The present invention relates to a method and apparatus for pre-concentrating analytes and removing moisture in a sample. More specifically, the invention relates to an adsorbent trap for use with chromatographic columns, chromatographic injectors, and headspace samplers.
Chromatography is essentially a physical method of separation in which constituents of a test sample in a carrier gas or liquid are adsorbed or absorbed and then desorbed by a stationary phase material in a column. A pulse of the sample is introduced into a steady flow of carrier gas. At the end of the column, the individual components are more or less separated in time. Detection of the gas provides a time-scaled pattern that, by calibration or comparison with known samples, indicates the constituents of the test sample. An example of the process by which this occurs is described in U.S. Pat. No. 5,545,252 to Hinshaw et al.
The value of using a separate, heated device for receiving the sample and subsequently introducing it into the column has long been recognized. One such device is disclosed in U.S. Pat. No. 4,038,053 to Golay, which describes using a chromatographic injector for receiving the sample, heating it, and subsequently injecting it into a chromatographic column. Such a device is desired because higher sample equilibrium temperatures can result in much larger chromatographic peaks. A disadvantage of such devices, however, is that such temperature increases may also increase the concentration of other material that detrimentally affects the sensitivity of the system, such as water.
To remedy this problem, numerous assemblies have been suggested to pre-concentrate analytes in a sample and remove moisture therefrom prior to introducing the sample into a chromatographic column. For example, U.S. Pat. No. 5,612,225 to Beccanti et al, U.S. Pat. No. 4,245,494 to Legendre et al, and U.S. Pat. No. 2,813,010 to Hutchins disclose a means for removing water from a sample prior to introducing the sample into a chromatographic column by first passing the sample through an anhydrous substance, which absorbs the water. However, because the anhydrous substance absorbs the water, rather than adsorbing the analyte and allowing the water to be purged from the system, repeated use of the anhydrous substance is likely to be limited and require frequent replacement.
Several assemblies have been suggested which utilize an adsorbent trap, which adsorbs the analytes while allowing water to pass through. For example, U.S. Pat. No. 6,223,584 to Mustacich et al discloses the use of an adsorbent trap in a pre-concentrator assembly for pre-concentrating analytes in a sample prior to introducing the sample into a chromatographic column, which device comprises a tube containing an adsorbent material. However, a disadvantage of this arrangement is the dead volume that exists between the adsorbent bed and the chromatographic column, which is undesirable because, at typical column flow rates, excessive peak broadening results.
U.S. Pat. No. 5,814,128 to Jiang et al discloses the use of an adsorbent trap in conjunction with a separate water management device, which device removes water from a sample prior to entry into a chromatographic column via the swirling motion caused by a threaded (or other non-smooth geometrically shaped) bore in the device. Similarly, U.S. Pat. No. 4,293,316 to Block discloses the use of an adsorbent trap in conjunction with a membrane separator device, which device removes water from a sample prior to entry into a gas analyzer. However, rather than optimizing the utility of the adsorbent trap itself as a means for analyte pre-concentration and moisture elimination, these assemblies each require a separate device in addition to the trap, which not only creates additional manufacture and maintenance costs, but also does not solve the aforementioned problem of excessive volume between the adsorbent bed and the chromatographic column.
One means of introducing a sample containing an analyte into a chromatographic column is known as “headspace sampling.” In conventional headspace sampling, sample material is sealed in a vial and subjected to constant temperature conditions for a specified time. Analyte concentrations in the vial gas phase should reach equilibrium with the liquid and/or solid phases during this thermostatting time. The vial is subsequently pressurized with carrier gas to a level greater than the “natural” internal pressure resulting from thermostatting and equilibration. Then the pressurized vial is connected to the chromatographic column in such a way as to allow for the transfer of a portion of the vial gas phase into the column for a short period of time. Such a system is disclosed in U.S. Pat. No. 5,711,786 to Hinshaw, which describes using a chromatographic injector between the vial and the chromatographic column. However, the use of such devices presently known in the art, including chromatographic injectors, for headspace applications results in the same disadvantages previously mentioned for introducing samples into chromatographic columns generally.
What is desired, therefore, is a method and apparatus for pre-concentrating analytes and eliminating moisture in a sample prior to introducing the sample into a chromatographic column. What is further desired is a method and apparatus for pre-concentrating analytes and eliminating moisture in a sample in a chromatographic injector. What is also desired is a method and apparatus for pre-concentrating analytes and eliminating moisture in a sample in connection with a headspace sampler.
Accordingly, an object of the present invention is to provide an analyte pre-concentrator for gas chromatography that permits temperature increases without detrimentally affecting the sensitivity of the chromatographic system.
It is a further object of the present invention to provide an analyte pre-concentrator for gas chromatography that provides a moisture trap permitting moisture to be purged from the chromatographic system so that the trap may be used for multiple injections.
It is yet another object of the present invention to provide an analyte pre-concentrator for gas chromatography that provides a moisture trap resulting in little or no dead volume between the trap and a chromatographic column, thereby decreasing excessive peak broadening.
It is still another object of the present invention to provide an analyte pre-concentrator for gas chromatography that provides a moisture trap without the addition of a separate device, thereby decreasing manufacturing and maintenance costs.
It is still another object of the present invention to provide a method for pre-concentrating analytes in a gas chromatographic system that achieves the objects listed above.
To overcome the deficiencies of the prior art and to achieve at least some of the objects and advantages listed, the invention comprises a chromatographic injector, a liner located inside the injector, the liner having an inlet and an outlet, wherein the inner diameter of the outlet is smaller than the inner diameter of the inlet, and an adsorbent located inside the liner. Preferably, the injector is temperature controllable.
In another embodiment, the invention comprises a tube having an inlet and an outlet, wherein the inner diameter of the outlet is smaller than the inner diameter of the inlet, an adsorbent located inside the tube, and a gas chromatographic column coupled to the tube. Preferably, the invention further comprises a heating device for heating the tube.
In another embodiment, the invention comprises a headspace sampler, a tube coupled to the headspace sampler, the tube having an inlet and an outlet, wherein the inner diameter of the outlet is smaller than the inner diameter of the inlet, and an adsorbent located inside the tube. Preferably, the invention further comprises a heating device for heating the tube.
In a preferred embodiment, the invention further comprises a column isolating accessory, with which a chromatographic column can be temporarily isolated from the tube or liner.
The invention also relates to a method comprising the steps of setting the pressures of a main carrier gas inlet and an auxiliary carrier gas inlet such that a column is isolated from substances flowing through a tube, introducing a sample mixture into the tube, such that the mixture passes through an adsorbent, which adsorbs the analytes, and is vented from the chromatographic system, introducing additional carrier gas into the tube, such that moisture is dry purged from the adsorbent, setting the pressures of the main carrier gas inlet and the auxiliary carrier gas inlet such that the column is no longer isolated from substances flowing through the tube, and heating the tube, such that the analytes adsorbed by the adsorbent are desorbed into the column.
The invention and its particular features will become more apparent from the following detailed description when considered with reference to the accompanying drawings.
The basic components of one embodiment of a gas chromatographic sampling system 10 in accordance with the invention are illustrated in
In the embodiment depicted in
The basic components of one embodiment of the injector 20, an example of which is the Programmed-Temperature Split/Splitless Inlet System (PSS) Injector manufactured by PerkinElmer Instruments LLC, are illustrated in
Referring to
Referring again to
The septum assembly 42 has a main carrier gas inlet 46, the pressure of which can be regulated, which is located above, and separated from the chamber 24 by, an internal seal 48, such as an o-ring. Additionally, septum assembly 42 has a septum purge outlet 50. The septum assembly mechanically defines the path of the septum purge flow to prevent cross contamination with the sample flow path.
Preferably, a “split” vent 52, for splitting the gas mixture, is located below the internal seal 48 and is in fluid communication with the chamber 24.
Preferably, a column isolating accessory 60, such as the PreVent™ System manufactured by PerkinElmer Instruments, LLC, is interposed between the bottom of the injector 20 and the chromatographic column 80. The accessory 60 has an auxiliary carrier gas inlet 62, the pressure of which can be regulated. Additionally, the accessory may have a restrictor tubing (not shown) which is inserted into the bottom of the liner 26 and the top of the column 80 when the accessory is coupled to the bottom of the injector 20.
Operation of the above described gas chromatographic system 10 is illustrated stepwise in
Referring to
Referring to
Referring to
Referring to
It should be understood that the foregoing is illustrative and not limiting, and that obvious modifications may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, reference should be made primarily to the accompanying claims, rather than the foregoing specification, to determine the scope of the invention.
This is a continuation of U.S. patent application Ser. No. 10/954,784, filed Sep. 30, 2004, now U.S. Pat. No. 6,974,495, which is a continuation of U.S. patent application Ser. No. 10/625,259, filed Jul. 22, 2003, now U.S. Pat. No. 6,814,785, which is a continuation of U.S. patent application Ser. No. 10/202,147, filed Jul. 24, 2002, now U.S. Pat. No. 6,652,625.
Number | Name | Date | Kind |
---|---|---|---|
1963874 | Stampe | Jun 1934 | A |
2813010 | Hutchins | Nov 1957 | A |
3513636 | Halasz et al. | May 1970 | A |
3999963 | Ririe, Jr. | Dec 1976 | A |
4003257 | Fletcher et al. | Jan 1977 | A |
4038053 | Golay | Jul 1977 | A |
4245494 | Legendre et al. | Jan 1981 | A |
4293316 | Block | Oct 1981 | A |
4351802 | Baylis et al. | Sep 1982 | A |
4484483 | Riegger et al. | Nov 1984 | A |
4698072 | Rohde et al. | Oct 1987 | A |
4805441 | Sides et al. | Feb 1989 | A |
4849179 | Reinhardt et al. | Jul 1989 | A |
4849479 | Siol et al. | Jul 1989 | A |
5014541 | Sides et al. | May 1991 | A |
5347844 | Grob et al. | Sep 1994 | A |
5520721 | Fraysse et al. | May 1996 | A |
5545252 | Hinshaw et al. | Aug 1996 | A |
5593475 | Minh | Jan 1997 | A |
5611846 | Overton et al. | Mar 1997 | A |
5612225 | Baccanti et al. | Mar 1997 | A |
5624477 | Armond | Apr 1997 | A |
5711786 | Hinshaw | Jan 1998 | A |
5759234 | Munari et al. | Jun 1998 | A |
5792423 | Markelov | Aug 1998 | A |
5814128 | Jiang et al. | Sep 1998 | A |
5889197 | van der Maas et al. | Mar 1999 | A |
5929321 | Bertrand | Jul 1999 | A |
5932482 | Markelov | Aug 1999 | A |
5944877 | O'Neil | Aug 1999 | A |
5954862 | Wilson | Sep 1999 | A |
6055845 | Gerstel et al. | May 2000 | A |
6093371 | Wilson | Jul 2000 | A |
6134945 | Gerstel et al. | Oct 2000 | A |
6148657 | Satoh et al. | Nov 2000 | A |
6223584 | Mustacich et al. | May 2001 | B1 |
6365107 | Markelov et al. | Apr 2002 | B1 |
6652625 | Tipler et al. | Nov 2003 | B1 |
6814785 | Tipler et al. | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
4119453 | Dec 1992 | DE |
196 53 406 | Jan 1998 | DE |
WO 0050885 | Aug 2000 | WO |
WO 03060508 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060021504 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10954784 | Sep 2004 | US |
Child | 11233162 | US | |
Parent | 10625259 | Jul 2003 | US |
Child | 10954784 | US | |
Parent | 10202147 | Jul 2002 | US |
Child | 10625259 | US |