured to compare the user's personal data, testing history, diet information, exercise information, or any other relevant information, to a user's historical data (e.g. prior test data, user's historical trends, etc.), data preloaded onto the analyte measurement device that has been compiled from external sources (e.g. medical studies), or data received from a separate device (e.g., historical data or data compiled from external sources), as is described in more detail below. In some instances, the warning or notification may include instructions to perform a test, seek medical attention, and/or to eat or drink something.
The analyte measurement device may be configured to calculate the likelihood of a glucose event based on data it has received and may provide an alert or prompt to a user based on its calculation. In some variations, the method of alerting a user of a glucose event may comprise receiving user information, identifying the user information as a stimulus for a glucose event (e.g., exercise, alcohol consumption, sugar consumption, heavy meals, etc.), calculating a likelihood of occurrence of the glucose event, determining when the glucose event will occur, and alerting or prompting the user in advance of the glucose event based on the determination of when the glucose event will occur. The reporting of a risk, if any, may be based upon whether the risk calculation meets or exceeds a certain threshold, or certain criteria.
For example, some users may experience a higher risk of a glucose event after intense exercise (e.g., high intensity for 60 minutes, moderate intensity for 90 minutes, low intensity for 120 minutes) or after consuming a certain number or amount of alcoholic beverages (e.g. 5 glasses of wine, 4.5 ounces of vodka, etc.). The user may input information about his exercise regimen or alcohol consumption into the analyte measurement device or a separate device communicating with the analyte measurement device. The analyte measurement device may identify the information as a stimulus for a glucose event based on data preloaded onto the analyte measurement device, data received from a separate device, and/or a user's historical data, and may mark the information as a stimulus. The analyte measurement device may compare the user's information to the preloaded, received, and/or historical data to calculate a likelihood of occurrence of the glucose event. If there is a high probability that a glucose event may occur, the analyte measurement device may use the preloaded, received, and/or historical data to determine when the event is likely to occur (e.g., 12 hours after exercising, 4 hours after consuming alcohol, etc.), and may alert or prompt the user at an appropriate time (e.g., 11 hours after exercising, 3 hours and 45 minutes after consuming alcohol, etc.), as is described in more detail below.
In some embodiments, calculating the likelihood of the occurrence of a glucose event may comprise comparing the user's information with the user's historical information (e.g. prior test result, historical average, historical trend, predictive value, etc.) assigning a probability of a glucose event occurring based on the comparison, determining if the probability is larger than a threshold value, and if so, determining that alerting or prompting a user is necessary. In other embodiments, calculating the likelihood of the occurrence of a glucose event may comprise comparing the user's information with the health information of other patients, for example, similarly situated patients (e.g., patients of similar age, weight, patterns, etc.). In yet other embodiments, calculating the likelihood of the occurrence of a glucose event may comprise comparing the user's information with both the user's historical information and the health information of similarly situated patients, assigning a probability to each comparison, and averaging the probabilities. While a simple average is described, a more complex weighting scheme may be utilized. For example, in some embodiments, the comparison of the user's information with the user's historical information may be weighted more heavily than the comparison of the user's information with the health information of similarly situated patients. In still other variations, calculating the likelihood of the occurrence of a glucose event may comprise comparing many different factors (e.g., duration of exercise, intensity of exercise, last meal, and age) with the same factors in multiple data sets (e.g., historical data, similarly situated patient data, etc.) and assigning each factor a different weight to determine a final probability.
In some examples, determining when the glucose event will occur may also comprise comparing the user's information with the user's historical information or the health information of similarly situated patients. This comparison may provide information about how much time may elapse between the stimulus and the glucose event (i.e. a response time). The response times may also be averaged or assigned weights.
In some variations, the analyte measurement device (300) may also comprise a vibrational element (314), for example, a vibrating motor or the like, such that the analyte measurement device may provide tactile feedback to a user. The tactile feedback may be provided to the user through the housing (118), the port (112), or any other component of the device capable of transmitting vibration. In this variation, the memory unit (310) may be configured to store data relating to a plurality of vibrational patterns, and the processor (306) may be configured to select a specific pattern from the plurality of vibrational patterns and communicate with an actuator configured to activate and deactivate the vibrational element.
In some variations, the analyte measurement device (300) may also be configured to produce a visual output to communicate information to a user. As shown in
In some embodiments, the analyte measurement device (300) may also be configured to detect and respond to audible commands. As depicted in
In some variations, the analyte measurement device may communicate with and provide auditory, visual, or other information to a separate user device. For example,
The user devices (402, 404) may transmit data (e.g. user data, test data, audible prompts, visual prompts, etc.) to the server system (408) through the network (406). The network (406) may include any of a variety of networks, such as a cellular telephone network, WiFi network, wide area network, local area network, the Internet, or the like. The user devices (402, 404) may communicate with the network (406) by wireless communication. The wireless communication may use any of plurality of communication standards, protocols and technologies, including but not limited to, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (WiFi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g and/or IEEE 802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol. In some variations, the user devices (402, 404) may directly communicate with each other without transmitting data through the network (406) (e.g., through NFC, Bluetooth, WiFi, and the like.)
The server system (408) may include a server, storage devices (including cloud based storage), databases, and the like and can be used in conjunction with the user devices (402, 404) to transmit data. For example, in variations in which one of the user devices (402) is one of the analyte measurement devices (300) depicted in
For the purposes of this application, a specific output and any data or signal corresponding thereto will be referred to as a “prompt.” Likewise, for the purposes of this application, a specific user input and any data or signal corresponding thereto will be referred to as a “command.” For example, a specific sound output and any data or audio signals corresponding thereto will be referred to as an “auditory prompt,” a specific visual output and any data corresponding thereto will be referred to as a “visual prompt,” and a specific auditory input and any data or audio signals corresponding thereto will be referred to as an “auditory command.”
An auditory prompt may include speech, music, sounds, combinations thereof, and the like, such as will be described in more detail below. In some instances, the analyte measurement device may be configured to produce auditory prompts that can audibly guide users through one or more operations of the device. For example, in variations where the analyte measurement device is an integrated device, the analyte measurement device may be configured to audibly guide a user through an entire sampling process to obtain and analyze a fluid sample to determine a concentration or other measurement of a target analyte. As an example, some variations of the analyte measurement devices described here may audibly inform a user that the device has been woken from a sleep/powered off state, that the device is ready to acquire a sample, that the device is acquiring a sample, that a sample has been acquired (or in some instances, that an additional sample needs to be applied to the device), and that the sample is being analyzed. The analyte measurement device may then present the results of the analysis (e.g., a concentration of blood glucose in the sample).
A visual prompt may include text, graphics, symbols, or combinations thereof, and the like, such as will be described in more detail below. Similarly to the audible prompts discussed above, in some instances the analyte measurement device may be configured to produce visual prompts that can visually guide a user through one or more operations of the device or otherwise convey information about a user's testing history or results.
An auditory command may include speech or sounds, or a combination thereof, and the like, such as will be described in more detail below. A user may use auditory commands to instruct the analyte measurement device to perform specified tasks.
Prompts
Typically, analyte monitors (such as glucose monitors) visually communicate information to a user (e.g., via a display). For example, the analyte monitors may visually display a concentration of an analyte in a sample (e.g., a glucose reading), or may visually display prompts that instruct the user to take one or more actions associated with an analyte measurement operation (e.g., insert a test strip or other test media, apply a sample to the test media, wait for analysis). This type of visual communication normally consists of simple text appearing on the display. The analyte measurement devices described here may be configured to provide information visually and/or audibly to a user (e.g., via the display (318) or the speaker (302) of the device (300) shown in
Generally, the analyte measurement devices described here may be configured to output one or more prompts during use of the device. Typically, a prompt may be outputted in response to an action taken by a user or on a scheduled basis. For example, in some variations an analyte measurement device may provide a prompt when the device is powered on or otherwise awoken from a low-power sleep state. The prompt may provide a greeting, may inform a user of the current time, or the like. When a user initiates an analyte measurement operation (e.g., a testing sequence), the analyte measurement device may output one or more prompts that may guide the user through one or more steps of the analyte measurement operation. For example, a prompt may instruct a user to insert a test strip into the device, to place a sampling site such as a finger on a test port, to apply or reapply a sample to a test port, combinations thereof and the like. Prompts may also instruct a user as to the status of the analyte measurement operation (e.g., a prompt may inform a user that the device is obtaining a sample or is analyzing the sample) or the results of the analyte measurement operation (e.g., the concentration of a given analyte in the sample). The analyte measurement devices may also be configured to output multiple prompts at the same time. For example, the analyte measurement devices may be configured to output both an auditory prompt and a visual prompt in response to a single action taken by a user or on a scheduled basis.
Turning to
For example, if a user is complying with the expected testing regimen (e.g., consecutively or consistently testing at prescribed times), the prompt (502) may praise the user (e.g., “You're doing great! Keep it up!”, “Way to go! You've tested 4 days in a row!”, a graphic of a medal with a numerical indication of compliance, graphic of a check mark, etc.). Conversely, if the user is not complying with the expected testing regiment, the prompt (502) may inform the user of this (“You haven't been testing 2 times a day as prescribed by Dr. Simmons. Maybe you should test more often”, graphic of a sick patient, graphic of an “X”, etc.).
Similarly, the prompts (502) may depend on the results of one or more analyte measurement operations, as is depicted in
Moreover, one or more of the prompts (502) may depend on the results of a determination of when a glucose event may occur, as is discussed in detail above. For example, a prompt (502) may inform a user of the likelihood of a glucose event occurring (e.g., “80%”, graphic of a partially filled thermometer with a scale from 1-100%, etc.). In some variations, the prompt (502) may inform a user that a glucose event may occur imminently (e.g., “You may begin to feel dizzy”, a graphic of a hospital, etc.) and/or that immediate action is required (e.g., “Please test immediately”, “Please eat carbohydrates”, a graphic of a user testing, a graphic of a suggested food, etc.). In some variations, the prompt (502) may inform a user that a potentially glucose event may occur in the future (e.g., “You may have low blood sugar in 2 hours”, “graphic of clock with an exclamation point, etc.) and/or suggest an action the user may wish to take in the future (e.g., “Please test again in 1 hour”, “Please eat a snack in 30 minutes”, a graphic of a clock with an analyte testing device, etc.).
While the prompts (502) are described as being output to/on the analyte measurement device (500) itself, in some variations, the prompts may be output on a separate device (504) in communication with the analyte measurement device, as is described above in detail with respect to
Commands
Generally, the analyte measurement devices described here may be configured to receive one or more commands during use of the device. Typically, a command may be given by a user and received by the device. For example, in some variations, a user may give a command after the device is powered on or otherwise awoken from a low-power sleep state. The command may provide instructions to the device or may otherwise communicate an action the user desires the device complete. For example, a user may provide an audible command (e.g., “Wake-up”, “Turn-Off”, “Begin Test”, etc.), the device may receive the audible command, and the device may respond by completing the user's desired instruction (e.g., waking-up from low-power sleep state, turning-off, beginning a test sequence, etc.). In some variations, the user may provide an audible command requesting information about the user and/or his/her current or historical test results (e.g., “What is my blood sugar?”, “What was my blood sugar on Tuesday?”), the device may receive the command, access the requested information, and respond with a prompt comprising the information requested by the user. In some embodiments, the requested information may comprise information about the status of the testing sequence or any other information that may be of interest to a user.
Auditory Prompts
As mentioned above, the analyte measurement device may output an auditory prompt in response to an action taken by the user (e.g. starting a test sequence) or on a scheduled basis (e.g. a reminder to test at a certain time every day). Auditory prompts may also be used to read on-screen menus and options, to guide a user through setting or changing one or more options (e.g., setting a device clock, setting an alarm or reminder, controlling a vacuum pump or display backlight). Table 1 below provides a plurality of examples of auditory prompts that may be outputted by the analyte measurement devices described here.
Visual Prompts
Also as mentioned above, the analyte measurement device may output a visual prompt in response to an action taken by the user (e.g. starting a test sequence) or on a scheduled basis (e.g. a reminder to test at a certain time every day). Visual prompts may also be used to guide a user through a test sequence (as is described above in Table 1 with respect to auditory prompts). Visual prompts that guide a user through a test sequence may comprise any visual representation of the steps of the test sequence. For example, simple text may appear on a display explaining what the user should do or a graphical representation of the steps may appear (e.g., a graphic of a finger applied to the test port when a user should apply his/her finger to the test port).
Other types of visual prompts are also contemplated. In some embodiments a light source (e.g., LED) may illuminate a component of the device. For example, a component (the display, a bezel of the display, the test port, the buttons, etc.) may flash or change colors. In some embodiments, the color the component is illuminated may vary based on a user's testing history. For example, if a user has not missed any tests in his/her expected testing regimen, the component may illuminate green. If a user has missed between 0 tests and a selected set-point (e.g. 3 tests, 4 tests, etc.), the component may illuminate yellow. If a user has missed more than a selected set-point of tests, the component may illuminate red. Illumination of the component may be tied to any of a number of variables (e.g., missed tests as described above, time since last test, etc.), and any appropriate set-point (e.g., 3 tests, 3 days since last test, etc.). The set-point may be pre-programmed into the device, input by the user, input by a doctor, or received by the device from an external source. The component may also begin to flash or pulse based on a user's testing history or it may both be illuminated a specified color and flash or pulse.
In some embodiments, visual prompts may be utilized to convey data about a user's testing patterns, trends, and/or results. For example, in some instances, a visual prompt may comprise a graphic that may move or otherwise change positions based on a specified variable (e.g., time, testing frequency, testing consistency, amount of sample received, status of analyte measuring operation, etc.). For example, a graphic may be displaced along the x-axis, the y-axis, or both the x and y axes consecutively or concurrently to convey a change in a specified variable. In some embodiments, a graphic may rotate to indicate a change in a specified variable, or its size or depicted volume may increase or decrease. In other embodiments, a graphic's movement may comprise a combination of displacement, rotation, and volumetric changes.
In some variations, the graphic may change based on the cumulative results of many tests (e.g., number of tests completed in a specific time frame, number of tests with results within a desired range, number of tests completed consecutively, number of days with completed tests within desired range, etc.). For example, each time a user finishes a test, the graphic may be modified to reflect the cumulative result of all of the completed tests. In some instances, the graphic may be modified such that it moves from a first pre-test position to a second post-test position. The movement of the graphic from the first pre-test position to the second post-test position may convey information to the user about the user's testing patterns or results. For example,
In some instances, the graphic may change based on data collected during a single test (e.g., time since test sequence began, number of steps of test sequence completed/remaining, amount of sample collected, etc.). For example, the device may output an active visual prompt as the graphic may change in real-time while the analyte measurement device is completing an analyte measurement operation. As an example, the active visual prompt may comprise a cat drinking water from a bowl and expanding in volume while the device collects a sample from a user. The cat's volume may be indicative of the amount of sample the device has collected and the cat may finish drinking water and move away from the bowl when the device collects a sufficient sample volume. Another example of an active visual prompt (614) is depicted in
Customization
As discussed above, the analyte sampling devices may be configured to output a plurality of different prompts. In some variations, the specific prompts outputted by the analyte measurement devices may be customized in one or more ways. Generally, the analyte measurement device is programmed with a plurality of “prompt types.” Each prompt type indicates an instance during which the analyte measurement device may output a prompt. For example, an analyte measurement device may be configured with a first prompt type (e.g., providing a prompt when the device is powered on or awoken from a low-power sleep state), a second prompt type (e.g., providing a prompt when a user has performed a given number of consecutive tests in a given time frame), and a third prompt type (e.g., providing a prompt when the device has completed an analyte measurement operation). For each prompt type, the analyte measurement device may be programmed with one or more prompts that may be selected for that prompt type. The analyte measurement device may be figured to select a prompt for each prompt type, and these selections are collectively referred to as a prompt set. It may be possible for a user or the device to select from one of a plurality of possible prompt sets, and the currently selected prompt set is referred to here as the active prompt set. The active prompt set may be manually set by a user, or may be automatically determined by the analyte measurement device, as will be discussed in more detail below. While typically a single prompt is selected for each prompt type of a prompt set, in some instances a plurality of different prompts may be selected for a given prompt type in a prompt set. In these instances, when the analyte measurement device determines that conditions for outputting the prompt type have been met, the device may select one of the plurality of different prompts in a random or predetermined order. Additionally, for the purposes of this application, when a specific prompt of a prompt type is intended to convey a measurement or time (e.g., a concentration of an analyte in a sample, the duration of time that has passed between measurements, the number of consecutive days the device has performed a testing operation, the current time, etc.), the prompt is considered a single prompt even though the actual measurement or time conveyed by the prompt may vary depending between instances that the prompt is output.
When two or more prompts are used for a given prompt type, the prompts may vary in any suitable manner. In some variations, a prompt type may have auditory prompt variations where different language is used (e.g., “Welcome to POGO®” in a first variation, “Let's test your glucose!” in a second variation). In other variations, a prompt type may have visual prompt variations where different graphics are used (e.g., a sun-rising in a first variation, a bowl of cereal in a second variation). In some embodiments, a prompt type may have an auditory prompt, a visual prompt and a tactile prompt associated with it. In embodiments in which multiple prompts (e.g., visual, auditory, tactile) are associated with a prompt type, and the prompt type comprises prompt variations (e.g., 2 different visual prompts, 2 different auditory prompts), any combination of the prompts may be used and the combinations may be selected in any suitable manner (e.g. by the user, at random, etc.).
Specifically with respect to auditory prompts, a prompt may have variations where different voices are used (e.g., a female voice in a first variation and a male voice in a second variation). Additionally or alternatively, a prompt may have variations where different sound effects are associated with a prompt (e.g., when a prompt gives positive reinforcement for frequent testing, such as “Way to go! You've tested 4 days in a row,” a first variation may include the sounds of a cheering crowd while a second variation may include a fanfare of trumpets).
In some variations, the device may be configured to allow a user to record one or more auditory prompts. For example, when an analyte measurement device will be used by a child, it may be desirable for the device to output auditory prompts that have been recorded by a parent or caretaker of the child. Providing auditory prompts with a familiar voice may provide an added level of comfort to the child as he or she uses the device, which may reduce fear associated with the device and may encourage the child to test more frequently. The recorded auditory prompts may be provided to the analyte measurement device in any suitable manner. In some variations, the auditory prompts may be recorded by the user on an external device (e.g., a computer, phone, tablet, recorder, or the like), and may be transmitted to the analyte measurement device (e.g., using a physical connection such as a USB connection and/or a wireless connection such as WiFi or RFID, as discussed in more detail above). In these variations, the external device may comprise a program that has a prompt recording mode configured to facilitate recording of specific auditory prompts, as will be discussed in more detail below.
In other variations, the analyte measurement device may be configured to record one or more auditory prompts. In these variations, the analyte measurement device may comprise a microphone or other sound recording device configured to capture a user's voice. Additionally, the analyte measurement device may be programmed with a prompt recording mode. When the device is placed in the prompt recording mode, the device may be configured to guide the user through recording one or more voice prompts. The prompt recording mode may be initiated during initial setup of the analyte measurement device, or may be selectively initiated by a user (e.g., through a menu command). The analyte measurement device may be configured to automatically guide the user through recording a predetermined number of auditory prompts (such as, for example, a given prompt set), or the user may select which auditory prompts he or she would like to record. For each auditory prompt that will be recorded in the prompt recording mode, the analyte measurement device may be configured to identify what prompt or prompt type will be recorded (e.g., “Please say a few words of encouragement”, “Please repeat the following when instructed: ‘Good morning!’”), instruct the user when to start and/or stop recording (e.g., “Please begin recording after the countdown, and press the power button when you have finished. 3, 2, 1.”). When the auditory prompt has been recorded, the prompt recording mode may be configured to associate the recorded prompt with one or more prompt types (and in some instances, one or more prompt sets).
In some variations where an analyte measurement device may be used by multiple users, the device may be configured to select a different active prompt set for different users of the device. For example, one or more prompt types may include one or more prompts that are customized to a specific user. For example, when a prompt type is configured to provide an analyte measurement value, an active prompt set for a first user may output a first variation of an auditory prompt (e.g., “John, your blood glucose is 85 mg/mmol”) or a visual prompt (e.g., a cheering man), while an active prompt set for a second user may output a second variation of an auditory prompt (e.g., “Sally, your blood glucose is 85 mg/mmol”) or a visual prompt (e.g., a cheering woman). In some variations, prompts may be tailored to a given user, and may use information about that user (e.g., by using the user's name, the name of the user's physician, etc.). Additionally or alternatively, the prompts may be selected by the user based on his/her preferences (e.g., some users may prefer a male voice while other users may prefer a female voice). In some variations, prompts may be tailored to a given user using information from a user profile setup by the user, as was discussed above.
Generally, the analyte measurement device may be configured to store a user-specific prompt set for a plurality of individual users. When the device determines that one of the plurality of individual users is using the device, the device may be configured to automatically set the user-specific prompt set associated with that user as the active prompt set. In some variations, the analyte measurement device may be configured to select or load a specific prompt set based on information stored in a user's user profile. If the device is being used by an unrecognized user, the device may be configured to set a default prompt set as the active prompt set. Individual users may change their user-specific prompt set (e.g., using menu features or changing it in their user profiles), and new users may be added to the plurality of individual users. The analyte measurement device may be configured to differentiate between users in any suitable manner. In some variations, users may log into or otherwise input an identification code to the analyte measurement device to access or indicate to the device to access their user profiles. In some of these variations, a user may be required to log-in before the device may be used in an analyte measurement operation. Additionally or alternatively, a user may insert a USB stick, memory card, or the like into the analyte measurement device and the device may determine the user's identity from this component. Additionally or alternatively, a user may carry a key fob or other external device that may be wirelessly detected by the analyte measurement device to determine the user.
Removable or Additional Components
In some variations, the analyte measurement device may select an active prompt set (or a default active prompt set) based on one or more components of the device. In some instances, an analyte measurement device may be constructed and/or manufactured such the analyte measurement device may have one of a plurality of different physical appearances. For example, when the analyte measurement device comprises an outer housing (such as the meter housing (118) of the meter (100) discussed above with respect to
Accordingly, in some variations, an analyte measurement device may be constructed and/or manufactured in one of a plurality of different configurations, in which each configuration has a different physical appearance. In some of these variations, each configuration of the analyte measurement device may have a default active prompt set associated with that configuration. Accordingly, systems and kits may include a plurality of analyte measurement devices having different physical appearances, each having an appearance-specific default active prompt set. In some instances, the default active prompt set for a given configuration of the device may be thematically associated with the physical appearance of the analyte measurement device. For example, one or more portions of the housing of one configuration of an analyte measurement device may include an image of a car, and the associated auditory prompt set may include car-related sound effects (e.g., revving engines, squealing tires) and/or speech (e.g., “Start your engines”) and/or the associated visual prompt set may include car-related visual effects (e.g. driver in car turning key, rotating tires). Another configuration may include an image of a cat, and the associated auditory prompt set may include cat-related sound effects (e.g., purring, meowing) and/or speech (e.g., “That test was purr-fect”) and/or the associated visual prompt set may include cat-related visual effects (e.g., person petting cat, cat appearing to speak). The analyte measurement devices may have any suitable number of different configurations, each having a graphic appearance and an associated set of prompts.
In some variations, a user may replace one or more components of the analyte measurement device and/or add one or more additional components to alter the physical appearance of the device. In some variations, the analyte measurement device may be configured to change the active prompt set in response to the replacement or addition of one of these components. In some instances, a portion of a housing of the analyte measurement device may be releasably attached to the analyte measurement device such that the releasable portion may be replaced with another variation of the releasable portion. In other variations, the housing may be configured to accept an additional component using snap fit connectors, sliding connectors, clips, or the like. Systems or kits may include a single removable housing portion or they may include a plurality of removable housing portions. In systems or kits that include a plurality of removable housing portions, the analyte measurement device may be configured such that one of the plurality of removable housing portions may be connected to the analyte measurement device at a time. The plurality of removable housing portions may have different physical appearances, such as described above, such that changing the removable housing portion of the analyte measurement device may change the appearance of the analyte measurement device. In some variations, changing the removable housing portion of the device may not significantly change the physical appearance of the device, but may still change the active prompt set. In some instances, the removable or additional housing portion may allow for the delivery of data to the device, for example, updated software or firmware.
In some embodiments, the removable portion of the housing may be a front cover of the housing. For example, in the variation of the device shown in
In some embodiments, the cartridge may be configured to carry information relating to a prompt set. The cartridge (102) may comprise an information storage member (134) that carries information and may communicate with the meter (100) to convey the stored information. For example, the storage information member (134) may comprise one or more barcodes, as depicted in
The cartridge may comprise any suitable number of barcodes (e.g., zero, one, two, three, or four or more barcodes). In some variations, the information storage member (134) may comprise one or more memory chips or cards, which may convey information to the meter through, for example, RF transmission, optical communication, or via direct electrical communication. In other variations, a separate memory card or chip may be packaged and/or provided with the cartridge. This memory card or chip may be inserted into a portion of the meter to convey information to the meter, as is discussed in more detail below.
As mentioned above, the analyte measurement device may be configured to change the active prompt set based on the removable portion that is currently connected to the analyte measurement device. In some variations, the analyte measurement device may be configured to automatically detect which removable portion is connected to the device and select an active prompt set associated with that removable portion. In some embodiments, the removable portion may comprise an identifier that may contain or transmit information or otherwise communicate with the analyte measurement device about the removable component connected to it and/or the prompt set (e.g., auditory, visual, etc.) associated with the connected removable component. For example, a system may comprise an analyte measurement device configured to receive a removable housing portion, and may further comprise a first version of the removable housing portion and a second version of the removable housing portion. The first version of the removable housing portion may have a first prompt set associated therewith, and the second version of the removable housing portion may have a second prompt set associated therewith. When the first version of the removable housing portion is attached to the analyte monitor, the analyte measurement device may be configured to detect the first version's identifier and set the first prompt set as the active prompt set. A user may remove the first version of the removable housing portion and connect the second version of the removable housing portion to the analyte measurement device. Upon connection of the second version of the removable housing portion, the analyte measurement device may detect the second version's identifier and may set the second prompt set as the active prompt set. In some variations, the identifier may be integrally formed with the prompt set.
Systems and kits may include a single removable housing portion or a plurality of versions of a given removable housing portion. Each version of the plurality of versions may have an associated identifier and prompt set, and the analyte measurement device may be configured to detect the version of the removable housing portion and set the associated prompt set as the active prompt set. In some variations, each version of the removable housing portion may include a different prompt set. A first prompt set may be considered different from a second prompt set if at least one prompt within the prompt set is different or if the prompt sets comprise different numbers of prompts.
Additionally or alternatively, as depicted in
In variations where an analyte measurement device is configured to receive both a removable portion of a housing and a skin, the analyte measurement device may be configured to select the set of auditory prompts based on either the version of the removable portion or the version of the skin. In some of these variations, the presence of a skin may override the presence of the removable portion, such that the analyte measurement device is configured to set a prompt set associated with the skin as the active prompt set instead of a prompt set associated with the removable portion when both the skin and the removable portion are present. In some instances a user may be able to change the active prompt set even when a specific version of a skin or removable housing portion is attached to an analyte measurement device, by for example, changing a selection in a menu on the device.
The analyte measurement device may be configured to detect the identifier of a removable housing portion and/or a skin in any suitable manner. In some variations, a removable housing portion/skin may be configured to achieve direct electrical communication with a control unit of the analyte measurement device when attached to the analyte measurement device. For example, the removable housing portion or skin may include an electrical interface (such as a USB interface) that may physically contact an electrical interface of the analyte measurement device, and the analyte measurement device may be able to recognize or determine the presence and/or identifier of the removable housing portion/skin based on this electrical connection. Additionally or alternatively, one or more portions of the removable housing portion/skin may physically press against one or more buttons of the analyte measurement device to indicate the presence and/or identifier of a removable housing portion/skin. Additionally or alternatively, the removable housing portion/skin may be configured to wirelessly communicate with the analyte measurement device (e.g., via WiFi or RFID) such that the analyte measurement device may be configured to recognize or determine the presence and/or identifier of a removable housing portion/skin.
When the analyte measurement device is configured to set an active prompt set based on a prompt set corresponding to a removable housing portion's or skin's identifier, the specific prompts from the prompt set may be retrieved from any suitable location. In some variations, the analyte measurement device may be pre-programmed with the necessary prompts included in the various prompt sets. For example, if a system includes an analyte measurement device and a plurality of versions of a removable housing portion, each version having a corresponding prompt set, the analyte measurement device may be pre-programmed with the auditory prompts of each of the corresponding prompts. Additionally or alternatively, the analyte measurement device may be configured to retrieve one or more prompts from the removable housing portion/skin. In these variations, the removable housing portion/skin may be configured to store one or more prompts or prompt sets (e.g., in a memory such as flash memory or an integrated circuit), and the analyte measurement device may be configured to retrieve the prompts or prompt sets from the removable housing portion/skin. In some of these variations, the analyte measurement device may be configured to retrieve and use the prompts from the removable housing portion/skin without permanently storing the prompts in memory of the analyte measurement device. In other variations, the analyte measurement device may be configured to download and store the prompts from the removable portion/skin. In these variations, the downloaded prompts may be later selected (e.g., by a user) for use even when the specific version of the removable housing portion/skin has been removed from the analyte measurement device, using, for example, a selection menu. In still other variations, prompts or prompt sets associated with versions of a removable housing portion/skin may be downloaded from an external device (e.g., a computer, tablet, phone in communication with the analyte measurement device, a memory stick that may be inserted into the analyte measurement device, etc.) either via direct connection (such as a USB interface) or wireless connection (e.g., WiFi, RFID). In some variations, the removable housing portion/skin may contain updated software/firmware that may be transferred to the device when the removable housing portion/skin communicates with the device. The software/firmware updates may be contained on the removable housing portion/skin in addition to, or instead of, the prompt sets.
As mentioned above, the analyte measurement device may comprise a variety of components that enable the transfer of information from a removable housing portion/skin to the control unit of the device.
This application claims priority to U.S. Provisional Application Ser. No. 61/838,171, filed on Jun. 21, 2013, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
842690 | Oswalt | Jan 1907 | A |
D137874 | Partridge | May 1944 | S |
2749797 | Harks | Mar 1950 | A |
3092465 | Adams, Jr. | Jun 1963 | A |
3310002 | Wilburn | Mar 1967 | A |
3620209 | Kravitz | Nov 1971 | A |
3623475 | Sanz et al. | Nov 1971 | A |
3626929 | Sanz et al. | Dec 1971 | A |
3630957 | Rey | Dec 1971 | A |
D223165 | Komendat | Mar 1972 | S |
3723064 | Liotta | Mar 1973 | A |
3741197 | Sanz et al. | Jun 1973 | A |
3961898 | Neeley et al. | Jun 1976 | A |
3992158 | Przybylowicz et al. | Nov 1976 | A |
4014328 | Cluff et al. | Mar 1977 | A |
4042335 | Clement | Aug 1977 | A |
4057394 | Genshaw | Nov 1977 | A |
4109655 | Chacornac | Aug 1978 | A |
4250257 | Lee et al. | Feb 1981 | A |
4253083 | Imamura | Feb 1981 | A |
4254083 | Columbus | Mar 1981 | A |
4258001 | Pierce et al. | Mar 1981 | A |
4260257 | Neeley et al. | Apr 1981 | A |
4289459 | Neeley et al. | Sep 1981 | A |
4321397 | Nix et al. | Mar 1982 | A |
4350762 | DeLuca et al. | Sep 1982 | A |
4394512 | Batz | Jul 1983 | A |
4414975 | Ryder et al. | Nov 1983 | A |
4416279 | Lindner et al. | Nov 1983 | A |
4418037 | Katsuyama et al. | Nov 1983 | A |
4422941 | Vaughan, Jr. et al. | Dec 1983 | A |
4429700 | Thees et al. | Feb 1984 | A |
4627445 | Garcia et al. | Dec 1986 | A |
4637403 | Garcia et al. | Jan 1987 | A |
4637406 | Guinn et al. | Jan 1987 | A |
4653513 | Dombrowski | Mar 1987 | A |
4661319 | Lape | Apr 1987 | A |
4702261 | Cornell et al. | Oct 1987 | A |
4711250 | Gilbaugh, Jr. et al. | Dec 1987 | A |
4737458 | Batz et al. | Apr 1988 | A |
4767415 | Duffy | Aug 1988 | A |
4774192 | Terminiello et al. | Sep 1988 | A |
4787398 | Garcia et al. | Nov 1988 | A |
4790979 | Terminiello et al. | Dec 1988 | A |
4794926 | Munsch et al. | Jan 1989 | A |
4815843 | Tiefenthaler et al. | Mar 1989 | A |
4829470 | Wang | May 1989 | A |
4844095 | Chiodo et al. | Jul 1989 | A |
4846785 | Cassou et al. | Jul 1989 | A |
4887306 | Hwang et al. | Dec 1989 | A |
4920977 | Haynes | May 1990 | A |
4929426 | Bodai et al. | May 1990 | A |
4930525 | Palestrant | Jun 1990 | A |
4935346 | Phillips | Jun 1990 | A |
4953552 | De Marzo | Sep 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
4983178 | Schnell | Jan 1991 | A |
4995402 | Smith | Feb 1991 | A |
5029583 | Meserol | Jul 1991 | A |
5035704 | Lambert et al. | Jul 1991 | A |
5049487 | Phillips et al. | Sep 1991 | A |
5050617 | Columbus et al. | Sep 1991 | A |
5059394 | Phillips et al. | Oct 1991 | A |
5077199 | Basagni et al. | Dec 1991 | A |
5094943 | Siedel et al. | Mar 1992 | A |
5110724 | Hewett | May 1992 | A |
5114350 | Hewett | May 1992 | A |
5116759 | Klainer et al. | May 1992 | A |
5131404 | Neeley et al. | Jul 1992 | A |
5141868 | Shanks et al. | Aug 1992 | A |
5145565 | Kater et al. | Sep 1992 | A |
5146437 | Boucheron | Sep 1992 | A |
5153416 | Neeley | Oct 1992 | A |
5164575 | Neeley et al. | Nov 1992 | A |
5166498 | Neeley | Nov 1992 | A |
5174291 | Schoonen et al. | Dec 1992 | A |
5176632 | Bernardi | Jan 1993 | A |
5179005 | Phillips et al. | Jan 1993 | A |
5183741 | Arai et al. | Feb 1993 | A |
5196302 | Kidwell | Mar 1993 | A |
5208163 | Charlton et al. | May 1993 | A |
5213966 | Vuorinen et al. | May 1993 | A |
5217480 | Habar et al. | Jun 1993 | A |
5218966 | Yamasawa | Jun 1993 | A |
5223219 | Subramanian et al. | Jun 1993 | A |
5228972 | Osaka et al. | Jul 1993 | A |
5234818 | Zimmermann et al. | Aug 1993 | A |
5241969 | Carson et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
D341848 | Bigelow et al. | Nov 1993 | S |
5269800 | Davis, Jr. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5278079 | Gubinski et al. | Jan 1994 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5288646 | Lundsgaard et al. | Feb 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5301686 | Newman | Apr 1994 | A |
5302513 | Mike et al. | Apr 1994 | A |
5304468 | Phillips et al. | Apr 1994 | A |
5306623 | Kiser et al. | Apr 1994 | A |
5308767 | Terashima | May 1994 | A |
5314441 | Cusack et al. | May 1994 | A |
5320607 | Ishibashi | Jun 1994 | A |
5354537 | Moreno | Oct 1994 | A |
5360595 | Bell et al. | Nov 1994 | A |
5368047 | Suzuki et al. | Nov 1994 | A |
5383512 | Jarvis | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5395388 | Schraga | Mar 1995 | A |
5399316 | Yamada | Mar 1995 | A |
5401110 | Neeley | Mar 1995 | A |
5402798 | Swierczek et al. | Apr 1995 | A |
5426032 | Phillips et al. | Jun 1995 | A |
5441513 | Roth | Aug 1995 | A |
5451350 | Macho et al. | Sep 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5460777 | Kitajima et al. | Oct 1995 | A |
5460968 | Yoshida et al. | Oct 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5506200 | Hirschkoff et al. | Apr 1996 | A |
5507288 | Böcker et al. | Apr 1996 | A |
5508200 | Tiffany et al. | Apr 1996 | A |
5510266 | Bonner et al. | Apr 1996 | A |
5514152 | Smith | May 1996 | A |
5525518 | Lundsgaard et al. | Jun 1996 | A |
5527892 | Borsotti et al. | Jun 1996 | A |
5563042 | Phillips et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569287 | Tezuka et al. | Oct 1996 | A |
5575403 | Charlton et al. | Nov 1996 | A |
5577499 | Teves | Nov 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5591139 | Lin et al. | Jan 1997 | A |
5593838 | Zanzucchi et al. | Jan 1997 | A |
5611809 | Marshall et al. | Mar 1997 | A |
5624458 | Lipscher | Apr 1997 | A |
5630986 | Charlton et al. | May 1997 | A |
5632410 | Moulton et al. | May 1997 | A |
5636632 | Bommannan et al. | Jun 1997 | A |
5647851 | Pokras | Jul 1997 | A |
5658515 | Lee et al. | Aug 1997 | A |
5660791 | Brenneman et al. | Aug 1997 | A |
5670031 | Hintsche et al. | Sep 1997 | A |
5676850 | Reed et al. | Oct 1997 | A |
5680858 | Hansen et al. | Oct 1997 | A |
5681484 | Zanzucchi et al. | Oct 1997 | A |
5682233 | Brinda | Oct 1997 | A |
5697901 | Eriksson | Dec 1997 | A |
5700695 | Yassinzadeh et al. | Dec 1997 | A |
5701181 | Boiarski et al. | Dec 1997 | A |
5701910 | Powles et al. | Dec 1997 | A |
D389761 | Thomas | Jan 1998 | S |
5705018 | Hartley | Jan 1998 | A |
5708247 | McAleer | Jan 1998 | A |
5708787 | Nakano et al. | Jan 1998 | A |
5715417 | Gardien et al. | Feb 1998 | A |
5730753 | Morita | Mar 1998 | A |
5735273 | Kurnik et al. | Apr 1998 | A |
5736103 | Pugh | Apr 1998 | A |
5741211 | Renirie et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5746720 | Stouder, Jr. | May 1998 | A |
5757666 | Schreiber et al. | May 1998 | A |
5759364 | Charlton et al. | Jun 1998 | A |
5766066 | Ranniger | Jun 1998 | A |
5771890 | Tamada | Jun 1998 | A |
5797693 | Jaeger | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5820570 | Erickson et al. | Oct 1998 | A |
5827183 | Kurnik et al. | Oct 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5843692 | Phillips et al. | Dec 1998 | A |
5846837 | Thym et al. | Dec 1998 | A |
5851215 | Mawhirt et al. | Dec 1998 | A |
5854074 | Charlton et al. | Dec 1998 | A |
D403975 | Douglas et al. | Jan 1999 | S |
5855801 | Lin et al. | Jan 1999 | A |
5856195 | Charlton et al. | Jan 1999 | A |
5858194 | Bell | Jan 1999 | A |
5866281 | Guckel et al. | Feb 1999 | A |
5871494 | Simons et al. | Feb 1999 | A |
5879310 | Sopp et al. | Mar 1999 | A |
5879326 | Godshall et al. | Mar 1999 | A |
5879367 | Latterell et al. | Mar 1999 | A |
5885839 | Lingane et al. | Mar 1999 | A |
5891053 | Sesekura | Apr 1999 | A |
5893870 | Talen et al. | Apr 1999 | A |
D411621 | Eisenbarth et al. | Jun 1999 | S |
5911711 | Pelkey | Jun 1999 | A |
5911737 | Lee et al. | Jun 1999 | A |
5912139 | Iwata et al. | Jun 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5928207 | Pisano et al. | Jul 1999 | A |
5930873 | Wyser | Aug 1999 | A |
5938679 | Freeman et al. | Aug 1999 | A |
5945678 | Yanagisawa | Aug 1999 | A |
5951492 | Douglas et al. | Sep 1999 | A |
5951493 | Douglas et al. | Sep 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5954685 | Tierney | Sep 1999 | A |
5962215 | Douglas et al. | Oct 1999 | A |
5968760 | Phillips et al. | Oct 1999 | A |
5968765 | Grage et al. | Oct 1999 | A |
5968836 | Matzinger et al. | Oct 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5972294 | Smith et al. | Oct 1999 | A |
5986754 | Harding | Nov 1999 | A |
5989409 | Kurnik et al. | Nov 1999 | A |
5993189 | Mueller et al. | Nov 1999 | A |
D417504 | Love et al. | Dec 1999 | S |
6001067 | Shults et al. | Dec 1999 | A |
6005545 | Nishida et al. | Dec 1999 | A |
6010463 | Lauks et al. | Jan 2000 | A |
6010519 | Mawhirt et al. | Jan 2000 | A |
6014135 | Fernandes | Jan 2000 | A |
6014577 | Henning et al. | Jan 2000 | A |
6023629 | Tamada | Feb 2000 | A |
6027459 | Shain et al. | Feb 2000 | A |
6030827 | Davis et al. | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6041253 | Kost et al. | Mar 2000 | A |
6045753 | Loewy et al. | Apr 2000 | A |
6048352 | Douglas et al. | Apr 2000 | A |
6050988 | Zuck | Apr 2000 | A |
6056701 | Duchon et al. | May 2000 | A |
6056734 | Jacobsen et al. | May 2000 | A |
6058321 | Swayze et al. | May 2000 | A |
6059815 | Lee et al. | May 2000 | A |
6061128 | Zweig et al. | May 2000 | A |
6063039 | Cunningham et al. | May 2000 | A |
6071251 | Cunningham et al. | Jun 2000 | A |
6071294 | Simons et al. | Jun 2000 | A |
6077660 | Wong et al. | Jun 2000 | A |
6080116 | Erickson et al. | Jun 2000 | A |
6083196 | Trautman et al. | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6090790 | Eriksson | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6093156 | Cunningham et al. | Jul 2000 | A |
6097831 | Wieck et al. | Aug 2000 | A |
6099484 | Douglas et al. | Aug 2000 | A |
6100107 | Lei et al. | Aug 2000 | A |
6102933 | Lee et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6103197 | Werner | Aug 2000 | A |
6106751 | Talbot et al. | Aug 2000 | A |
6118126 | Zanzucchi | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6123861 | Santini, Jr. et al. | Sep 2000 | A |
6126899 | Woudenberg et al. | Oct 2000 | A |
6132449 | Lum et al. | Oct 2000 | A |
6139562 | Mauze et al. | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6152942 | Brenneman et al. | Nov 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6172743 | Kley et al. | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6176865 | Mauze et al. | Jan 2001 | B1 |
6183434 | Eppstein et al. | Feb 2001 | B1 |
6183489 | Douglas et al. | Feb 2001 | B1 |
6187210 | Lebouiz et al. | Feb 2001 | B1 |
6192891 | Gravel et al. | Feb 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6200296 | Dibiasi et al. | Mar 2001 | B1 |
6206841 | Cunningham et al. | Mar 2001 | B1 |
6214626 | Meller et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6228100 | Schraga | May 2001 | B1 |
6230051 | Cormier et al. | May 2001 | B1 |
6231531 | Lum et al. | May 2001 | B1 |
6241862 | McAleer et al. | Jun 2001 | B1 |
6242207 | Douglas et al. | Jun 2001 | B1 |
6245215 | Douglas et al. | Jun 2001 | B1 |
6251083 | Yum et al. | Jun 2001 | B1 |
6251260 | Heller et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6255061 | Mori et al. | Jul 2001 | B1 |
6256533 | Yuzhakov et al. | Jul 2001 | B1 |
6268162 | Phillips et al. | Jul 2001 | B1 |
6271045 | Douglas et al. | Aug 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6283926 | Cunningham et al. | Sep 2001 | B1 |
6289230 | Chaiken et al. | Sep 2001 | B1 |
6298254 | Tamada | Oct 2001 | B2 |
6299578 | Kurnik et al. | Oct 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309351 | Kurnik et al. | Oct 2001 | B1 |
D450711 | Istvan et al. | Nov 2001 | S |
6312612 | Sherman et al. | Nov 2001 | B1 |
6312812 | Sherman et al. | Nov 2001 | B1 |
6312888 | Wong et al. | Nov 2001 | B1 |
6315738 | Nishikawa et al. | Nov 2001 | B1 |
6322808 | Trautman et al. | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6331266 | Powell et al. | Dec 2001 | B1 |
6332871 | Douglas et al. | Dec 2001 | B1 |
6334856 | Allen et al. | Jan 2002 | B1 |
6350273 | Minagawa et al. | Feb 2002 | B1 |
6352514 | Douglas et al. | Mar 2002 | B1 |
6356776 | Berner et al. | Mar 2002 | B1 |
6358265 | Thorne, Jr. et al. | Mar 2002 | B1 |
6364890 | Lum et al. | Apr 2002 | B1 |
6375626 | Allen et al. | Apr 2002 | B1 |
6375627 | Mauze et al. | Apr 2002 | B1 |
6379969 | Mauze et al. | Apr 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6391645 | Huang et al. | May 2002 | B1 |
6402704 | McMorrow | Jun 2002 | B1 |
6409679 | Pyo | Jun 2002 | B2 |
6428664 | Bhullar et al. | Aug 2002 | B1 |
6449608 | Morita et al. | Sep 2002 | B1 |
6455324 | Douglas | Sep 2002 | B1 |
6493069 | Nagashimada | Dec 2002 | B1 |
6500134 | Cassone | Dec 2002 | B1 |
6520973 | McGarry | Feb 2003 | B1 |
6530892 | Kelly | Mar 2003 | B1 |
6537243 | Henning et al. | Mar 2003 | B1 |
6540675 | Aceti et al. | Apr 2003 | B2 |
6544475 | Douglas et al. | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6555061 | Leong et al. | Apr 2003 | B1 |
6558624 | Lemmon et al. | May 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6589260 | Schmelzeisen-Redeker et al. | Jul 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6602205 | Erickson et al. | Aug 2003 | B1 |
6612111 | Hodges et al. | Sep 2003 | B1 |
6616616 | Fritz et al. | Sep 2003 | B2 |
6626874 | Duchamp | Sep 2003 | B1 |
6656167 | Numao et al. | Dec 2003 | B2 |
6679852 | Schmelzeisen-Redeker et al. | Jan 2004 | B1 |
6706000 | Perez et al. | Mar 2004 | B2 |
6706049 | Moerman | Mar 2004 | B2 |
6706159 | Moerman et al. | Mar 2004 | B2 |
6707554 | Miltner et al. | Mar 2004 | B1 |
6740800 | Cunningham | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6748275 | Lattner et al. | Jun 2004 | B2 |
6753187 | Cizdziel et al. | Jun 2004 | B2 |
6766817 | da Silva | Jul 2004 | B2 |
6793633 | Douglas et al. | Sep 2004 | B2 |
6830669 | Miyazaki et al. | Dec 2004 | B2 |
6836678 | Tu | Dec 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6847451 | Pugh | Jan 2005 | B2 |
6849052 | Uchigaki et al. | Feb 2005 | B2 |
6896850 | Subramanian et al. | May 2005 | B2 |
6918404 | Da Silva | Jul 2005 | B2 |
6919960 | Hansen et al. | Jul 2005 | B2 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6936476 | Anderson et al. | Aug 2005 | B1 |
D511214 | Sasano et al. | Nov 2005 | S |
6988996 | Roe et al. | Jan 2006 | B2 |
7004928 | Aceti et al. | Feb 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
D519868 | Sasano et al. | May 2006 | S |
7052652 | Zanzucchi et al. | May 2006 | B2 |
7066586 | Da Silva | Jun 2006 | B2 |
7066890 | Lam et al. | Jun 2006 | B1 |
7141058 | Briggs et al. | Nov 2006 | B2 |
7156809 | Quy | Jan 2007 | B2 |
7163616 | Vreeke et al. | Jan 2007 | B2 |
7192061 | Martin | Mar 2007 | B2 |
D540343 | Cummins | Apr 2007 | S |
7223365 | Von Der Goltz | May 2007 | B2 |
7225008 | Ward et al. | May 2007 | B1 |
7226461 | Boecker et al. | Jun 2007 | B2 |
7258673 | Racchini et al. | Aug 2007 | B2 |
D551243 | Young | Sep 2007 | S |
7270970 | Anderson et al. | Sep 2007 | B2 |
7297151 | Boecker et al. | Nov 2007 | B2 |
7299081 | Mace et al. | Nov 2007 | B2 |
7343188 | Sohrab | Mar 2008 | B2 |
7344507 | Briggs et al. | Mar 2008 | B2 |
7379167 | Mawhirt et al. | May 2008 | B2 |
7427377 | Zanzucchi et al. | Sep 2008 | B2 |
D580068 | Shigesada et al. | Nov 2008 | S |
D580558 | Shigesada et al. | Nov 2008 | S |
D599373 | Kobayashi et al. | Sep 2009 | S |
D601257 | Berlinger | Sep 2009 | S |
7585278 | Aceti et al. | Sep 2009 | B2 |
D601444 | Jones et al. | Oct 2009 | S |
D601578 | Poulet et al. | Oct 2009 | S |
7682318 | Alden et al. | Mar 2010 | B2 |
D622393 | Gatrall et al. | Aug 2010 | S |
7780631 | Lum et al. | Aug 2010 | B2 |
7803123 | Perez et al. | Sep 2010 | B2 |
7850621 | Briggs et al. | Dec 2010 | B2 |
7879058 | Ikeda | Feb 2011 | B2 |
7887494 | Emery et al. | Feb 2011 | B2 |
D642191 | Barnett et al. | Jul 2011 | S |
7988644 | Freeman et al. | Aug 2011 | B2 |
8012103 | Escutia et al. | Sep 2011 | B2 |
8012104 | Escutia et al. | Sep 2011 | B2 |
8105849 | McDevitt et al. | Jan 2012 | B2 |
D654926 | Lipman et al. | Feb 2012 | S |
8173439 | Petrich et al. | May 2012 | B2 |
8184273 | Dosmann et al. | May 2012 | B2 |
8231832 | Zanzucchi et al. | Jul 2012 | B2 |
8251920 | Vreeke et al. | Aug 2012 | B2 |
8298255 | Conway et al. | Oct 2012 | B2 |
8303518 | Aceti et al. | Nov 2012 | B2 |
8360993 | Escutia et al. | Jan 2013 | B2 |
8360994 | Escutia et al. | Jan 2013 | B2 |
8372015 | Escutia et al. | Feb 2013 | B2 |
8376959 | Deck | Feb 2013 | B2 |
8382681 | Escutia et al. | Feb 2013 | B2 |
8391940 | Matzinger et al. | Mar 2013 | B2 |
D691174 | Lipman et al. | Oct 2013 | S |
8574168 | Freeman et al. | Nov 2013 | B2 |
8702624 | Alden | Apr 2014 | B2 |
8795201 | Escutia et al. | Aug 2014 | B2 |
8801631 | Escutia et al. | Aug 2014 | B2 |
8919605 | Lipman et al. | Dec 2014 | B2 |
8969097 | Emery et al. | Mar 2015 | B2 |
9060723 | Escutia et al. | Jun 2015 | B2 |
9060727 | Saikley et al. | Jun 2015 | B2 |
9095292 | Zanzucchi et al. | Aug 2015 | B2 |
9149215 | Werner et al. | Oct 2015 | B2 |
9366636 | Emery et al. | Jun 2016 | B2 |
9380974 | Litherland et al. | Jul 2016 | B2 |
9603562 | Aceti et al. | Mar 2017 | B2 |
9636051 | Emery et al. | May 2017 | B2 |
9782114 | Reynolds et al. | Oct 2017 | B2 |
9833183 | Escutia et al. | Dec 2017 | B2 |
9839384 | Escutia et al. | Dec 2017 | B2 |
9897610 | Lipman et al. | Feb 2018 | B2 |
10226208 | Emery et al. | Mar 2019 | B2 |
10330667 | Lipman et al. | Jun 2019 | B2 |
10383556 | Lipman et al. | Aug 2019 | B2 |
10433780 | Escutia et al. | Oct 2019 | B2 |
10441205 | Litherland et al. | Oct 2019 | B2 |
20010001034 | Douglas | May 2001 | A1 |
20010027277 | Klitmose | Oct 2001 | A1 |
20010027328 | Lum et al. | Oct 2001 | A1 |
20010053891 | Ackley | Dec 2001 | A1 |
20020002326 | Causey, III et al. | Jan 2002 | A1 |
20020002344 | Douglas et al. | Jan 2002 | A1 |
20020004640 | Conn et al. | Jan 2002 | A1 |
20020006355 | Whitson | Jan 2002 | A1 |
20020016568 | Lebel et al. | Feb 2002 | A1 |
20020020688 | Sherman et al. | Feb 2002 | A1 |
20020022934 | Vogel et al. | Feb 2002 | A1 |
20020023852 | McIvor et al. | Feb 2002 | A1 |
20020042594 | Lum et al. | Apr 2002 | A1 |
20020045243 | Laska et al. | Apr 2002 | A1 |
20020052618 | Haar et al. | May 2002 | A1 |
20020087056 | Aceti et al. | Jul 2002 | A1 |
20020136667 | Subramanian et al. | Sep 2002 | A1 |
20020137998 | Smart et al. | Sep 2002 | A1 |
20020160520 | Orloff et al. | Oct 2002 | A1 |
20020168290 | Yuzhakov et al. | Nov 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169411 | Sherman et al. | Nov 2002 | A1 |
20020177761 | Orloff et al. | Nov 2002 | A1 |
20020177764 | Sohrab | Nov 2002 | A1 |
20020183102 | Withers et al. | Dec 2002 | A1 |
20020188223 | Perez et al. | Dec 2002 | A1 |
20020198444 | Uchigaki et al. | Dec 2002 | A1 |
20030012693 | Otillar et al. | Jan 2003 | A1 |
20030028087 | Yuzhakov et al. | Feb 2003 | A1 |
20030028125 | Yuzhakov et al. | Feb 2003 | A1 |
20030039587 | Niermann | Feb 2003 | A1 |
20030060730 | Perez | Mar 2003 | A1 |
20030083685 | Freeman et al. | May 2003 | A1 |
20030083686 | Freeman et al. | May 2003 | A1 |
20030105961 | Zatloukal et al. | Jun 2003 | A1 |
20030116596 | Terasawa | Jun 2003 | A1 |
20030135166 | Gonnelli | Jul 2003 | A1 |
20030135333 | Aceti | Jul 2003 | A1 |
20030143746 | Sage | Jul 2003 | A1 |
20030153844 | Smith et al. | Aug 2003 | A1 |
20030153900 | Aceti et al. | Aug 2003 | A1 |
20030175987 | Verdonk et al. | Sep 2003 | A1 |
20030206302 | Pugh | Nov 2003 | A1 |
20030207441 | Eyster et al. | Nov 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208140 | Pugh | Nov 2003 | A1 |
20030211617 | Jones | Nov 2003 | A1 |
20030211619 | Olson et al. | Nov 2003 | A1 |
20030212344 | Yuzhakov et al. | Nov 2003 | A1 |
20030212345 | McAllister et al. | Nov 2003 | A1 |
20030212347 | Sohrab | Nov 2003 | A1 |
20030216628 | Bortz et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040030353 | Schmelzeisen-redeker et al. | Feb 2004 | A1 |
20040039303 | Wurster et al. | Feb 2004 | A1 |
20040049219 | Briggs et al. | Mar 2004 | A1 |
20040059256 | Perez | Mar 2004 | A1 |
20040072357 | Stiene et al. | Apr 2004 | A1 |
20040073140 | Douglas | Apr 2004 | A1 |
20040092842 | Boecker et al. | May 2004 | A1 |
20040092995 | Boecker et al. | May 2004 | A1 |
20040094432 | Neel et al. | May 2004 | A1 |
20040096959 | Stiene et al. | May 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040098009 | Boecker et al. | May 2004 | A1 |
20040102803 | Boecker et al. | May 2004 | A1 |
20040122339 | Roe et al. | Jun 2004 | A1 |
20040132167 | Rule et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040155084 | Brown | Aug 2004 | A1 |
20040157339 | Burke et al. | Aug 2004 | A1 |
20040178218 | Schomakers et al. | Sep 2004 | A1 |
20040186394 | Roe et al. | Sep 2004 | A1 |
20040191119 | Zanzucchi et al. | Sep 2004 | A1 |
20040202576 | Aceti et al. | Oct 2004 | A1 |
20040230216 | LeVaughn et al. | Nov 2004 | A1 |
20040236251 | Roe et al. | Nov 2004 | A1 |
20040238675 | Banaszkiewicz et al. | Dec 2004 | A1 |
20040242982 | Sakata et al. | Dec 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040259180 | Burke et al. | Dec 2004 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010134 | Douglas et al. | Jan 2005 | A1 |
20050015020 | LeVaughn et al. | Jan 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050070819 | Poux et al. | Mar 2005 | A1 |
20050096686 | Allen | May 2005 | A1 |
20050106713 | Phan et al. | May 2005 | A1 |
20050109386 | Marshall | May 2005 | A1 |
20050159678 | Taniike et al. | Jul 2005 | A1 |
20050187532 | Thurau et al. | Aug 2005 | A1 |
20050192492 | Cho et al. | Sep 2005 | A1 |
20050202567 | Zanzucchi et al. | Sep 2005 | A1 |
20050202733 | Yoshimura et al. | Sep 2005 | A1 |
20050209518 | Sage, Jr. et al. | Sep 2005 | A1 |
20050215872 | Berner et al. | Sep 2005 | A1 |
20050215923 | Wiegel | Sep 2005 | A1 |
20050245844 | Mace et al. | Nov 2005 | A1 |
20050255001 | Padmaabhan et al. | Nov 2005 | A1 |
20050277972 | Wong et al. | Dec 2005 | A1 |
20060008389 | Sacherer et al. | Jan 2006 | A1 |
20060036134 | Tarassenko et al. | Feb 2006 | A1 |
20060052724 | Roe | Mar 2006 | A1 |
20060064035 | Wang et al. | Mar 2006 | A1 |
20060079809 | Goldberger et al. | Apr 2006 | A1 |
20060094985 | Aceti et al. | May 2006 | A1 |
20060117616 | Jones et al. | Jun 2006 | A1 |
20060122536 | Haar et al. | Jun 2006 | A1 |
20060135873 | Karo et al. | Jun 2006 | A1 |
20060155317 | List | Jul 2006 | A1 |
20060161078 | Schraga | Jul 2006 | A1 |
20060178600 | Kennedy et al. | Aug 2006 | A1 |
20060189908 | Kennedy | Aug 2006 | A1 |
20060204399 | Freeman et al. | Sep 2006 | A1 |
20060229533 | Hoenes et al. | Oct 2006 | A1 |
20060241517 | Fowler et al. | Oct 2006 | A1 |
20060257993 | Mcdevitt et al. | Nov 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060281187 | Emery et al. | Dec 2006 | A1 |
20070016104 | Jansen et al. | Jan 2007 | A1 |
20070017824 | Rippeth et al. | Jan 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070060842 | Alvarez-Icaza et al. | Mar 2007 | A1 |
20070078313 | Emery et al. | Apr 2007 | A1 |
20070078358 | Escutia et al. | Apr 2007 | A1 |
20070083130 | Thomson et al. | Apr 2007 | A1 |
20070083131 | Escutia et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070112281 | Olson | May 2007 | A1 |
20070179404 | Escutia et al. | Aug 2007 | A1 |
20070179405 | Emery et al. | Aug 2007 | A1 |
20070253531 | Okuzawa et al. | Nov 2007 | A1 |
20070255181 | Alvarez-icaza et al. | Nov 2007 | A1 |
20070255302 | Koeppel et al. | Nov 2007 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080046831 | Imai et al. | Feb 2008 | A1 |
20080064986 | Kraemer et al. | Mar 2008 | A1 |
20080077048 | Escutia et al. | Mar 2008 | A1 |
20080119702 | Reggiardo | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080268485 | Guarino et al. | Oct 2008 | A1 |
20080269625 | Halperin et al. | Oct 2008 | A1 |
20090054810 | Zanzucchi et al. | Feb 2009 | A1 |
20090149717 | Brauer et al. | Jun 2009 | A1 |
20090149729 | Young et al. | Jun 2009 | A1 |
20090156923 | Power et al. | Jun 2009 | A1 |
20090292489 | Burke et al. | Nov 2009 | A1 |
20090301899 | Hodges et al. | Dec 2009 | A1 |
20100010374 | Escutia et al. | Jan 2010 | A1 |
20100021947 | Emery et al. | Jan 2010 | A1 |
20100021948 | Lipman et al. | Jan 2010 | A1 |
20100095229 | Dixon et al. | Apr 2010 | A1 |
20100174211 | Frey et al. | Jul 2010 | A1 |
20100185120 | Sacherer et al. | Jul 2010 | A1 |
20100217155 | Poux et al. | Aug 2010 | A1 |
20100331650 | Batman et al. | Dec 2010 | A1 |
20110098599 | Emery et al. | Apr 2011 | A1 |
20110105872 | Chickering et al. | May 2011 | A1 |
20110201909 | Emery et al. | Aug 2011 | A1 |
20120166090 | Lipman et al. | Jun 2012 | A1 |
20120271197 | Castle | Oct 2012 | A1 |
20120296179 | Zanzucchi et al. | Nov 2012 | A1 |
20130110516 | Abulhaj et al. | May 2013 | A1 |
20130158430 | Aceti et al. | Jun 2013 | A1 |
20130158432 | Escutia et al. | Jun 2013 | A1 |
20130172698 | Reynolds et al. | Jul 2013 | A1 |
20130274568 | Escutia et al. | Oct 2013 | A1 |
20130274579 | Richter et al. | Oct 2013 | A1 |
20140012116 | Okuyama | Jan 2014 | A1 |
20140316301 | Escutia et al. | Oct 2014 | A1 |
20140336480 | Escutia et al. | Nov 2014 | A1 |
20150037898 | Baldus et al. | Feb 2015 | A1 |
20150153351 | Lipman et al. | Jun 2015 | A1 |
20150212006 | Emery et al. | Jul 2015 | A1 |
20150238131 | Richter | Aug 2015 | A1 |
20160038066 | Escutia et al. | Feb 2016 | A1 |
20160367178 | Emery et al. | Dec 2016 | A1 |
20170095188 | Emery et al. | Apr 2017 | A1 |
20170319121 | Aceti et al. | Nov 2017 | A1 |
20170354355 | Emery et al. | Dec 2017 | A1 |
20180008178 | Reynolds et al. | Jan 2018 | A1 |
20180214059 | Escutia et al. | Aug 2018 | A1 |
20180296143 | Anderson et al. | Oct 2018 | A1 |
20180310865 | Escutia et al. | Nov 2018 | A1 |
20190025318 | Lipman et al. | Jan 2019 | A1 |
20190104976 | Reynolds et al. | Apr 2019 | A1 |
20190209064 | Emery et al. | Jul 2019 | A1 |
20190391129 | Lipman et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2 201 530 | Sep 1997 | CA |
2 513 465 | Aug 2004 | CA |
197 05 091 | Feb 1999 | DE |
199 22 413 | Nov 2000 | DE |
103 02-501 | Aug 2004 | DE |
0 103 426 | Mar 1984 | EP |
0 256 806 | Feb 1988 | EP |
0 396-016 | Nov 1990 | EP |
0 396-016 | Nov 1990 | EP |
0 397 424 | Nov 1990 | EP |
0 762 311 | Mar 1997 | EP |
0 255-338 | Feb 1998 | EP |
0 849 584 | Jun 1998 | EP |
1 266-607 | Dec 2002 | EP |
1 266-607 | Dec 2002 | EP |
1 369 688 | Oct 2003 | EP |
1 369 688 | Oct 2003 | EP |
1 360-934 | Nov 2003 | EP |
1 360-934 | Nov 2003 | EP |
1 486-766 | Dec 2004 | EP |
1 486-766 | Dec 2004 | EP |
1 529-489 | May 2005 | EP |
1 529-489 | May 2005 | EP |
1 769-735 | Apr 2007 | EP |
1 987 766 | Nov 2008 | EP |
63-305841 | Dec 1988 | JP |
3-63570 | Mar 1991 | JP |
03093189 | Apr 1991 | JP |
7-67861 | Mar 1995 | JP |
7-213925 | Aug 1995 | JP |
9-168530 | Jun 1997 | JP |
9-313465 | Sep 1997 | JP |
9-266889 | Oct 1997 | JP |
9-294737 | Nov 1997 | JP |
10-024028 | Jan 1998 | JP |
10-505258 | May 1998 | JP |
10-508518 | Aug 1998 | JP |
10-318970 | Dec 1998 | JP |
11056822 | Mar 1999 | JP |
11281779 | Oct 1999 | JP |
2000-116629 | Apr 2000 | JP |
2000-126161 | May 2000 | JP |
2000-168754 | Jun 2000 | JP |
2000-254111 | Sep 2000 | JP |
2001-159618 | Jun 2001 | JP |
2001-515203 | Sep 2001 | JP |
2001-305096 | Oct 2001 | JP |
2001-330581 | Nov 2001 | JP |
2002-502045 | Jan 2002 | JP |
2002-085384 | Mar 2002 | JP |
2002-514453 | May 2002 | JP |
2002-168862 | Jun 2002 | JP |
2003-507719 | Feb 2003 | JP |
2003-108679 | Apr 2003 | JP |
2003-180417 | Jul 2003 | JP |
2004-000598 | Jan 2004 | JP |
2004-500948 | Jan 2004 | JP |
2004-117339 | Apr 2004 | JP |
2004-202256 | Jul 2004 | JP |
2004-209266 | Jul 2004 | JP |
2004-519302 | Jul 2004 | JP |
2004-522500 | Jul 2004 | JP |
2004-528936 | Sep 2004 | JP |
2005-503538 | Feb 2005 | JP |
2005-087613 | Apr 2005 | JP |
2006-512969 | Apr 2005 | JP |
3638958 | Apr 2005 | JP |
2005-525149 | Aug 2005 | JP |
2005-237938 | Sep 2005 | JP |
2005-525846 | Sep 2005 | JP |
2005-527254 | Sep 2005 | JP |
2006-506185 | Feb 2006 | JP |
2006-512974 | Apr 2006 | JP |
2006-516723 | Jul 2006 | JP |
2006-521555 | Sep 2006 | JP |
2006-284481 | Oct 2006 | JP |
2006-527013 | Nov 2006 | JP |
2007-054407 | Mar 2007 | JP |
2007-067698 | Mar 2007 | JP |
2007-521031 | Aug 2007 | JP |
2007-527287 | Sep 2007 | JP |
2007-311196 | Nov 2007 | JP |
2007-537804 | Dec 2007 | JP |
2008-125813 | Jun 2008 | JP |
2008-212324 | Sep 2008 | JP |
2009-509645 | Mar 2009 | JP |
2009-509667 | Mar 2009 | JP |
2010-094167 | Apr 2010 | JP |
2012-213477 | Nov 2012 | JP |
WO-8605966 | Oct 1986 | WO |
WO-8800812 | Feb 1988 | WO |
WO-8807666 | Oct 1988 | WO |
WO-9114212 | Sep 1991 | WO |
WO-9413203 | Jun 1994 | WO |
WO-9510223 | Apr 1995 | WO |
WO-9510223 | Apr 1995 | WO |
WO-9604857 | Feb 1996 | WO |
WO-9607907 | Mar 1996 | WO |
WO-9614026 | May 1996 | WO |
WO-9625088 | Aug 1996 | WO |
WO-9715227 | May 1997 | WO |
WO-9729847 | Aug 1997 | WO |
WO-9730344 | Aug 1997 | WO |
WO-9741421 | Nov 1997 | WO |
WO-9742885 | Nov 1997 | WO |
WO-9742888 | Nov 1997 | WO |
WO-9743962 | Nov 1997 | WO |
WO-9800193 | Jan 1998 | WO |
WO-9831275 | Jul 1998 | WO |
WO-9835225 | Aug 1998 | WO |
WO-9912008 | Mar 1999 | WO |
WO-9923492 | May 1999 | WO |
WO-9944508 | Sep 1999 | WO |
WO-9956954 | Nov 1999 | WO |
WO-9958051 | Nov 1999 | WO |
WO-9962576 | Dec 1999 | WO |
WO-0009184 | Feb 2000 | WO |
WO-0013573 | Mar 2000 | WO |
WO-0014269 | Mar 2000 | WO |
WO-0014535 | Mar 2000 | WO |
WO-0018449 | Apr 2000 | WO |
WO-0018449 | Apr 2000 | WO |
WO-0019185 | Apr 2000 | WO |
WO-0036400 | Jun 2000 | WO |
WO-0042422 | Jul 2000 | WO |
WO-0074763 | Dec 2000 | WO |
WO-0074763 | Dec 2000 | WO |
WO-0078208 | Dec 2000 | WO |
WO-0113795 | Mar 2001 | WO |
WO-0116575 | Mar 2001 | WO |
WO-0152727 | Jul 2001 | WO |
WO-0164105 | Sep 2001 | WO |
WO-0164105 | Sep 2001 | WO |
WO-0172220 | Oct 2001 | WO |
WO-0180728 | Nov 2001 | WO |
WO-0185233 | Nov 2001 | WO |
WO-0185233 | Nov 2001 | WO |
WO-0191634 | Dec 2001 | WO |
WO-0191634 | Dec 2001 | WO |
WO-0200101 | Jan 2002 | WO |
WO-0200101 | Jan 2002 | WO |
WO-0249507 | Jun 2002 | WO |
WO-0249509 | Jun 2002 | WO |
WO-0249509 | Jun 2002 | WO |
WO-02078533 | Oct 2002 | WO |
WO-02078533 | Oct 2002 | WO |
WO-02082052 | Oct 2002 | WO |
WO-02082052 | Oct 2002 | WO |
WO-02093144 | Nov 2002 | WO |
WO-02100251 | Dec 2002 | WO |
WO-02100251 | Dec 2002 | WO |
WO-02101359 | Dec 2002 | WO |
WO-02101359 | Dec 2002 | WO |
WO-03007819 | Jan 2003 | WO |
WO-2003030984 | Apr 2003 | WO |
WO-2003066128 | Aug 2003 | WO |
WO-2003066128 | Aug 2003 | WO |
WO-2003070099 | Aug 2003 | WO |
WO-2003071940 | Sep 2003 | WO |
WO-2003071940 | Sep 2003 | WO |
WO-2004045375 | Jun 2004 | WO |
WO-2004045375 | Jun 2004 | WO |
WO-2004062499 | Jul 2004 | WO |
WO-2004062500 | Jul 2004 | WO |
WO-2004062500 | Jul 2004 | WO |
WO-2004064636 | Aug 2004 | WO |
WO-2004085995 | Oct 2004 | WO |
WO-2004085995 | Oct 2004 | WO |
WO-2004091693 | Oct 2004 | WO |
WO-2004091693 | Oct 2004 | WO |
WO-2004105827 | Dec 2004 | WO |
WO-2004105827 | Dec 2004 | WO |
WO-2005006939 | Jan 2005 | WO |
WO-2005006939 | Jan 2005 | WO |
WO-2005009238 | Feb 2005 | WO |
WO-2005013824 | Feb 2005 | WO |
WO-2005018709 | Mar 2005 | WO |
WO-2005018709 | Mar 2005 | WO |
WO-2005018710 | Mar 2005 | WO |
WO-2005018710 | Mar 2005 | WO |
WO-2005084543 | Sep 2005 | WO |
WO-2005084546 | Sep 2005 | WO |
WO-2005084546 | Sep 2005 | WO |
WO-2005085995 | Sep 2005 | WO |
WO-2005112763 | Dec 2005 | WO |
WO-2006138226 | Dec 2006 | WO |
WO-2006138226 | Dec 2006 | WO |
WO-2007041062 | Apr 2007 | WO |
WO-2007041062 | Apr 2007 | WO |
WO-2007041063 | Apr 2007 | WO |
WO-2007041063 | Apr 2007 | WO |
WO-2007041244 | Apr 2007 | WO |
WO-2007041244 | Apr 2007 | WO |
WO-2007041287 | Apr 2007 | WO |
WO-2007041287 | Apr 2007 | WO |
WO-2007041355 | Apr 2007 | WO |
WO-2007041355 | Apr 2007 | WO |
WO-2007108519 | Sep 2007 | WO |
WO-2007112034 | Oct 2007 | WO |
WO-2007112034 | Oct 2007 | WO |
WO-2007131036 | Nov 2007 | WO |
WO-2008027319 | Mar 2008 | WO |
WO-2008027319 | Mar 2008 | WO |
WO-2008062648 | May 2008 | WO |
WO-2009145920 | Dec 2009 | WO |
WO-2009148624 | Dec 2009 | WO |
WO-2009148626 | Dec 2009 | WO |
WO-2011065981 | Jun 2011 | WO |
WO-2011162823 | Dec 2011 | WO |
WO-2012127870 | Sep 2012 | WO |
WO-2013020103 | Feb 2013 | WO |
WO-2014205412 | Dec 2014 | WO |
WO-2018191700 | Oct 2018 | WO |
Entry |
---|
ADA Consensus Development Panel. (Jan.-Feb. 1987). “Consensus Statement on Self-Monitoring of Blood Glucose,” Diabetes Care 10(1):95-99. |
ADA (Jan. 1994). “Self-Monitoring of Blood Glucose,” Consensus Statement Diabetes Care 17(1):81-86. |
Anonymous. (Sep. 30, 1993). “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus.” The New England Journal of Medicine 329(14):977-986. |
Anonymous. (Jun. 23, 1998). Taking the “Ouch” Out of Needles: Arrays of “Microneedles” Offer New Techniques for Drug Delivery, Science Daily, located at <http:www.sciencedaily.com/releases/1998/06/980623045850.htm>, last visited Jan. 14, 2014, 3 pages. |
Beregszàszi, M. et al. (Jul. 1997). “Nocturnal Hypoglycemia in Children and Adolescents with Insulin-Dependent Diabetes Mellitus: Prevalence and Risk Factors,” J. Pediatrics 131(1 Pt. 1):27-33. |
Chase, H.P. et al. (Feb. 2001). “Continuous Subcutaneous Glucose Monitoring in Children with Type 1 Diabetes,” Pediatrics 107(2):222-226. |
Clarke, W.L. et al. (Sep.-Oct. 1987). “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose,” Diabetes Care 10(5):622-628. |
Collison, M.E. et al. (Sep. 1999). “Analytical Characterization of Electrochemical Biosensor Test Strips for Measurement of Glucose in Low-vol. Interstitial Fluid Samples,” Clinical Chemistry 45(9):1665-1673. |
Coster, S. et al. (2000). “Monitoring Blood Glucose Control in Diabetes Mellitus: A Systematic Review.” Health Technology Assessment 4(12):1-93. |
Cox, D.J. et al. (Jun. 1997). “Understanding Error Grid Analysis,” Diabetes Care 20(6):911-912. |
D'Arrigo, T.D. (Mar. 2000). “GlucoWatch Monitor Poised for Approval,” Diabetes Forecast, 53(3):43-44. |
Feldman, B. et al. (2000). “FreeStyle™: A Small-Volume Electrochemical Glucose Sensor for Home Blood Glucose Testing,” Diabetes Technology and Therapeutics, 2(2):221-229. |
Johnson, R.N. et al. (Jan. 1998). “Accuracy of Devices Used for Self-Monitoring of Blood Glucose,” Annals of Clinical Biochemistry 35(1):68-74. |
Johnson, R.N. et al. (Jan. 1999). “Analytical Error of Home Glucose Monitors: A Comparison of 18 Systems,” Annals of Clinical Biochemistry 36(1):72-79. |
Johnson, R.N. et al. (2001). “Error Detection and Measurement in Glucose Monitors,” Clinica Chimica Acta 307:61-67. |
Kumetrix, Inc. (Dec. 1999). “Painless Blood Glucose Monitoring, Courtesy of the Mosquito,” Start-Up pp. 27-28. |
Lee, S-C. (Jun. 1999). “Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Finite Dielectric Slab,” Journal of the Optical Society of America A 16(6):1350-1361. |
McGarraugh, G. et al. (2001). “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics 3(3):367-376. |
McNichols, R.J. et al. (Jan. 2000). “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, 5(1):5-16. |
Mahler, R.J. et al. (1999). “Clinical Review 102, Type 2 Diabetes Melitus: Update on Diagnosis Pathophysiology, and Treatment,” The Journal of Clinical Endocrinology and Metabolism 84(4):1165-1171. |
Medline Plus. (Jun. 17, 2008). , Medical Encyclopedia, Monitor Blood Glucose-Series: Part 1-4, 6 pages. |
Neeley, W.E. et al. (1981). “An Instrument for Digital Matrix Photometry,” Clinical Chemistry 27(10):1665-1668. |
Neeley, W.E. (1983). “Reflectance Digital Matrix Photometry,” Clinical Chemistry 29(6):1038-1041. |
Neeley, W.E. (1983). “Multilayer Film Analysis for Glucose in 1-μL Samples of Plasma,” Clinical Chemistry 29(12):2103-2105. |
Neeley, W.E. (1988). “A Reflectance Photometer with a Square Photodiode Array Detector for Use on Multilayer Dry-Film Slides,” Clinical Chemistry 34(11):2367-2370. |
Otto, E. et al. (2000). “An Intelligent Diabetes Software Prototype: Predicting Blood Glucose Levels and Recommending Regimen Changes,” Diabetes Technology and Therapeutics 2(4):569-576. |
Pfohl, M. et al. (2000). “Spot Glucose Measurement in Epidermal Interstitial Fluid—An Alternative to Capillary Blood Glucose Estimation,” Experimental and Clinical Endocrinology & Diabetes 108(1):1-4. |
Princen, H.M. (May 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, I. Capillary Rise Between Two Cylinders,” Journal of Colloid and Interface Science 30(1):69-75. |
Princen, H.M. (Jul. 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, II. Capillary Rise in Systems with More Than Two Cylinders,” Journal of Colloid and Interface Science 30(3):359-371. |
Rebrin, K. et al. (Sep. 1999). “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” American Journal of Physiology 277(3):E561-E571. |
Rosen, S. (1999). “Road to New-Age Glucose Monitoring Still Rocky,” Diagnostic Insight, pp. 4-5, 12-13, 16. |
Smart, W.H. et al. (2000). “The Use of Silicon Microfabrication Technology in Painless Glucose Monitoring, ”Diabetes Technology & Therapeutics 2(4):549-559. |
Svedman, C. et al. (Apr. 1999). “Skin Mini-Erosion Technique for Monitoring Metabolites in Interstitial Fluid: Its Feasibility Demonstrated by OGTT Results in Diabetic and Non-Diabetic Subjects,” Scand. J. Clin. Lab. Invest. 59(2):115-123. |
Trinder, P. (1969). “Determination of Glucose in Blood Using Glucose Oxidase with an Alternate Oxygen Acceptor,” Annals of Clinical Biochemistry 6:24-28. |
Yum, S. I. et al. (Nov. 1, 1999). “Capillary Blood Sampling for Self-Monitoring of Blood Glucose,” Diabetes Technology & Therapeutics, 1(1):29-37. |
Extended European Search Report dated Jun. 16, 2014, for EP Application No. 09758787.7, filed on Jun. 8, 2009, 6 pages. |
Final Office Action dated May 8, 2012, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 7 pages. |
Final Office Action dated Apr. 30, 2013, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 10 pages. |
Final Office Action dated Mar. 27, 2014, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 10 pages. |
Final Office Action dated Dec. 26, 2014, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 9 pages. |
International Search Report dated Jul. 28, 2009, for PCT Application No. PCT/US2009/003441, filed on Jun. 8, 2009, 2 pages. |
International Search Report dated Jul. 28, 2009, for PCT Application No. PCT/US2009/003445, filed on Jun. 8, 2009, 2 pages. |
International Search Report dated Nov. 14, 2011, for PCT Application No. PCT/US2011/001132, filed on Jun. 24, 2011, 2 pages. |
International Search Report dated Oct. 15, 2014 for PCT Application No. PCT/US2014/043516, filed on Jun. 20, 2014, 2 pages. |
Non-Final Office Action dated Nov. 23, 2011, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 6 pages. |
Non-Final Office Action dated Mar. 2, 2012, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages. |
Non-Final Office Action dated Jun. 22, 2012, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 8 pages. |
Non-Final Office Action dated May 30, 2013, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 9 pages. |
Non-Final Office Action dated Jun. 13, 2014, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 8 pages. |
Non-Final Office Action dated Jan. 13, 2015, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 12 pages. |
Restriction Requirement dated Jul. 19, 2011, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 6 pages. |
Written Opinion dated Jul. 28, 2009, for PCT Application No. PCT/US2009/003441, filed on Jun. 8, 2009, 10 pages. |
Written Opinion dated Jul. 28, 2009, for PCT Application No. PCT/US2009/003445, filed on Jun. 8, 2009, 4 pages. |
Written Opinion dated Nov. 14, 2011, for PCT Application No. PCT/US2011/001132, filed on Jun. 24, 2011, 6 pages. |
Written Opinion dated Oct. 15, 2014 for PCT Application No. PCT/US2014/043516, filed on Jun. 20, 2014, 5 pages. |
Final Office Action dated Sep. 30, 2015, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 16 pages. |
Non-Final Office Action dated Jun. 25, 2015, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 7 pages. |
Non-Final Office Action dated Jul. 8, 2015, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 13 pages. |
Brazzle, J. et al. Active Microneedles with Integrated Functionality, Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, Jun. 4-8, 2000, Technical Digest, 199-202. |
Burge, M.R., (Aug. 2001). “Lack of Compliance with Home Blood Glucose Monitoring Predicts Hospitalization in Diabetes”, Diabetes Care 24(8): 1502-1503. |
Extended European Search Report dated Apr. 19, 2011, for EP Application No. 10 18 0848.3 filed Sep. 28, 2010, 5 pages. |
Extended European Search Report dated Feb. 22, 2012, for EP Application No. EP 10 18 1155, filed Sep. 28, 2010, 6 pages. |
Extended European Search Report dated Jan. 22, 2013, for EP Application No. 12182900.6, filed on Sep. 29, 2006, 6 pages. |
Extended European Search Report dated Apr. 29, 2013 for EP Patent Application No. 12192620.8, filed on Nov. 14, 2012, 8 pages. |
Extended European Search Report dated Nov. 8, 2016, for EP Application No. 16 167 087.2, filed on Aug. 3, 2012, 6 pages. |
Extended European Search Report dated Jan. 20, 2017, for EP Application No. 14 813 126.1, filed Jun. 20, 2014, 8 pages. |
Final Office Action dated Jul. 9, 2008, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 19 pages. |
Final Office Action dated Nov. 23, 2009, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 20 pages. |
Final Office Action dated Jan. 21, 2011, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 7 pages. |
Final Office Action dated Aug. 15, 2013 for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 12 pages. |
Final Office Action dated Apr. 13, 2016, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 31 pages. |
Final Office Action dated Aug. 28, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 11 pages. |
Final Office Action dated Dec. 26, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 9 pages. |
Final Office Action dated Jan. 22, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages. |
Final Office Action dated Jun. 30, 2010, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 11 pages. |
Final Office Action dated May 30, 2007, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 11 pages. |
Final Office Action dated Nov. 1, 2010, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 9 pages. |
Final Office Action dated Nov. 21, 2011, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 8 pages. |
Final Office Action dated Jun. 11, 2010, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 16 pages. |
Final Office Action dated Mar. 10, 2015, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 24 pages. |
Hemmerich, K.J. et al. (Apr. 1995).“Guide to Engineering Thermoplastics,” Medical Devices and Diagnostic Industry pp. 39-59. |
International Search Report dated Dec. 3, 2004, for PCT Application No. PCT/US2004/08798, filed on Mar. 24, 2004, 3 pages. |
International Search Report dated May 2, 2007, for PCT Application No. PCT/US2006/37923, filed on Sep. 9, 2006, 1 page. |
International Search Report dated Aug. 16, 2007 for PCT Application No. PCT/US2006/038163, filed on Sep. 29, 2006, 1 page. |
International Search Report dated Aug. 17, 2007 for PCT/US2006/38049, filed on Sep. 29, 2006, 1 page. |
International Search Report dated Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 4 pages. |
Integ. (2000). “LifeGuide™ Glucose Meter. No Lancets. No Blood,” located at <http://www.integonline.com>, last visited May 1, 2000, 10 pages. |
Ishii H. et al., (Aug. 2001). “Seasonal Variation of Glycemic Control in Type 2 Diabetic Patients”, Diabetes Care 24(8):1503. |
Massey V. et al. (Aug. 1960). “Studies on the Reaction Mechanism of Lipoyl Dehydrogenase” Biochim. Biophys. Acta 48: 33-47. |
Non-Final Office Action dated Dec. 12, 2007, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 13 pages. |
Non-Final Office Action dated Apr. 28, 2009, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 21 pages. |
Non-Final Office Action dated Jun. 4, 2010, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 23 pages. |
Non-Final Office Action dated Mar. 23, 2012, for U.S. Appl. No. 13/197,592, filed Aug. 3, 2011, 7 pages. |
Non-Final Office Action dated Mar. 23, 2012, for U.S. Appl. No. 13/197,603, filed Aug. 3, 2011, 6 pages. |
Non-Final Office Action dated Nov. 26, 2012 for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 9 pages. |
Non Final Office Action dated Apr. 8, 2015, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages. |
Non Final Office Action dated Apr. 12, 2011, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 7 pages. |
Non Final Office Action dated Aug. 5, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages. |
Non Final Office Action dated Dec. 5, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 7 pages. |
Non Final Office Action dated Jan. 12, 2009, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 9 pages. |
Non Final Office Action dated Jan. 21, 2011, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 9 pages. |
Non Final Office Action dated Jul. 13, 2010, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 11 pages. |
Non Final Office Action dated Jul. 31, 2015, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 16 pages. |
Non Final Office Action dated Mar. 21, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 12 pages. |
Non Final Office Action dated Mar. 25, 2011, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 13 pages. |
Non Final Office Action dated Mar. 5, 2010, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 8 pages. |
Non Final Office Action dated May 14, 2008, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 9 pages. |
Non Final Office Action dated May 16, 2013, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages. |
Non Final Office Action dated May 5, 2005, for U.S. Appl. No. 10/131,268, filed Apr. 23, 2002, 8 pages. |
Non Final Office Action dated Nov. 2, 2006, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 10 pages. |
Non Final Office Action dated Oct. 14, 2009, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 10 pages. |
Non Final Office Action dated Oct. 3, 2008, for U.S. Appl. No. 10/722,074, filed Nov. 24, 2003, 10 pages. |
Non-Final Office Action dated Dec. 17, 2015, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 6 pages. |
Non Final Office Action dated Dec. 2, 2004, for U.S. Appl. No. 10/347,620, filed Jan. 22, 2003, 8 pages. |
Non-Final Office Action dated Jan. 27, 2009, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 17 pages. |
Non-Final Office Action mailed on Jan. 6, 2014, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 12 pages. |
Non-Final Office Action dated Jun. 21, 2013, for U.S. Appl. No. 13/752,261, filed Jan. 28, 2013, 12 pages. |
Non- Final Office Action dated Jun. 6, 2008, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 17 pages. |
Non-Final Office Action dated Oct. 9, 2014, for U.S. Appl. No. 14/446,262, filed Jul. 29, 2014, 15 pages. |
Non-Final Office Action dated Sep. 29, 2004, for U.S. Appl. No. 10/394,230, filed Mar. 24, 2003, 10 pages. |
Notice of Allowance dated May 3, 2011, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 12 pages. |
Notice of Allowance dated Mar. 27, 2015, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 7 pages. |
Notice of Allowance dated Apr. 18, 2012, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 8 pages. |
Notice of Allowance dated Apr. 19, 2010, for U.S. Appl. No. 29/338,117, filed Jun. 4, 2009, 4 pages. |
Notice of Allowance dated Aug. 3, 2012, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 5 pages. |
Notice of Allowance dated Jan. 14, 2010, for U.S. Appl. No. 29/338,117, filed Jun. 4, 2009, 4 pages. |
Notice of Allowance dated Jun. 29, 2012, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 5 pages. |
Notice of Allowance dated Mar. 14, 2012, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 7 pages. |
Notice of Allowance dated Mar. 31, 2005, for U.S. Appl. No. 10/394,230, filed Mar. 24, 2003, 10 pages. |
Notice of Allowance dated May 15, 2008, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 7 pages. |
Notice of Allowance dated May 28, 2009, for U.S. Appl. No. 29/300,933, filed May 30, 2008, 6 pages. |
Notice of Allowance dated Nov. 23, 2011, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 7 pages. |
Notice of Allowance dated Nov. 27, 2012, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 5 pages. |
Notice of Allowance dated Nov. 29, 2005, for U.S. Appl. No. 10/131,268, filed Apr. 23, 2002, 6 pages. |
Notice of Allowance dated Oct. 12, 2011, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 8 pages. |
Notice of Allowance dated Feb. 23, 2015, for U.S. Appl. No. 14/446,262, filed Jul. 29, 2014, 8 pages. |
Notice of Allowance dated Feb. 5, 2014, for U.S. Appl. No. 13/752,261, filed Jan. 28, 2013, 9 pages. |
Notice of Allowance dated Jun. 15, 2009, for U.S. Appl. No. 10/722,074, filed Nov. 24, 2003, 6 pages. |
Notice of Allowance dated Mar. 2, 2016, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 12 pages. |
Notice of Allowance dated Mar. 28, 2005, for U.S. Appl. No. 10/347,620, filed Jan. 22, 2003, 6 pages. |
Notice of Allowance dated Jan. 26, 2017, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 7 pages. |
Sonntag, O. (1993). Ektachem. Dry Chemistry, Analysis With Carrier-Bound Reagents, Elsevier Science Publishers, 57 pages. |
Spielman, a. et al. (2001). Mosquito: A Natural History of Our Most Persistent and Deadly Foe, First Edition, Hyperion, New York, NY, 3 pages. (Table of Contents Only). |
Straub F.B. (Mar., 1939). “Isolation and Properties of a flavoprotien from Heart Muscle Tissue”, Biochemical Journal 33: 787-792. |
U.S. Precision Lens, Inc. (1983).The Handbook of Plastic Optics. |
Written Opinion dated Dec. 3, 2004, for PCT Application No. PCT/US2004/08798, filed on Mar. 24, 2004, 4 pages. |
Written Opinion dated May 2, 2007, for PCT Application No. PCT/US2006/37923, filed on Sep. 9, 2006, 5 pages. |
Written Opinion dated Aug. 17, 2007 for PCT/US2006/38049, filed on Sep. 29, 2006, 6 pages. |
Written Opinion dated Aug. 16, 2007 for PCT Application No. PCT/US2006/038163, filed on Sep. 29, 2006, 4 pages. |
Written Opinion dated Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 7 pages. |
Final Office Action dated Feb. 8, 2017, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 11 pages. |
Clarke, W.L. et al. (1981). “Evaluation of a New Reflectance Photometer for Use in Home Blood Glucose Monitoring,” Diabetes Care 4(5):547-550. |
Restriction Requirement dated Sep. 29, 2011, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 6 pages. |
Restriction Requirement dated Dec. 22, 2011, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 6 pages. |
Tietz, N.W. (1986).Textbook of Clinical Chemistry, W. B. Saunders Company, pp. 1533 and 1556. |
Extended European Search Report dated Jul. 18, 2013, for EP Application No. 06 772 943.4, filed on Jun. 13, 2006, 7 pages. |
Extended European Search Report dated Aug. 27, 2012, for EP Application No. 09 758 789.3, filed on Jun. 8, 2009, 13 pages. |
Extended European Search Report dated Oct. 27, 2016, for EP Application No. 11 798 518.4, filed on Jun. 24, 2011, 7 pages. |
Final Office Action dated Jan. 20, 2016, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 10 pages. |
Final Office Action dated May 5, 2016, for U.S. Appl. No. 12/457,331, filed Jun. 8, 2009, 11 pages. |
Final Office Action dated Aug. 12, 2016, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 18 pages. |
Final Office Action dated Oct. 15, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 13 pages. |
Final Office Action dated Aug. 14, 2012, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Final Office Action dated Sep. 23, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
International Search Report dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 1 page. |
Non-Final Office Action dated Mar. 19, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages. |
Non-Final Office Action dated Sep. 1, 2010, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages. |
Non-Final Office Action dated Sep. 13, 2011, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Non-Final Office Action dated Feb. 28, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 12 pages. |
Non-Final Office Action dated Apr. 10, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages. |
Non-Final Office Action dated May 29, 2015, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 13 pages. |
Notice of Allowance dated Sep. 18, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 9 pages. |
Notice of Allowance dated Feb. 16, 2016, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 7 pages. |
Written Opinion of the International Searching Authority dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 3 pages. |
Final Office Action dated Jun. 12, 2018, for U.S. Appl. No. 15/499,821, filed Apr. 27, 2017, 12 pages. |
Notice of Allowance dated May 18, 2009, for U.S. Appl. No. 29/300,934, filed May 30, 2008, 4 pages. |
Non-Final Office Action dated Mar. 20, 2019, for U.S. Appl. No. 15/499,821, filed Apr. 27, 2017, 12 pages. |
Non-Final Office Action dated Mar. 27, 2019, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 8 pages. |
Notice of Allowance dated May 15, 2019, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 8 pages. |
Notice of Allowance dated Feb. 4, 2019, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 9 pages. |
Final Office Action dated Nov. 25, 2019, for U.S. Appl. No. 15/499,821, filed Apr. 27, 2017, 13 pages. |
Extended European Search Report dated Feb. 26, 2020, for European Application No. 19196465.9, filed on Jun. 8, 2009, 6 pages. |
Wikipedia (2016). “Capillary action,” 7 pages. |
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages. |
Final Office Action dated Sep. 21, 2017, for U.S. Appl. No. 13/168,644, filed Jun. 24, 2011, 14 pages. |
Non-Final Office Action dated Mar. 20, 2017, by the United States Patent and Trademark Office for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages. |
Non-Final Office Action dated May 15, 2017, by the United States Patent and Trademark Office for U.S. Appl. No. 14/743,867, filed Jun. 18, 2015. |
Notice of Allowance dated Aug. 18, 2017, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 10 pages. |
Non-Final Office Action dated Mar. 21, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 11 pages. |
Non-Final Office Action dated Sep. 29, 2017, for U.S. Appl. No. 15/499,821, filed Apr. 27, 2017, 10 pages. |
Final Office Action dated Nov. 29, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 13 pages. |
Final Office Action dated Mar. 28, 2018, for U.S. Appl. No. 12/457,332, filed Jun. 8, 2009, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20140376762 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61838171 | Jun 2013 | US |