This disclosure relates generally to analyte sensing devices, and, more particularly, to sensing devices including carbon-based sensors for detecting the presence of one or more analytes within or near any device, battery pack, package, container, structure, room, or system.
Chemical sensors operate by generating a signal in response to the presence of a particular chemical. Conventional analyte sensors typically require relatively high-power energy sources to detect relatively low concentrations of analytes (such as less than 1 part per-billion (ppb)), which has made widespread adoption of such sensors impractical. Further improvements of chemical and vapor sensors are desirable.
This Summary is provided to introduce in a simplified form a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter.
One innovative aspect of the subject matter described in this disclosure may be implemented as a sensing device for detecting analytes. In some implementations, the sensing device may include a substrate including a printed circuit board (“PCB”) and a receiving element. The receiving element may include one or more first terminals disposed in communication with an I/O interface of the substrate. The sensor element may be configured to be removably insertable into the receiving element. The sensor element may include one or more carbon-based sensors. In some instances, each sensor may be configured to detect the presence of an analyte. In some other instances, a sensor element may include one or more second terminals configured to make contact with the one or more first terminals when the sensor element is inserted into the receiving element. In some implementations, the one or more second terminals may be disposed on at least one edge of the sensor element.
In some implementations, a sensing device for detecting analytes may include a substrate including a printed circuit board (“PCB”) and a sensor element configured to removably connect with an I/O interface of the substrate. In some instances, the sensor element may include one or more carbon-based sensors. Each sensor may be configured to detect a presence of an analyte.
In some implementations, the one or more carbon-based sensors may be arranged as a sensor array on the substrate. In some instances, a sensor array may include a first carbon-based sensor disposed between a first pair of electrodes and is configured to detect a presence of each analyte of a first group of analytes. In some other instances, a sensor array may include a second carbon-based sensor disposed between a second pair of electrodes and is configured to detect a presence of each analyte of a second group of analytes. In some instances, the second group of analytes may be a subset of the first group of analytes.
In some implementations, each of the carbon-based sensors may include a different carbon allotrope including graphene. In some other implementations, a first carbon-based sensor may be functionalized with a first material configured to react with each analyte of a first group of analytes, and a second carbon-based sensor may be functionalized with a second material configured to react only with the analytes of a second group of analytes.
In another innovative aspect of the subject matter described in this disclosure, the sensor array may be arranged on the substrate and may include a plurality of carbon-based sensors. In some implementations, a first carbon-based sensor disposed between a first pair of electrodes may be configured to detect a presence of each analyte of a first group of analytes, and a second carbon-based sensor disposed between a second pair of electrodes may be configured to detect a presence of each analyte of a second group of analytes, where the second group of analytes is a subset of the first group of analytes. In some instances, the first group of analytes may include at least twice as many different analytes as the second group of analytes. In some implementations, the first carbon-based sensor may be configured to generate a first output signal in response to detecting the presence of one or more analytes of the first group of analytes, and the second carbon-based sensor may be configured to generate a second output signal in response to confirming the presence of the one or more analytes detected by the first carbon-based sensor. In one implementation, the first and second output signals may be currents based at least in part on an alternating current applied to the first and second carbon-based sensors. In some instances, a ratio of the current of the first output signal and the alternating current may be indicative of a concentration of at least one of the detected analytes, and a ratio of the current of the second output signal and the alternating current may be indicative of a concentration of at least one of the confirmed analytes.
In other implementations, the first and second output signals may be indicative of the impedances of the first and second carbon-based sensors, respectively. In some aspects, the first output signal may indicate a change in impedance of the first carbon-based sensor caused by exposure to one or more analytes of the first group of analytes, and the second output signal may indicate a change in impedance of the second carbon-based sensor caused by exposure to one or more analytes of the second group of analytes. In some other implementations, the first and second output signals may indicate frequency responses of the first and second carbon-based sensors, respectively. In some instances, the frequency response of the first carbon-based sensor may be indicative of the presence or absence of each analyte of the first group of analytes, and the frequency response of the second carbon-based sensor may be indicative of the presence or absence of each analyte of the second group of analytes. The frequency responses may be based on electrochemical impedance spectroscopy (“EIS”) sensing or resonant impedance spectroscopy (RIS) sensing.
In various implementations, the first carbon-based sensor may be functionalized with a first material configured to react with each analyte of the first group of analytes, and the second carbon-based sensor may be functionalized with a second material configured to react only with the analytes of the second group of analytes. In some instances, the first material may be cobalt-decorated carbon nano-onions (“CNOs”) configured to detect a presence of one or more of triacetone triperoxide (“TATP”), toluene, ammonia, or hydrogen sulfide (H2S), and the second material may be iron-decorated three-dimensional (“3D”) graphene-inclusive structures configured to confirm the presence of toluene.
In some implementations, the substrate may be one or more of paper, a flexible polymer, or other suitable material. In some implementations, the substrate and the sensor array may be integrated within a label configured to be removably printed onto a surface of a package or container. In some aspects, each of the carbon-based sensors may be printed on the substrate using a different carbon-based ink, and the pairs of electrodes may be printed on the substrate using an ohmic-based ink. In some instances, the first and second carbon-based sensors may be stacked on one another. In other instances, the first and second carbon-based sensor may be disposed next to one another.
In some implementations, each of the carbon-based sensors may include a plurality of different carbon allotropes including graphene. In some aspects, the different carbon allotropes including graphene of a respective carbon-based sensor may include one or more microporous pathways or mesoporous pathways. Each of the carbon-based sensors may include a polymer configured to bind the plurality of different allotropes of carbon including graphene to one another. The polymer may include humectants configured to reduce a susceptibility of a respective carbon-based sensor to humidity.
Another innovative aspect of the subject matter described in this disclosure may be implemented as a sensing device for detecting analytes within a package or container. In various implementations, the sensing device may include a substrate, one or more electrodes, and a sensor array. The sensor array may be disposed on the substrate and may include a plurality of carbon-based sensors coupled to the one or more electrodes. In some implementations, the carbon-based sensors may be configured to react with unique groups of analytes in response to an electromagnetic signal received from an external device. In some instances, the carbon-based sensors may be configured to resonate at different frequencies in response to the electromagnetic signal. Each of the one or more electrodes may be configured to provide an output signal indicating whether a corresponding carbon-based sensor detected one or more analytes in a respective group of the unique groups of analytes. In some instances, each output signal may indicate an impedance or reactance of the corresponding carbon-based sensor.
In addition, or in the alternative, a first frequency response of the first carbon-based sensor to the electromagnetic signal may be indicative of the presence or absence of the analytes of the first group of analytes within the package or container, and a second frequency response of the second carbon-based sensor to the electromagnetic signal may be indicative of the presence or absence of the analytes of the second group of analytes within the package or container. In some instances, the first frequency response may be based at least in part on exposure of the first carbon-based sensor to the electromagnetic signal for a first time period, and the second frequency response may be based at least in part on exposure of the second carbon-based sensor to the electromagnetic signal for a second time period that is longer than the first time period. In some instances, the second time period is at least twice as long as the first time period. The first and second frequency responses may be based on resonant impedance spectroscopy (“RIS”) sensing.
In various implementations, a first carbon-based sensor may be functionalized with a first material configured to detect the presence of each analyte of a first group of analytes, and a second carbon-based sensor may be functionalized with a second material configured to detect the presence of each analyte of a second group of analytes. The second group of analytes may be a subset of the first group of analytes, and the second material may be different than the first material. In some aspects, the first group of analytes may include at least twice as many different analytes as the second group of analytes. In some instances, the first material may be cobalt-decorated carbon nano-onions (“CNOs”) configured to detect the presence of one or more of triacetone triperoxide (“TATP”), toluene, ammonia, or hydrogen sulfide (H2S), and the second material may be iron-decorated three-dimensional (“3D”) graphene-inclusive structures configured to confirm the presence of toluene. In various implementations, a third carbon-based sensor may be functionalized with a third material configured to detect the presence of each analyte of a third group of analytes, where the third group of analytes may be another subset of the first group of analytes, and the third material may be different than the first and second materials.
In some implementations, at least two of the carbon-based sensors may be juxtaposed in a planar arrangement on the substrate. In other implementations, the carbon-based sensors may be stacked on top of one another in a vertical arrangement. For example, in one implementation, the carbon-based sensors may form a permittivity gradient. In some aspects, a single electrode may be configured to provide an output signal indicating whether the stacked carbon-based sensors detected one or more analytes. The single electrode may also be configured to provide the output signal to the external device.
In some implementations, the substrate may be one or more of paper, a flexible polymer, or other suitable material. In some implementations, the substrate and the sensor array may be integrated within a label that can be removably printed on a surface of the package or container. In some aspects, each of the carbon-based sensors may be printed on the substrate using a different carbon-based ink, and the one or more electrodes may be printed on the substrate using an ohmic-based ink. In some implementations, each of the carbon-based sensors may include a plurality of different allotropes of carbon including graphene. In some aspects, the different allotropes of carbon including graphene of a respective carbon-based sensor may include one or more microporous pathways or mesoporous pathways. Each of the carbon-based sensors may include a polymer configured to bind the plurality of different allotropes of carbon including graphene to one another. The polymer may include humectants configured reduce a susceptibility of a respective carbon-based sensor to humidity.
Another innovative aspect of the subject matter described in this disclosure may be implemented as a sensing device for monitoring a battery pack. The sensing device may include a substrate and a plurality of carbon-based sensors disposed on the substrate. Each of the carbon-based sensors may be coupled between a corresponding pair of electrodes. In some implementations, the 3D graphene-based sensing materials of a first carbon-based sensor may be functionalized with a first material configured to detect a presence of each analyte of a first group of analytes, and the 3D graphene-based sensing materials of a second carbon-based sensor may be functionalized with a second material configured to detect a presence of each analyte of a second group of analytes. In some aspects, the second group of analytes is a subset of the first group of analytes, and the group of analytes may include at least twice as many different analytes as the second group of analytes. In some instances, the first and second carbon-based sensors may be stacked on top of one another. In other instances, the first and second carbon-based sensors may be disposed next to one another. In some implementations, the carbon-based sensors may be carbon-based inks printed on the substrate. In some instances, the first carbon-based sensor may be a first carbon-based ink, and the second carbon-based sensor may be a second carbon-based ink different than the first carbon-based ink.
In some implementations, the first carbon-based sensor may be configured to generate a first output signal in response to detecting the presence of one or more analytes of the first group of analytes, and the second carbon-based sensor may be configured to generate a second output signal in response to confirming the presence of the one or more analytes detected by the first carbon-based sensor. In some implementations, the sensing device may include an input terminal to receive an alternating current, and the first and second output signals may be currents based at least in part on the alternating current. In some instances, a first difference between the alternating current and the first output signal may be indicative of the presence or absence of one or more analytes of the first group of analytes, and a second difference between the alternating current and the second output signal may be indicative of the presence or absence of one or more analytes of the second group of analytes.
In other implementations, the first output signal may indicate a change in impedance of the first carbon-based sensor caused by exposure to one or more analytes of the first group of analytes, and the second output signal may indicate a change in impedance of the second carbon-based sensor caused by exposure to one or more analytes of the second group of analytes. In some instances, a relatively small impedance change of a respective carbon-based sensor may indicate an absence of a corresponding group of analytes, and a relatively large impedance change of the respective carbon-based sensor may indicate a presence of the corresponding group of analytes.
In some other implementations, the sensing device may include an antenna configured to receive an electromagnetic signal from an external device, and the first and second output signals may be frequency responses of the 3D graphene-based sensing materials of the first and second carbon-based sensors, respectively, to the electromagnetic signal. For example, the frequency response of the 3D graphene-based sensing materials of the first carbon-based sensor may be indicative of the presence or absence of one or more analytes of the first group of analytes, and the frequency response of the 3D graphene-based sensing materials of the second carbon-based sensor may be indicative of the presence or absence of one or more analytes of the second group of analytes. In some aspects, the frequency responses may be based on resonant impedance spectroscopy (“RIS”) sensing.
In various implementations, at least one of the output signals may indicate an operating mode of the battery pack. In some implementations, the at least one output signal may indicate a normal mode based on an absence of the analytes of the first group of analytes, may indicate a maintenance mode based on the presence of one or more analytes of the first group of analytes not exceeding a threshold level, or may indicate an emergency mode based on the presence of one or more analytes of the first group of analytes exceeding a threshold level. In addition, or in the alternative, the first output signal may be indicative of a concentration level of one or more analytes of the first group of analytes, and the second output signal may be indicative of a concentration level of one or more analytes of the second group of analytes.
In some implementations, the analytes of the first and second groups of analytes may include one or more volatile organic compounds (“VOCs”). The one or more volatile organic compounds (“VOCs”) include any one or more of carbon dioxide (CO2), carbon monoxide (CO), nitrogen dioxide (NO2), one or more hydrocarbons including methane (CH4), ethylene (C2H4), ethane (C2H6), or propane (C3H8), one or more acids including hydrochloric acid (HCl) or hydrofluoric acid (HF), one or more fluorinated hydrocarbons including phosphorus oxyfluoride, hydrogen cyanide (HCN), one or more aromatics including benzene (C6H6), toluene (C7H8), ethanol (C2H5OH), hydrogen, carbonate based electrolytes including ethylene carbonate (C3H403), dimethyl carbonate (C3H603), propylene carbonate (C4H303), or one or more reduced sulfur compounds including thiols having a form of R-SH. In some aspects, each of the 3D graphene-based sensing materials may be configured to adsorb the VOCs. In some aspects, each of the carbon-based sensors may include a plurality of different allotropes of carbon including graphene. The plurality of different allotropes of carbon including graphene of a respective carbon-based sensor may include one or more microporous pathways or mesoporous pathways.
Another innovative aspect of the subject matter described in this disclosure may be implemented as a container for storing one or more items. The container may include a surface defining a volume of the container and a label printed on the container. In various implementations, the label may include a substrate, a plurality of carbon-based sensors printed on the substrate, and one or more electrodes printed on the substrate. The carbon-based sensors may be collectively configured to detect a presence of one or more analytes within the container. In some implementations, each of the carbon-based sensors may be configured to react with a unique group of analytes in response to an electromagnetic signal received from an external device. The one or more electrodes may be coupled to at least some of the carbon-based sensors and may be configured to provide one or more output signals indicating the presence or absence of the one or more analytes within the container. In some implementations, a first electrode coupled to the first carbon-based sensor may be configured to indicate the presence of one or more analytes of the first group of analytes, and a second electrode coupled to the second carbon-based sensor may be configured to confirm the presence of the analytes detected by the first carbon-based sensor. In some aspects, the carbon-based sensors may be configured to resonate at different frequencies in response to the electromagnetic signal.
In some implementations, a first carbon-based sensor may be functionalized with a first material configured to detect the presence of each analyte of a first group of analytes, and a second carbon-based sensor may be functionalized with a second material configured to detect the presence of each analyte of a second group of analytes, where the second group of analytes may be a subset of the first group of analytes. In some aspects, the first group of analytes may include at least twice as many different analytes as the second group of analytes. The second material may be different than the first material. For example, in one implementation, the first material may be cobalt-decorated carbon nano-onions (CNOs) configured to detect the presence of one or more of triacetone triperoxide (“TATP”), toluene, ammonia, or hydrogen sulfide (H2S), and the second material may be iron-decorated three-dimensional (“3D”) graphene-inclusive structures configured to confirm the presence of toluene. For another example, a third carbon-based sensor may be functionalized with a third material configured to detect the presence of each analyte of a third group of analytes, where the third group of analytes is another subset of the first group of analytes, and the third material is different than the first and second materials.
In some implementations, each output signal may indicate a frequency response of a corresponding carbon-based sensor to the electromagnetic signal. In some instances, a first frequency response of the first carbon-based sensor to the electromagnetic signal may be indicative of the presence or absence of the analytes of the first group of analytes within the container, and a second frequency response of the second carbon-based sensor to the electromagnetic signal may be indicative of the presence or absence of the analytes of the second group of analytes within the container. The first frequency response may be based at least in part on exposure of the first carbon-based sensor to the electromagnetic signal for a first time period, and the second frequency response may be based at least in part on exposure of the second carbon-based sensor to the electromagnetic signal for a second time period that is longer than the first time period. In some aspects, the second time period is at least twice as long as the first time period. The first and second frequency responses may be based on resonant impedance spectroscopy (“RIS”) sensing.
In various implementations, an antenna may be printed on the substrate and configured to drive a current through the carbon-based sensors in response to the electromagnetic signal. In some aspects, each output signal may indicate an impedance or reactance of a corresponding carbon-based sensor to the current. The impedance or reactance of the carbon-based sensors may be indicative of the presence or absence of the one or more analytes within the container. For example, the impedance or reactance of the first carbon-based sensor may be indicative of the presence or absence of an analyte of the first group of analytes, and the impedance or reactance of the second carbon-based sensor may be indicative of the presence or absence of an analyte of the second group of analytes. In some instances, at least two of the carbon-based sensors are juxtaposed in a planar arrangement on the substrate. In other instances, the carbon-based sensors are stacked on top of one another. In some aspects, the carbon-based sensors may form a permittivity gradient.
In some implementations, each of the carbon-based sensing materials may include a plurality of different allotropes of carbon including graphene. In some aspects, the different allotropes of carbon including graphene of a respective carbon-based sensor may include one or more microporous pathways or mesoporous pathways. Each of the carbon-based sensors may include a polymer configured to bind the plurality of different allotropes of carbon including graphene to one another. The polymer may include humectants configured reduce a susceptibility of a respective carbon-based sensor to humidity.
In some implementations, an example sensor station for detecting analytes released from one or more packages disposed in an enclosure may include one or more sensing devices disposed in a conditioning chamber. The one or more sensing devices may include any one of the sensing devices previously disclosed herein. In some instances, an example sensing device may include a substrate including a printed circuit board (PCB) and a sensor element removably coupled to an I/O interface of the substrate. The sensor element may include one or more carbon-based sensors configured to detect the presence of the one or more analytes. In some other instances, an example conditioning chamber may be disposed in fluid communication with the enclosure and may be coupled to a vent duct associated with the enclosure.
In some implementations, an example conditioning chamber may be configured to receive one or more of an inert gas, ambient air, or humidified air at predetermined intervals to improve the sensitivity associated with the detection of the analytes using the sensing device. In some instances, the conditioning chamber may include one or more fans configured to draw the analytes from the enclosure into the conditioning chamber. In some other instances, the conditioning chamber may include one or more electrical heaters.
Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
Like reference numbers and designations in the various drawings indicate like elements.
The following description is directed to some example implementations for the purposes of describing innovative aspects of this disclosure. However, a person having ordinary skill in the art will readily recognize that the teachings herein can be applied in a multitude of different ways. The implementations described can be implemented in any environment to detect the presence of a plurality of different analytes within or near any device, battery pack, package, container, structure, or system that may be susceptible to analytes. Moreover, implementations of the subject matter disclosed herein can be used to detect the presence of any harmful or dangerous chemical, gas, or vapor. As such, the disclosed implementations are not to be limited by the examples provided herein, but rather encompass all implementations contemplated by the attached claims. Additionally, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
Batteries typically include a plurality of electrochemical cells that can be used to power a wide variety of devices including, for example, mobile phones, laptops, and electric vehicles (“EVs”), factories, and buildings. When batteries are exposed to harsh environmental conditions or become damaged, toxic chemicals and vapors within the electrochemical cells may leak from the battery's casing and pose serious health and safety risks. When released from a battery, these toxic chemicals and vapors can cause respiratory problems, allergic reactions, and may even explode. The chemicals typically used in the cells of lithium-ion batteries may be particularly dangerous due to their high reactivities and susceptibility to explosion when inadvertently released from the battery casing. As such, there is a need to quickly and accurately determine whether a particular battery or battery pack is leaking such toxic chemicals or vapors. Moreover, when the presence of one or more analytes (or other toxic chemicals or vapors) is detected, it may be desirable to determine the concentration of such analytes. It may also be desirable to predict battery failure and/or to determine the operational integrity of such batteries.
Various aspects of the subject matter disclosed herein relate to detecting a presence of one or more analytes in an environment. In accordance with various implementations of the subject matter disclosed herein, a sensing device may include a plurality of carbon-based sensors organized as a sensor array and configured to detect the presence of a variety of different analytes. In some implementations, at least some of the carbon-based sensors may include different types of three-dimensional (“3D”) graphene-based sensing materials configured to react with different analytes or different groups of analytes. In some aspects, the graphene-based sensing materials of different carbon-based sensors may be functionalized with different materials, for example, to increase the sensitivity of each carbon-based sensor to one or more corresponding analytes.
In some implementations, changes in the impedances of the carbon-based sensor may be used to determine a presence of one or more analytes in a vicinity of the sensing device. In other implementations, changes in current flow through the carbon-based sensor may be used to determine the presence of the one or more analytes in the vicinity of the sensing device. In some other implementations, frequency responses of the carbon-based sensors may be used to determine the presence of the one or more analytes in the vicinity of the sensing device. In some aspects, the frequency responses of the carbon-based sensors may be compared with one or more reference frequency responses corresponding to the one or more analytes to identify which analytes are present in the environment. In this way, the sensor systems disclosed herein can accurately detect the presence of a variety of different analytes in a given environment.
In one implementation, a first carbon-based sensor may be configured to detect the presence of a relatively large number of different analytes, and one or more second carbon-based sensors may be configured to confirm the presence of one or more analytes detected by the first carbon-based sensor. Specifically, the first carbon-based sensor may be configured to react with each analyte of a first group of analytes, and the one or more second carbon-based sensors may be configured to react with corresponding second groups of analytes that are unique subsets of the first group of analytes. In some instances, the first carbon-based sensor may be exposed to the surrounding environment for a relatively short period of time to provide an initial coarse indication of whether the analytes of the first group of analytes are present, and each of the second carbon-based sensors may be exposed to the surrounding environment for a relatively long period of time to provide a fine indication of whether any of the analytes of the corresponding second group of analytes are present. For example, while the first carbon-based sensor may be able to detect a greater number of analytes than any of the second carbon-based sensors, configuring each of the second carbon-based sensors to detect only one or two different analytes may increase the sensitivity of the second carbon-based sensors to their respective “target” analytes, thereby increasing the accuracy with which the second carbon-based sensors are able to detect the presence of their respective target analytes. As such, when indications provided by the second carbon-based sensors are used to confirm indications provided by the first carbon-based sensor, the number of false positive indications decreases, which in turn increases overall accuracy of the sensing device.
Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. In some implementations, the sensing devices disclosed herein can not only detect the presence of a variety of analytes and other harmful chemicals and gases but can also reduce the occurrence of false positives. Specifically, by using a first carbon-based sensor to quickly detect a presence of one or more analytes of a group of analytes and using one or more second carbon-based sensors to confirm the presence of analytes detected by the first carbon-based sensor, aspects of the present disclosure can reduce the number of false positives indicated by the sensing device. This is in contrast to conventional analyte sensors that may not only be insensitive to differences between different analytes of a group of analytes and/or that do not employ a multi-tiered analyte detection system.
In the example of
In some implementations, the carbon-based sensors 120 may include carbon particulates or 3D graphene structures that react with (or that can be configured to react with) analytes associated with batteries, for example, to determine whether a particular battery is leaking analytes that may be harmful or dangerous. In other implementations, the carbon-based sensors 120 may include carbon particulates or 3D graphene structures that react with (or that can be configured to react with) a group of analytes deemed to be harmful or dangerous, either individually or in combination with each other. For example, the carbon-based sensors 120 may be configured to produce detectable reactions when exposed to acetone and hydrogen peroxide to detect a presence of acetone peroxide (which is highly explosive). For another example, one or more of the carbon-based sensors 120 may be configured to detect a presence of triacetone triperoxide (“TATP”) or tri-cyclic acetone peroxide (“TCAP”), which are trimers for acetone peroxide.
In some implementations, each of the sensors 120 may be configured to react with a unique group of analytes. In some aspects, the sensors 120 may be functionalized with different materials configured to detect different analytes or different groups of analytes. In one implementation, a first sensor of the sensor array 110 may be functionalized with a first material configured to detect a presence of a first group of analytes, and one or more second sensors of the sensor array 110 may be functionalized with second materials configured to detect a presence of one or more corresponding second groups of analytes, where the second materials are different than each other and are different than the first material, and the second groups of analytes are unique subsets of the first group of analytes. For example, the first sensor may be configured to detect each of the five analytes 151-155, while each of the second sensors may be configured to detect only one of the five analytes 151-155. The first sensor may sense the environment for a relatively short period of time to provide a coarse detection of any of the analytes 151-155, and each of the second sensors may sense the environment for a relatively long period of time to confirm the presence of a respective one of the five analytes 151-155. In this way, the one or more second sensors 120 may be used to verify the detection of various analytes by the first sensor 120, thereby reducing or even eliminating false positives.
In other implementations, the sensors 120 may be configured to react with overlapping groups of analytes. In some other implementations, the sensors 120 may be configured to react with the same or similar groups of analytes.
The substrate 130 may be any suitable material. In some instances, the substrate may include paper or a flexible polymer. In other instances, the substrate 130 may include a rigid or semi-rigid material such as, for example, a printed circuit board.
The sensing devices 100 may be configured to detect a presence of analytes 340 leaked from one or more of the battery cells 320 of the battery pack 310 in a manner similar to that described above with reference to
In various implementations, each of the sensors 120 within a respective sensing device 100 may be configured to provide an output signal in response to detecting the presence of one or more analytes. In some implementations, the output signal may be a current generated in response to an alternating current provided to the respective sensing device 120. In some instances, a difference between the alternating current and the output signal may be indicative of the presence or absence of the one or more analytes of the first group of analytes. In other implementations, the output signal may indicate a change in impedance of the corresponding sensor 120 caused by exposure to the one or more analytes. In some instances, a relatively small impedance change of the sensor 120 may indicate an absence of the one or more analytes, and a relatively large impedance change of the sensor 120 may indicate a presence of the one or more analytes.
In some other implementations, one or more of the sensing devices 100 may include an antenna (not shown for simplicity) configured to receive an electromagnetic signal from an external device, and the output signals may be frequency responses of the sensing materials 125 to the electromagnetic signal. For example, the frequency response of the sensing materials 125 of the first sensor 1201 may be indicative of the presence or absence of the first group of analytes, and the frequency response of the sensing materials 125 of the second sensor 1202 may be indicative of the presence or absence of the second group of analytes. In some aspects, the frequency responses may be based on resonant impedance spectroscopy (“RIS”) sensing.
In various implementations, the output signals generated by each sensing device 100 may indicate an operating mode of a corresponding battery cell 320 of the battery pack 310. In some implementations, the output signals may indicate a normal mode for the corresponding battery cell 320 based on an absence of analytes, may indicate a maintenance mode for the corresponding battery cell 320 based on the presence of analytes not exceeding a threshold level, or may indicate an emergency mode for the corresponding battery cell 320 based on the presence of analytes exceeding the threshold level. The output signals may also indicate a concentration level of each analyte detected by the sensing device 100.
In some implementations, each of the sensors 434 may be configured to react with a unique group of analytes in response to an electromagnetic signal 442 received from an external device 440. For example, a first sensor 4341 may be configured to detect the presence of a first group of analytes, and a second sensor 4342 may be configured to detect the presence of a second group of analytes that is a first subset of the first group of analytes. In one implementation, a third sensor 4343 may be configured to detect the presence of a third group of analytes that is a second subset of the first group of analytes. As discussed, the first sensor 4341 may be functionalized with a first material configured to react with the first group of analytes, the second sensor 4342 may be functionalized with a second material configured to react with the second group of analytes, and the third sensor 4343 may be functionalized with a third material configured to react with the third group of analytes. In this way, the second sensor 4342 may be used to confirm detection of the first subset of analytes by the first sensor 4341, and the third sensor 4343 may be used to confirm detection of the second subset of analytes by the first sensor 4341. In other implementations, one or more groups of sensors 434 may be configured to react with overlapping groups of analytes in response to the electromagnetic signal 442.
The electrodes 436, which may be examples of the electrodes 121-122 of
In some implementations, each output signal may indicate a frequency response of a corresponding sensor 434 to the electromagnetic signal 442. For example, the frequency response of the first sensor 4341 may indicate the presence (or absence) of the first group of analytes within the shipping package 410, the frequency response of the second sensor 4342 may confirm the presence (or absence) of the second group of analytes, and the frequency response of the third sensor 4343 may confirm the presence (or absence) of the third group of analytes. In some instances, the first sensor 4341 may be exposed to the electromagnetic signal 442 for a relatively short period of time to provide a coarse indication of whether the analytes of the first group of analytes are present, and the second and third sensors 4342 and 4343 may be exposed to the electromagnetic signal 442 for a relatively long period of time to confirm indications of the presence of the second and third respective groups of analytes by the first sensor 4341. In this way, the sensors 4341-4343 can collectively reduce the number of false positives indicated by the sensing device 100.
In at least some implementations, an antenna (not shown for simplicity) may be printed on the substrate 432 and configured to drive an alternating current through the sensors 434 in response to the electromagnetic signal 442. Because the sensors 434 may be functionalized with different materials that can have different electrical and/or chemical characteristics, the resulting sensor output currents may indicate the presence (or absence) of different analytes. For example, in some instances, each output signal may indicate an impedance or reactance of a corresponding sensor 434 to the alternating current. The impedance or reactance of each sensor 434 can be measured and compared with a reference impedance or reactance to determine whether one or more analytes associated with the sensor 434 are present in the shipping package 410. In some instances, the reference impedances or reactance may be determined by driving the alternating current through the sensors 434 in the absence of all analytes and measuring the impedances or reactance of the output signals from the sensors 434.
In some aspects, the sensors 434 may be juxtaposed in a planar arrangement on the substrate 432. In other instances, the sensors 434 may be stacked on top of one another in a vertical arrangement. In some implementations, the sensors 434 may form a permittivity gradient.
As shown, analytes 151-152 may take a variety of paths to penetrate and react with the sensing material 125. Specifically, inset 510 depicts the analytes 151-152 being adsorbed by the functionalized material 126 and/or various exposed surfaces of the sensing material 125. Inset 520 depicts a carbon particulate 522 from which the sensing material 125 may be formed. In some instances, a reactive chemistry additive (such as a salt dissolved in a carrier solvent) may be deposited on and within exposed surfaces, pores and/or pathways of the particulate carbon 522. In some instances, the reactive chemistry additives may be incorporated into the particulate carbon 522 to increase the sensitivity of the sensor 120 to one or more specific analytes.
The controller 640 may generate an excitation signal or field from which current levels, voltage levels, impedances, and/or frequency responses of the carbon-based sensors 1201-120n can be measured or determined by the measurement circuit 630. For example, in some implementations, the controller 640 may be a current source configured to drive either a direct current or an alternating current through each of the sensors 1201-1208. In other implementations, the controller 640 may be a voltage source that can apply various voltages across the sensors 1201-1208 via corresponding pairs of electrodes 121 and 122. In some instances, the controller 640 can adjust the sensitivity of a respective sensor 120 to a particular analyte by changing the voltage applied across the respective sensor 120. For example, the controller 640 can increase the sensitivity of the respective sensor 120 by decreasing the applied voltage, and can decrease the sensitivity of the respective sensor 120 by increasing the applied voltage. In some other implementations, an antenna (not shown for simplicity) coupled to the sensor array 620 can receive one or more electromagnetic signals from an external device. In some aspects, the first electrodes 1211-1218 may be configured to receive the electromagnetic signals.
As discussed, the sensors 1201-1208 may include respective sensing materials 1251-1258 that can be functionalized with different materials configured to react with and/or detect different analytes or different groups of analytes. In some implementations, the sensors 1201-1208 may include cobalt in particulate form, and the sensing materials 1251-1258 may include carbon nano-onions (“CNOs”). Specifically, active sites on exposed surfaces of the CNOs may, in some aspects, be functionalized (such as through surface modification) with solid-phase cobalt (Co(s)) (such as Co particles) and/or cobalt oxide (Co2O3), which reacts with available carbon on exposed surfaces of the CNOs. For example, the chemical reactions associated with using cobalt oxide to detect the presence of hydrogen peroxide (H2O2) may be expressed as:
In addition, or the alternative, cobalt-based functionalization may be used to detect TATP according to the following chemical reaction:
In other implementations, the presence of TATP may be detected based on the following steps or operations:
In some implementations, cobalt decorated CNOs may provide the most selective and sensitive response to triacetone triperoxide (“TATP”) relative to other types of 3D graphene-based sensing materials. Applicant notes that since hydrogen peroxide has a chemical structure somewhat similar to triacetone triperoxide (“TATP”) or tri-cyclic acetone peroxide (TCAP), sensing devices configured to detect a presence of hydrogen peroxide can also be used to detect a presence of TATP.
The exact chemical reactivity and/or interactions between an analyte and exposed carbon surfaces of the materials 1251-1258 may depend on the type of analyte and the structure or organization of the corresponding materials 1251-1258. For example, certain analytes, such as hydrogen peroxide (H2O2) and TATP, may be detected by one or more oxidation-reduction (“redox”) type chemical reactions with metals decorated onto exposed carbon surface of the sensing materials 1251-1258. In some implementations, some of the sensing materials 1251-1258 may be prepared or created to include free amines, which may react with electronic deficient nitroaromatic analytes, such as TNT and DNT.
The measurement circuit 630 may measure the output signals provided by the sensors 1201-1208 to determine whether certain analytes are present in the surrounding environment. For example, when the sensor array 120 is pinged with an electromagnetic signal (e.g., received from an external device such as the device 440 of
For another example, application of an alternating current to the sensor array 120 may cause one or more electrical and/or chemical characteristics of the sensors 1201-1208 to change (e.g., to increase or decrease). The measurement circuit 630 can detect the resultant changes in the electrical and/or chemical characteristics of the sensors 1201-1208, and can determine whether certain analytes are present based on the changes. In some implementations, the measurement circuit 630 can measure the output currents of sensors 1201-1208 caused by the alternating current and can compare the measured output currents with one or more reference currents to determine whether certain analytes are present. Specifically, if the measured output current of a sensor 120 matches a particular reference current, then the measurement circuit 630 may indicate the presence of analytes associated with the particular reference current. Conversely, if the measured output current of the sensor 120 does not match any of the reference currents, then the measurement circuit 630 may indicate an absence of analytes associated with the particular reference current.
In other implementations, the measurement circuit 630 can measure the impedances or reactance of the sensors 1201-1208 to the alternating current and can compare the measured impedances or reactance with one or more reference impedances or reactance to determine whether certain analytes are present. Specifically, if the measured impedance or reactance of a sensor 120 matches a reference impedances or reactance, then the measurement circuit 630 may indicate the presence of analytes associated with the reference impedances or reactance. Conversely, if the measured impedance or reactance of the sensor 120 does not match any of the reference impedances or reactance, then the measurement circuit 630 may indicate an absence of analytes associated with the reference impedances or reactance.
The sensors 701-704 may include routing channels between individual deposits of the carbon-based sensing materials. These routing channels may provide routes through which electrons can flow through the sensors 701-704. The resulting currents through the sensors 701-704 can be measured through ohmic contact with the respective electrode pairs E1-E4. For example, a measurement M1 of the first sensor 701 can be taken via electrode pair E1, a measurement M2 of the second sensor 702 can be taken via electrode pair E2, a measurement M3 of the third sensor 703 can be taken via electrode pair E3, and a measurement M4 of the fourth carbon-based sensor 704 can be taken via electrode pair E4.
In various implementations, each of the sensors 701-704 can be configured to react with and/or to detect a corresponding analyte or group of analytes. For example, the first sensor 701 can be configured to react with or detect a first group of analytes in a coarse-grained manner, and the second sensor 702 can be configured to react with or detect a subset of the first group of analytes in a fine-grained manner. In some instances, the sensors 701-704 can be printed onto a substrate using different carbon-based inks. Ohmic contact points can be used to capture the measurements M1-M4, either concurrently or sequentially.
As the demand for low-cost analyte sensors continues to increase, it is increasingly important to reduce or even eliminate the need for electronic components in analyte sensors. For example, the high cost of electronic components typically found in conventional analyte sensors render their widespread deployment in shipping containers, packages, and envelopes impractical. As such, some implementations of the subject matter disclosed herein may provide a cost-effective solution to the long-standing problem of monitoring large numbers of shipping containers, packages, and envelopes for the presence of harmful chemicals and gases such as, for example, the various analytes described herein.
Further details pertaining to various carbon-based sensing materials, tunings, and calibration techniques that can be used to form carbon-based sensors disclosed herein are summarized below in Table 1.
As discussed, different materials may resonate at different frequencies, and many materials may resonate at different frequencies depending on whether one or more certain analytes are present. In some implementations, the permittivity of carbon-based sensing materials described herein can be modified by exposing the materials to ultraviolet (UV) radiation.
Formation of various different portions of the carbon-containing material having different permittivity values can be accomplished using a combination of masking and UV treatments. At block 802, a carbon-containing material is deposited onto a substrate or electrode 810. At block 804, a UV-opaque mask is deposited or printed on top the carbon-containing material. At block 806, the carbon-containing material is activated, for example, via bombardment by UV photons. This results in a first portion 8121 of the carbon-containing material having a first permittivity, and a second portion 8122 of the carbon-containing material having a second permittivity different than the first permittivity. At block 808, the mask can be washed away, ablated, or otherwise removed. Two or more of the resulting analyte-sensing devices can be used as a multi-element, multi-analyte sensor and/or as a high-sensitivity analyte sensor. In addition, or in the alternative, the resulting analyte-sensing devices can be exposed to an additional bombardment of UV photons at block 810, for example, to further alter portions of the carbon-containing material previously beneath the UV-opaque mask.
Some example alternative implementations are summarized below in Table 2:
In forming the analyte sensor array, the different layers can be deposited using any known technique. Furthermore, each of the different layers can be configured to be of a particular thickness. Strictly as one example, and as shown, a first deposited layer can have a first thickness 924 in a first range (such as 10 nm-100 nm, whereas another deposited layer can have a thickness in a different range (such as 500 nm-1,000 nm), and so on. The particular thickness of a particular layer can be selected based upon any combination of:
In some implementations, the open pore structure of carbon-based sensing materials disclosed herein may allow certain analytes to penetrate the materials more easily and/or to interact with carbon matrices more easily within the materials. As such, these open pores may increase the sensitivity of sensors disclosed herein to analytes than conventional analyte detection systems.
Sensor No. 1: Carbon #29, corresponding to carbon nano-onion (CNO) oxides produced in a thermal reactor; cobalt (II) acetate (C4H6CoO4), the cobalt salt of acetic acid (often found as tetrahydrate Co(CH3CO2)2·4 H2O, abbreviated Co(OAc)2·4 H2O, is flowed into the thermal reactor at a ratio of approximately 59.60 wt % corresponding to 40.40 wt % carbon (referring to carbon in CNO form), resulting in the functionalization of active sites on the CNO oxides with cobalt, showing cobalt-decorated CNOs at 15,000× and 100,000× levels, respectively; suitable gas mixtures used to produce Carbon #29 and/or the cobalt-decorated CNOs may include the following steps:
Sensor No. 2: corresponding to TG JM (thermal graphene jet milled; thermal reactor carbon unfunctionalized) as shown in
Sensor No. 3: Carbon #19, corresponding to “DXR” (as characterized by
Sensor No. 4: CNO (carbon nano-onion; thermal reactor carbon unfunctionalized) as shown in
Sensor No. 5: Carbon #16, corresponding to “DXR” (as characterized by
Sensor No. 6: Carbon #1, corresponding to “Anvel” (as characterized by
Sensor No. 7: Carbon #6, corresponding to “Anvel” (as characterized by
Sensor No. 8:1,3-diaminonaphthalene complexed to TG-JM, such as that shown in
In contrast to a conventional 2D graphene material, the 3D graphene sensing materials disclosed by the present implementations may be designed to have a convoluted 3D structure to prevent graphene restacking, avoiding several drawbacks of using 2D graphene as a sensing material. This process also increases the areal density of the materials, yielding higher analyte adsorption sites per unit area, thereby improving chemical sensitivity, as made possible by a corresponding library of carbon allotropes used to customize the sensor array (such as of sensor system 100) to chemically fingerprint fugitive substances for multiple applications.
The structured carbon materials shown in
To improve the chemical selectivity, the 3D graphenes of the presently disclosed graphenes may be functionalized with various reactive materials in such a manner that the binding of target molecules and the carbon may be optimized. This functionalization step along with the ability to measure the complex impedance of the exposed sensor may be critical for efficient and selective detection of analytes. For example, different metal nanoparticles or metal oxide nanoparticles may be decorated on the surface of 3D graphenes to selectively detect hydrogen peroxide (a TATP degradation product) as peroxides are known to react with different metals. Further, nanoparticle decorated graphene structures may act synergistically to offer desirable and advantageous properties for sensing applications.
In some implementations, an example sensing device for detecting one or more analytes may include a sensor element that is replaceable or removable from the sensing device. An example sensor element may include one or more carbon-based sensors, as previously described herein. The one or more carbon-based sensors may become contaminated or fouled by exposure to analytes over time and a replaceable sensor element (also referred to herein as a field replaceable sensor element) may be useful in several applications.
In some implementations, substrate 1501 disposed as a PCB may include a microcontroller configured to control the operation of the sensing device and process data, one or more input/output (“I/O”) interfaces, ports, pins, or terminals, and an interface connectable to a power source, for example, a miniature battery. The I/O interfaces may include one or more analog, digital, or PWM ports. Substrate 1501 may include data communication components to enable the sensing device 1500A to communicate and/or export raw or processed data to an end device or computer server. Example sensing device 1500A may be configured in any form factor including a rectangular form factor as shown in
In some implementations, sensor element 1502 may be configured to removably and directly connect, for example using press-fit connectors, with an I/O interface of the substrate without requiring a receiving element.
In some implementations, the one or more carbon-based sensors may be disposed as a sensor array 1505.
In some implementations, sensors 1506-1508 may include routing channels disposed between individual deposits of the carbon-based sensing materials. These routing channels may provide routes through which electrons can flow through the sensors 1506-1508. The resulting currents through the sensors 1506-1508 may be measured through ohmic contact with the respective electrode pairs E1-E3. For example, a measurement M1 associated with sensor 1507 may be taken via electrode pair E1, a measurement M2 associated with sensor 1508 may be taken via electrode pair E2, and a measurement M3 associated with sensor 1506 may be taken via electrode pair E3.
In various implementations, each of the sensors 1506-1508 may be configured to react with and/or to detect a corresponding analyte or group of analytes. For example, sensor 1506 may be configured to react with or detect a first group of analytes in a coarse-grained manner, and sensor 1507 and/or 1508 may be configured to react with or detect a subset of the first group of analytes in a fine-grained manner. In some instances, the sensors 1506-1508 may be printed onto substrate 1501 using different carbon-based inks. Ohmic contact points may be used to capture measurements M1-M3, either concurrently or sequentially.
In some implementations, PCB circuitry and components (e.g., active and passive electronic components) may be disposed on an opposing planar surface of substrate 1501 relative to the planar surface that includes sensor array 1505. In some aspects, an electrical component (e.g., a passive delay line) may be partially disposed on both opposing planar surfaces (e.g., top surface and bottom surface) of substrate 1501. In some implementations, carbon-based sensors in sensor array 1505 may include 3D graphene, as previously disclosed herein. 3D graphene may be functionalized with various reactive materials to improve the sensitivity, selectivity, and detection threshold of the sensing device to one or more analytes. This functionalization step, along with the ability to measure the complex impedance of a sensor 1506-1508, may be critical for efficient and selective detection of analytes. For example, different metal nanoparticles or metal oxide nanoparticles may be decorated on the surface of 3D graphene to selectively detect hydrogen peroxide (a TATP degradation product) as peroxides are known to react with different metals. Additionally, nanoparticle decorated graphene may act synergistically to offer desirable and advantageous properties for sensing applications.
Example sensing device 1500A including removable sensor element 1502 may be used for detecting the presence of one or more analytes within or near any device, battery pack, package, container, structure, room, or system.
In some implementations, sensor station 1519 may be disposed in fluid communication with one or more vents 1523 using vent ducts 1524. Sensor station 1519 may include sensing device 1516 disposed in conditioner 1515 (also referred to herein as a conditioning chamber). An example sensing device 1516 may include sensing device 1500A as previously described herein. As shown in
In some implementations, conditioner 1515 may be configured to receive an inert gas, water vapor, or humidifier air, which may be circulated into enclosure 1509 through the vent ducts 1524. In some implementations, an increase or decrease in relative humidity level (RH) in conditioner 1515 or enclosure 1509 may improve the sensitivity of sensing device 1516 to the one or analytes 1520-1522 and associated with detecting a change in quality of a material (e.g., food, chemicals, or similar non-limiting examples) included in the one or more packages disposed in the enclosure. In some other implementations, conditioner 1515 may include one or more heaters to increase the temperature of the analytes or change the temperature, pressure, relative humidity, or any other environmental parameter, in conditioner chamber 1515 or enclosure 1509. In some instances, conditioner 1515 may include a vent to exhaust the one or more analytes 1520-1522 to the ambient atmosphere outside the enclosure 1509. In some other instances, one or more reference analytes, or mixtures thereof, may be introduced into conditioning chamber 1515 to calibrate sensing device 1516. In some implementations, any one of the sensing devices including a substrate, a sensor element, or an array of sensor elements, as previously described herein, may be configured as a sensor kit. In some instances, an example sensor kit may be customized for one or more applications or requirements.
In some implementations, sensor kit 1600 may include a control unit for interfacing and operating one or more sensing devices. At 1601, an example control unit may be configured to communicate with one or more sensing devices over wired or wireless networks. An example control unit may be configured as a hand-held unit. In some instances, an example control unit may include an application software (“app”) that is configured to operate a sensing device and receive a response or signal from a sensing device. An example control unit may include one or more processors, memory for storing machine-readable code, which when executed by the one or more processors may perform one or more functions including initializing a sensing device, pinging a sensing device, receiving data from a sensing device, or transmitting data from the sensing device to a cloud server or a hub for data storage and data analysis.
In some other implementations, a buyer, at 1602 may customize the application software to identify end-users, authenticate end-users, or set-up communication with an end-user mobile device. In some instances, a buyer at 1603, may configure an example control unit to include remote access to an analyte database or analyte library, which may be used for confirming the presence of analytes detected using one or more sensing devices. An example analyte database may include a compilation of one or more characteristic responses to one or more analytes associated with the one or more sensing devices available at the e-commerce platform. Example characteristic responses from sensing devices may include one or more of voltage, current, frequency, impedance, and the like, in response to sensing one or more analytes. In some instances, threshold conditions associated with the detection of one or more analytes, or a predetermined concentration of the one or more analytes, may be established by a buyer or an end-user for sending alerts to an end-user. In some instances, a buyer, at 1603, may select remote data processing tools including machine learning tools, or remote data storage options associated with the sensing devices selected at 1601 for analyzing data collected from the one or more sensing devices and improving the performance of the one or more sensing devices.
In some examples, a buyer, at 1604 may configure an example control unit to include data encryption tools suitable for military use or suitable for other sensitive applications or access to dedicated sensor networks. Additionally, an example sensor kit 1600 may be configured to be hardened at 1604 to handle shock and vibration and operate at challenging ambient conditions for military applications. In some examples, dedicated sensor networks may be managed by the manufacturer or supplier of the example sensor kit. Example sensor networks may be configured to enable communication between sensing devices, or data management hubs using Internet of Things (“IoT”) architecture.
In some other examples, an example sensor kit and an associated data analysis hub may be configured to collect data from one or more sensing devices as a function of time and location to monitor the quality of one or more of fruits, vegetables, meat, food products, medical supplies, or similar non-limiting examples, packaged in their respective containers or enclosures, by detecting analytes released from these substances. Devices and methods for monitoring the contents of packages or containers using the example sensing devices described herein are disclosed in commonly owned U.S. Pat. Pub. No. 18/667,316, U.S. Pat. Nos. 12,026,576, 11,537,806, 11,288,466, 10,943,076, all of which are incorporated by reference herein in each of their entireties.
In some implementations, another example sensor kit for testing or configuring one or more sensing devices may include a breadboard including one or more sensing devices. An example breadboard may include one or more processors, I/O pins, a power supply, memory for storing machine-readable code or instructions, which when executed by the one or more processors configures or optimizes the one or more sensing devices for detecting one or more analytes at a predetermined sensitivity, or specificity. An example breadboard may include wired or wireless communication components. In some implementations, an example breadboard may include a transceiver. In some instances, an example breadboard may be configured to communicate with a mobile device. An example mobile device may include a user interface for configuring or optimizing the one or more sensing devices for detecting one or more analytes. In some instances, an example breadboard may be coupled to a laptop or computer for configuring and operating the one or more sensing devices. In some instances, output data associated with the one or more sensing devices may be transmitted to, over one or more wireless networks to a server, and stored for data analysis.
As used herein, a phrase referring to “at least one of” or “one or more of” a list of items refers to any combination of those items, including single members. For example, “at least one of: a, b, or c” is intended to cover the possibilities of: a only, b only, c only, a combination of a and b, a combination of a and c, a combination of b and c, and a combination of a and b and c.
The various illustrative components, logic, logical blocks, modules, circuits, operations, and algorithm processes described in connection with the implementations disclosed herein may be implemented as electronic hardware, firmware, software, or combinations of hardware, firmware, or software, including the structures disclosed in this specification and the structural equivalents thereof. The interchangeability of hardware, firmware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and processes described above. Whether such functionality is implemented in hardware, firmware or software depends upon the particular application and design constraints imposed on the overall system.
Various modifications to the implementations described in this disclosure may be readily apparent to persons having ordinary skill in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Additionally, various features that are described in this specification in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. As such, although features may be described above as acting in particular combinations, and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flowchart or flow diagram. However, other operations that are not depicted can be incorporated in the example processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. In some circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
This Patent application claims priority to U.S. Provisional Patent Application No. 63/613,322 entitled “ANALYTE SENSING DEVICE” and filed on Dec. 21, 2023, and to U.S. Provisional Patent Application No. 63/608,063 entitled “CUSTOM SENSOR ARRAY DEVELOPER KIT AND CLOUD SERVICE” and filed on Dec. 8, 2023, both of which are assigned to the assignee hereof. The disclosure of all prior Applications are considered part of and are incorporated by reference in this Patent Application in each of their respective entireties.
| Number | Date | Country | |
|---|---|---|---|
| 63613322 | Dec 2023 | US | |
| 63608063 | Dec 2023 | US |