Analyte sensor transmitter unit configuration for a data monitoring and management system

Information

  • Patent Grant
  • 11064916
  • Patent Number
    11,064,916
  • Date Filed
    Wednesday, December 5, 2018
    5 years ago
  • Date Issued
    Tuesday, July 20, 2021
    2 years ago
Abstract
Method and system for providing analyte sensor alignment and retention mechanism for improved connectivity with a transmitter unit for electrical connection, and further including transmitter unit contact pins with metal components to improve electrical conductivity with the analyte sensor in an analyte monitoring and management system is provided.
Description
BACKGROUND

Analyte monitoring systems including continuous glucose monitoring systems generally include an analyte sensor such as a subcutaneous analyte sensor, at least a portion of which is configured for fluid contact with biological fluid, for detecting analyte levels such as for example glucose or lactate levels, a transmitter (such as for example a Radio Frequency (RF) transmitter) in communication with the sensor and configured to receive the sensor signals and to transmit them to a corresponding receiver unit by for example, using an RF data transmission protocol. The receiver may be operatively coupled to a glucose monitor that performs glucose related calculations and data analysis.


The transmitter may be mounted or adhered to the skin of a patient and also in signal communication with the sensor. Generally, the sensor is configured to detect the analyte of the patient over a predetermined period of time, and the transmitter is configured to transmit the detected analyte information over the predetermined period of time for further analysis. To initially deploy the sensor so that the sensor contacts and electrodes are in fluid contact with the patient's analyte fluids, a separate deployment mechanism such as a sensor inserter or introducer is used. Moreover, a separate base component or mounting unit is provided on the skin of the patient so that the transmitter unit may be mounted thereon, and also, to establish signal communication between the transmitter unit and the analyte sensor.


As discussed above, the base component or mounting unit is generally adhered to the skin of the patient using an adhesive layer that is fixedly provided on the bottom surface of the base component or the mounting unit for the transmitter.


To minimize data errors in the continuous or semi-continuous monitoring system, it is important to properly insert the sensor through the patient's skin and securely retain the sensor during the time that the sensor is configured to detect analyte levels. In addition to accurate positioning of the sensor through the skin of the patient, it is important to ensure that the appropriate electrode of the analyte sensor are in continuous and proper electrical connection or communication with the corresponding contact points or pads on the transmitter unit.


Additionally, for the period of continuous or semi-continuous monitoring which can include, for example, 3 days, 5 days or 7 days, it is important to have the transmitter unit securely mounted to the patient, and more importantly, in proper contact with the analyte sensor so as to minimize the potential errors in the monitored data.


In view of the foregoing, it would be desirable to have an approach to provide methods and system for accurate and simple ways in which to securely couple the analyte sensor with the transmitter unit so as to maintain continuous electrical connection therebetween. Moreover, it would be desirable to have methods and system for easy deployment of sensors and subsequent simple removal of the same in a time effective and straight forward manner.


SUMMARY

In accordance with the various embodiments of the present invention, there is provided method and system for providing analyte sensor alignment and retention mechanism for improved connectivity with a transmitter unit for electrical connection, and further including transmitter unit contact pins with metal components to improve electrical conductivity with the analyte sensor in an analyte monitoring and management system.


These and other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a data monitoring and management system in accordance with one embodiment of the present invention;



FIGS. 2A-2D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with one embodiment of the present invention;



FIGS. 3A-3D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with another embodiment of the present invention;



FIGS. 4A-4E illustrate various views of the analyte sensor latch configuration in accordance with one embodiment of the present invention;



FIGS. 5A-5C illustrate various views of the analyte sensor latch configuration in accordance with another embodiment of the present invention;



FIGS. 6A-6D illustrate various views of the analyte sensor latch configuration in accordance with yet another embodiment of the present invention;



FIGS. 7A-7E illustrate a transmitter unit interconnect configuration in accordance with one embodiment of the present invention; and



FIGS. 8A-8C illustrate a polymer pin with contact cap of the transmitter unit interconnect shown in FIGS. 7A-7E in one embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1 illustrates a data monitoring and management system such as, for example, an analyte monitoring and management system 100 in accordance with one embodiment of the present invention. In such embodiment, the glucose monitoring system 100 includes a sensor 101, a transmitter unit 102 coupled to the sensor 101, and a receiver unit 104 which is configured to communicate with the transmitter 102 via a communication link 103. The receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the receiver unit 104. In addition, as shown in the Figure, a medication delivery unit 106 may be provided and operatively coupled to the receiver unit 104 and configured to receive one or more of data or commands directed to the control of the medication delivery unit 106 for delivering medication to a patient such as insulin.


Only one sensor 101, transmitter unit 102, communication link 103, receiver unit 104, data processing terminal 105, and medication delivery unit 106 are shown in the embodiment of the analyte monitoring and management system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the glucose monitoring system 100 may include one or more sensor 101, transmitter unit 102, communication link 103, receiver unit 104, and data processing terminal 105, where each receiver unit 104 is uniquely synchronized with a respective transmitter unit 102 to deliver medication through the medication delivery unit 106 such as an infusion pump. Moreover, within the scope of the present invention, the analyte monitoring and management system 100 may be a continuous monitoring and management system, or a semi-continuous or discrete monitoring and management system.


In one embodiment of the present invention, the sensor 101 is physically positioned on the body of a user whose glucose level is being monitored. The sensor 101 may be configured to continuously sample the glucose level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In one embodiment, the transmitter unit 102 is mounted on the sensor 101 so that both devices are positioned on the user's body. The transmitter unit 102 performs data processing such as filtering and encoding on data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the receiver unit 104 via the communication link 103.


In one embodiment, the analyte monitoring and management system 100 is configured as a one-way RF communication path from the transmitter unit 102 to the receiver unit 104. In such embodiment, the transmitter unit 102 transmits the sampled data signals received from the sensor 101 without acknowledgement from the receiver unit 104 that the transmitted sampled data signals have been received. For example, the transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring and management system 100 may be configured with a bi-directional RF communication between the transmitter unit 102 and the receiver unit 104.


Additionally, in one aspect, the receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the receiver unit 104 is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.


In operation, upon completing the power-on procedure, the receiver unit 104 is configured to detect the presence of the transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the transmitter unit 102 or a predetermined transmitter identification information. Upon successful synchronization with the corresponding transmitter unit 102, the receiver unit 104 is configured to begin receiving from the transmitter unit 102 data signals corresponding to the user's detected glucose level. More specifically, the receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.


Referring again to FIG. 1, the data processing terminal 105 may include a desktop computer terminal, a data communication enabled kiosk, a laptop computer, a handheld computing device such as a personal digital assistant (PDAs), or a data communication enabled mobile telephone, and the like, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected glucose level of the user. In addition, the data processing terminal 105 in one embodiment may include physician's terminal and/or a bedside terminal in a hospital environment, for example.


Moreover, the medication delivery unit 106 may include an infusion device such as an insulin infusion pump, which may be configured to administer insulin to patients, and which is configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected glucose levels received from the transmitter unit 102. Referring again to FIG. 1, the medication delivery unit 106 may include, but is not limited to, an external infusion device such as an external insulin infusion pump, an implantable pump, a pen-type insulin injector device, a patch pump, an inhalable infusion device for nasal insulin delivery, or any other type of suitable delivery system.


Each of the transmitter unit 102, the receiver unit 104, the data processing unit 105, and the medication delivery unit 106 may be configured to communicate with each other over a wireless data communication link similar to the communication link 103 such as, but not limited to, RF communication link, Bluetooth® communication link, infrared communication link, or any other type of suitable wireless communication connection between two or more electronic devices. The data communication link may also include wired cable connection such as, for example, but not limited to, RS232 connection, USB connection, or serial cable connection.


Moreover, referring to FIG. 1, the analyte sensor 101 may include, but is not limited to, short term subcutaneous analyte sensors or transdermal analyte sensors, for example, which are configured to detect analyte levels of a patient over a predetermined time period.


Additional analytes that may be monitored, determined or detected by the analyte sensor 101 include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be determined.



FIGS. 2A-2D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with one embodiment of the present invention. Referring to FIG. 2A, a transmitter unit 102 (FIG. 1) housing 210 is provided with a protrusion 220 substantially on the same side as the location of a plurality of transmitter contacts 230A, 230B, 230C, 230D, each of which are configured to couple to a respective segment of an analyte sensor 250 (FIG. 2B).


That is, when the transmitter unit housing 210 is positioned on an adhesive layer 240 for adhesion to a skin surface of a patient, the protrusion 220 of the transmitter unit housing 210 is configured to correspondingly mate with a notch or hole 260 on the surface of the analyte sensor 250 such that during the process of placing and guiding the transmitter unit on the adhesive layer 240 (and upon a transmitter mounting unit 270 (FIG. 2C)), it is possible to accurately position and align the transmitter contacts 230A, 230B, 230C, and 230D and to electrically couple to a respective one of the working electrode, the counter electrode, the reference electrode, and a guard trace, provided on the analyte sensor 250. Referring to FIGS. 2C and 2D, side cross sectional view of the transmitter contacts before and after alignment and engagement with the analyte sensor 250, respectively, are shown.


In the manner described above, in one embodiment of the present invention, there is provided a protrusion 220 on the transmitter unit housing 210 which is configured to mate with a notch or hole 260 on the analyte sensor 250 such that substantially accurate positioning and alignment of the analyte sensor 250 with respect to the transmitter unit 102 may be provided.



FIGS. 3A-3D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with another embodiment of the present invention. Referring to FIGS. 3A-3B, it can be seen that the analyte sensor 330 is provided with a seal 340 having a plurality of substantially circular lead-in segments 341A, 341B, 341C, 341D, each provided substantially respectively on one of the working electrode, counter electrode, reference electrode, and the guard trace of the analyte sensor 330. Moreover, referring to FIG. 3C, the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit housing 310 is each configured in substantially tapered manner extending outwards and away from the transmitter unit housing 310.


In this manner, in one embodiment of the present invention, when after analyte sensor 330 has been subcutaneously positioned through the skin of the patient, the transmitter unit housing 310 may be configured to mate with the transmitter mount unit 360 provided on the adhesive layer 320 such that the electrical contact pins 350A, 350B, 350C, 350D guided by the respective lead-in segments 341A, 341B, 341C, 341D on the sensor seal 340 such that the proper alignment of the sensor electrodes and guard trace are provided to the respective electrical contact pins 350A, 350B, 350C, 350D to establish electrical contacts with the same.



FIG. 3D illustrates a side cross sectional view of the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 coupled to the respective lead-in segments 341A, 341B, 341C, 341D on the sensor seal 340 to establish electrical contact between the transmitter unit 102 (FIG. 1) and the analyte sensor 101. In one embodiment, the sensor seal 340 is provided on the analyte sensor 330 during the sensor manufacturing process, and as such, it is possible to achieve a high degree of accuracy in positioning the seal 340, and further, to obtain a substantially concentric lead-in segments 341A, 341B, 341C, 341D as shown, for example, in FIG. 3B, such that when the tip portion of the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 are positioned within the concentric lead-in segments 341A, 341B, 341C, 341D, the proper alignment of the sensor contact pads or electrodes and guard trace with the respective electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 can be achieved.


Referring back to FIG. 3B, the seal 340 on the analyte sensor 330 may be provided during the manufacturing process of the sensor 330 and as such, pre-bonded to the sensor 330. In this manner, accurate alignment of the analyte sensor 330 with the transmitter unit 102 with a degree of tolerating potential misalignment of the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 may be tolerated given the concentric shape of the lead-in segments 341A, 341B, 341C, 341D on the seal 340 of the analyte sensor 330.



FIGS. 4A-4E illustrate various views of the analyte sensor latch configuration in accordance with one embodiment of the present invention. Referring to FIG. 4A, there is shown a sensor 410 having an upper flap portion 412 and a lower flap portion 411. The lower flap portion of the sensor 410 is configured in one embodiment to retain the sensor in proper position within a sharp or introducer 430 (FIG. 4B) of an insertion mechanism 420 (FIG. 4B) so as to minimize the potential sensor displacement prior to positioning the sensor in fluid contact with the patient's analytes using the insertion mechanism 420.


Referring back to FIG. 4A, the upper flap portion 412 of the sensor 410 is configured in one embodiment to facilitate the removal of the sensor 410 after its intended use (for example, 3 days, 5 days or 7 days), by providing an area which may be manually manipulated for removal from the inserted position in the patient. In one embodiment, the upper flap portion 412 and the lower flap portion 411 are extended in opposite directions relative to the body of the analyte sensor 410. This configuration further provides secure sensor positioning during the sensor insertion process such that the sensor movement when coupled to the introducer 430 is minimized. FIG. 4C illustrates the transmitter mount 440 in cooperation with the insertion mechanism 420 having the sensor 410 loaded in the introducer 430 before the sensor is placed in the patient. FIGS. 4D and 4E illustrate the insertion mechanism 420 coupled with the transmitter mount 440 after the insertion mechanism has deployed the introducer 430 so as to place at least a portion of the sensor 410 in fluid contact with the patient's analytes.



FIGS. 5A-5C illustrate various views of the analyte sensor latch configuration in accordance with another embodiment of the present invention. Referring to FIGS. 5A-5C, transmitter mount 520 is provided with a plurality of hooks (or barbs) 521A, 521B, each of which are configured to mate with a corresponding one of a plurality of open segments 511A, 511B on the sensor 510. During deployment of the sensor 510 for example, using an insertion mechanism 550 having an introducer 540 coupled to the sensor 510, the sensor 510 is positioned relative to the transmitter mount 520 such that the open segments 511A, 511B of the sensor 510 are coupled or latched with the respective hook/latch 521A, 521B on the transmitter mount 520, to securely retain the sensor 510 in position relative to the transmitter unit 102 being mounted on the transmitter mount 520 to couple to the sensor 510.


In one embodiment, the plurality of hooks/barbs 521A, 521B on the transmitter mount 520 are provided as molded plastic protrusions on the transmitter mount 520. Upon engaging with the respective open segments 511A, 511B on the sensor 510, it can be seen that the sensor 510 is retained substantially in a fixed position relative to the transmitter mount 520 (which is in turn, fixedly positioned on the patient's skin by the adhesive layer 530), so that proper alignment and coupling with the respective electrical contact pins on the transmitter unit 102 may be achieved.



FIGS. 6A-6D illustrate various views of the analyte sensor latch configuration in accordance with yet another embodiment of the present invention. Referring to FIG. 6A illustrating a component view of the latch configuration, there is provided a transmitter mount 620, adhesive layer 610, a retaining segment 630 having a plurality of clip portions 631A, 631B, and a mounting segment 640. Referring to FIG. 6B, it can be seen that the retaining segment 630 is positioned on the transmitter mount 620 with the mounting segment provided thereon. Moreover, the transmitter mount is provided on the adhesive layer 610, which is in turn, placed on the patient's skin and adhered thereto for secure positioning.


Referring to FIGS. 6C-6D, in one embodiment, the clip portions 631A, 631B of the retaining segment 630 are each spring biased and configured for spring loading the sensor 650 in the direction towards the electrical contact pins of the transmitter unit 102, thus facilitating the sensor (650)—transmitter (670) connection. Moreover, the clip portions 631A, 631B are further configured to provide a latch/locking mechanism of the subcutaneously positioned sensor 650 relative to the transmitter mount 620, such that the sensor 650 is held firmly in place.


In the manner described above, in accordance with the various embodiments of the present invention, there are provided different mechanisms for sensor alignment relative to the transmitter electrical contact pins to effectively couple the sensor contacts (working, reference and counter electrodes and the guard trace), with the corresponding electrical contact pads or connections on the transmitter unit 102. Moreover, as further described above, in accordance with the various embodiments of the present invention, there are provided mechanism for sensor retention and secure positioning relative to the transmitter mount which is placed on the patient's skin such that the transmitter unit 102 may be easily and accurately guided to establish proper connection with the sensor 101.



FIGS. 7A-7E illustrate a transmitter unit interconnect configuration in accordance with one embodiment of the present invention. More specifically, FIGS. 7A-7E show various different perspectives and views of the transmitter unit housing 710 that includes a plurality of electrical contact pins 711A, 711B, 711C, 711D, each configured to establish electrical connection to a respective portion of the analyte sensor 720. As discussed below, each of the electrical contact pins 711A, 711B, 711C, 711D in one embodiment includes a polymer pin with a contact cap that provides improved electrical conductivity between the transmitter unit 102 and the sensor 101.



FIGS. 8A-8C illustrate a polymer pin with contact cap of the transmitter unit interconnect shown in FIGS. 7A-7E in one embodiment of the present invention. As shown in FIGS. 8A-8C, contact pin 800 includes an outer body portion 810 and an inner contact portion 820 with an end segment 821. In one embodiment, the inner contact portion 820 is configured to substantially entirely be positioned within the outer body portion 810 (as shown in FIG. 8A), except for the end segment 821 of the inner contact portion 820 extending out of one end of the outer body portion 810.


In one embodiment, the outer body portion 810 may be injection molded using a silicone based, carbon loaded (impregnated, for example) soft polymer material. Furthermore, the end segment 821 and the inner contact portion 820 comprise a metal such as for example, Beryllium copper (BeCu), Nickel Silver, Phosphor Bronze Brass, Rhodium or gold plated to provide improved electrical conductivity. More specifically, the inner contact portion 820 placed within the outer body portion 810 may comprise a light gauge wire (such as 30 g), and may be insert molded into the outer body portion 810.


In this manner, the contact pin 800 in one embodiment includes a carbon loaded, silicone based, injection molded soft polymer pin with a metal cap or end segment 821 which is shaped and positioned to cover substantially a large portion of the contact area where the sensor contact is to occur. Moreover, the metal inner contact portion 820 extending the length of the outer body portion 810 of the contact pin 800 further improves electrical conductivity. Moreover, a metal end segment 821 provides additional resistance to wear over a prolonged use based on repeated contact with other surfaces (for example, sensor surfaces).


Accordingly, in one aspect of the present invention, the transmitter unit 102 may be provided with a plurality of contact pins 800 that have a large metal sensor contact surface to increase the electrical conductivity with the sensor. In addition, the metal contact surface may provide improved resistance to abrasion, wear and damage to the end segment 821 of the contact pin 800. In addition, the contact pin 800 configuration described above also provides flexibility, desired compliance and self-sealing capability, and further, may be press fit into the transmitter housing. Further, the contact pins 800 may additionally be chemically resistant, substantially water proof, and thus improve the transmitter unit 102 interconnect assembly life.


Accordingly, an apparatus for providing alignment in one embodiment of the present invention includes a sensor having a hole thereon, and a transmitter housing including a protrusion at a first end, the protrusion configured to substantially engage with the hole of the sensor such that the transmitter is in electrical contact with the sensor.


An apparatus for providing alignment in accordance with another embodiment of the present invention includes a sensor including a plurality of conductive pads, and a transmitter housing including a plurality of electrical contacts, each of the electrical contacts configured to substantially align with a respective one of the plurality of the conductive pads.


The apparatus may further include a seal segment adhered to the sensor, where the seal segment includes a plurality of radial seal holes disposed on the seal segment, and further, where each of the radial holes may be configured to receive a respective one of the plurality of electrical contacts.


In another aspect, each of the electrical contacts may be substantially tapered.


Moreover, the transmitter electrical contacts may be configured to self-align with a respective one of the conductive pads of the sensor when the transmitter is coupled to the sensor.


An apparatus for providing a sensor connection in a data monitoring system in accordance with yet another embodiment of the present invention includes a sensor having a plurality of conductive pads, and a transmitter housing, the housing including a plurality of electrical contacts, each of the contacts configured to substantially contact the respective one of the sensor conductive pads, where each of the plurality of electrical contacts include conductive polymer.


The electrical contacts in one embodiment may be silicon doped with carbon.


Moreover, the electrical contacts may be substantially conical shaped.


In another aspect, each of the electrical contacts may include a metal component disposed therein, wherein at least a first end of each of the electrical contacts is configured to substantially contact the respective one of the sensor conductive pads.


The metal component may include one of gold or beryllium copper.


An apparatus for providing a sensor connection in a data monitoring system in still another embodiment of the present invention includes a sensor having a plurality of conductive pads, a transmitter mount having a spring biased mechanism, and a transmitter housing, the housing including a plurality of electrical contacts, where each of the plurality of electrical contacts of the transmitter is configured to substantially contact the respective one of the sensor conductive pads by the spring biased mechanism of the transmitter housing.


In yet another aspect, the spring biased mechanism of the transmitter mount may include a tapered cantilever beam disposed on the transmitter mount.


An apparatus for positioning a sensor in a data monitoring system in yet still another embodiment of the present invention may include a sensor having a cutout portion, and a transmitter mount having a latch mechanism, the transmitter mount configured to couple to the sensor by the latch mechanism engaging the cutout portion of the sensor.


An apparatus for positioning a sensor in a data monitoring system in yet still a further embodiment of the present invention may include a sensor, and a transmitter mount, the transmitter including a latch mechanism, the latch mechanism configured to engage with the sensor for substantially permanently positioning the sensor relative to the transmitter.


Further, the latch mechanism may, in one embodiment, include a metal clip.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of applying a transmitter unit to a user, the method comprising: applying an assembly to a skin surface of the user, the assembly comprising an analyte sensor, an insertion mechanism, and a transmitter mount;positioning, with the insertion mechanism, a sensor body comprising an analyte sensor into the transmitter mount and causing the sensor body to couple with the transmitter mount by engaging a plurality of hooks with a plurality of open segments;removing the insertion mechanism from the transmitter mount after the plurality of hooks has engaged with the plurality of open segments; andwherein the plurality of hooks and the plurality of open segments are configured to securely retain the sensor body in a fixed position for proper alignment and electrical coupling with the transmitter unit.
  • 2. The method of claim 1, wherein positioning the sensor body into the transmitter mount further causes at least a portion of the analyte sensor to be placed in fluid contact with a bodily fluid of the user.
  • 3. The method of claim 1, wherein the transmitter mount is coupled to an adhesive layer, the adhesive layer configured to adhere to the skin surface of the user.
  • 4. The method of claim 1, wherein the plurality of hooks and the plurality of open segments form a latch interface configured to hold the sensor body in place relative to the transmitter mount.
  • 5. The method of claim 4, wherein the latch interface is located proximate to a bottom surface of the transmitter mount.
  • 6. The method of claim 1, wherein each of the plurality of hooks comprises a barb.
  • 7. The method of claim 1, wherein each of the plurality of hooks comprises a molded plastic protrusion.
  • 8. The method of claim 1, wherein the analyte sensor includes a plurality of conductive contacts and the transmitter unit includes a plurality of electrical contacts.
  • 9. The method of claim 8, wherein each of the plurality of electrical contacts aligns with a respective one of the conductive contacts when the transmitter unit is placed into the opening of the transmitter mount.
  • 10. The method of claim 9, wherein placing the transmitter unit into the opening of the transmitter mount further comprises placing each of the plurality of electrical contacts in substantial contact with the respective one of the plurality of conductive contacts.
  • 11. The method of claim 1, wherein the plurality of hooks is disposed on the transmitter mount, and wherein the plurality of open segments is disposed on the sensor body.
  • 12. The method of claim 1, wherein the plurality of hooks is disposed on the sensor body, and wherein the plurality of open segments is disposed on the transmitter mount.
  • 13. The method of claim 1, further comprising the transmitter unit transmitting sensor data to a receiver unit via a bi-directional radio frequency (RF) communication path.
  • 14. The method of claim 1, further comprising the transmitter unit transmitting sensor data to a receiver unit via a Bluetooth communication link.
  • 15. The method of claim 1, wherein the insertion mechanism comprises an introducer, and wherein the introducer is coupled with the analyte sensor.
  • 16. The method of claim 15, wherein the transmitter mount further comprises an aperture through which the introducer and the at least a portion of the analyte sensor pass.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/132,119, filed Apr. 18, 2016, which is a continuation of U.S. patent application Ser. No. 13/252,118, filed Oct. 3, 2011, now U.S. Pat. No. 9,364,149, which is a continuation of U.S. patent application Ser. No. 11/365,334, filed Feb. 28, 2006, now U.S. Pat. No. 8,029,441, all of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (845)
Number Name Date Kind
3581062 Aston May 1971 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4129128 McFarlane Dec 1978 A
4245634 Albisser et al. Jan 1981 A
4305401 Reissmueller et al. Dec 1981 A
4308981 Miura Jan 1982 A
4327725 Cortese et al. May 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4373527 Fischell Feb 1983 A
4392849 Petre et al. Jul 1983 A
4425920 Bourland et al. Jan 1984 A
4478976 Goertz et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4527240 Kvitash Jul 1985 A
4538616 Rogoff Sep 1985 A
4545382 Higgins et al. Oct 1985 A
4619793 Lee Oct 1986 A
4671288 Gough Jun 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4757022 Shults et al. Jul 1988 A
4759828 Young et al. Jul 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4854322 Ash et al. Aug 1989 A
4871351 Feingold Oct 1989 A
4890620 Gough Jan 1990 A
4925268 Iyer et al. May 1990 A
4953552 DeMarzo Sep 1990 A
4986271 Wilkins Jan 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5068536 Rosenthal Nov 1991 A
5082550 Rishpon et al. Jan 1992 A
5106365 Hernandez Apr 1992 A
5122925 Inpyn Jun 1992 A
5165407 Wilson et al. Nov 1992 A
5202261 Musho et al. Apr 1993 A
5205297 Montecalvo et al. Apr 1993 A
5246867 Lakowicz et al. Sep 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5279294 Anderson et al. Jan 1994 A
5285792 Sjoquist et al. Feb 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5372427 Padovani et al. Dec 1994 A
5379238 Stark Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5394877 Orr et al. Mar 1995 A
5402780 Faasse, Jr. Apr 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425868 Pedersen Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5462645 Albery et al. Oct 1995 A
5489414 Schreiber et al. Feb 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5532686 Urbas et al. Jul 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5628310 Rao et al. May 1997 A
5628324 Sarbach May 1997 A
5628890 Carter et al. May 1997 A
5634468 Platt et al. Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5653239 Pompei et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5673322 Pepe et al. Sep 1997 A
5707502 McCaffrey et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5724030 Urbas et al. Mar 1998 A
5733259 Valcke et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5749907 Mann May 1998 A
5771891 Gozani Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5804047 Karube et al. Sep 1998 A
5820551 Hill et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5875186 Belanger et al. Feb 1999 A
5891049 Cyrus et al. Apr 1999 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5935224 Svancarek et al. Aug 1999 A
5942979 Luppino Aug 1999 A
5951485 Cyrus et al. Sep 1999 A
5954643 VanAntwerp et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5995860 Sun et al. Nov 1999 A
6001067 Shults et al. Dec 1999 A
6022315 Iliff Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6032064 Devlin et al. Feb 2000 A
6049727 Crothall Apr 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6091987 Thompson Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6130623 MacLellan et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6141573 Kurnik et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6144871 Saito et al. Nov 2000 A
6144922 Douglas et al. Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6213972 Butterfield et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6233471 Berner et al. May 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6264810 Stol et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6291200 LeJeune et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6294997 Paratore et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6400974 Lesho Jun 2002 B1
6416471 Kumar et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6440068 Brown et al. Aug 2002 B1
6461496 Feldman et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6496729 Thompson Dec 2002 B2
6497655 Lindberg et al. Dec 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6540891 Stewart et al. Apr 2003 B1
6544212 Galley et al. Apr 2003 B2
6549796 Sohrab Apr 2003 B2
6551494 Heller et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561975 Pool et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6574510 Von Arx et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579231 Phipps Jun 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6635167 Batman et al. Oct 2003 B1
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6671534 Putz Dec 2003 B2
6675030 Ciurczak et al. Jan 2004 B2
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6698269 Baber et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6730200 Stewart et al. May 2004 B1
6731976 Penn et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6735183 O-Toole et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6743635 Neel et al. Jun 2004 B2
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6804558 Haller et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6814844 Bhullar et al. Nov 2004 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6923764 Aceti et al. Aug 2005 B2
6925393 Kalatz et al. Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6940403 Kail, IV Sep 2005 B2
6941163 Ford et al. Sep 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6975893 Say et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7009511 Mazar et al. Mar 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7024236 Ford et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7029444 Shin et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7043305 KenKnight et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7058453 Nelson et al. Jun 2006 B2
7060031 Webb et al. Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7082334 Boute et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7118667 Lee Oct 2006 B2
7125382 Zhou et al. Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7183102 Monfre et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7203549 Schommer et al. Apr 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7228182 Healy et al. Jun 2007 B2
7237712 DeRocco et al. Jul 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324850 Persen et al. Jan 2008 B2
7335294 Heller et al. Feb 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7347819 Lebel et al. May 2008 B2
7379765 Petisce et al. May 2008 B2
7384397 Zhang et al. Jun 2008 B2
7387010 Sunshine et al. Jun 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7419573 Gundel Sep 2008 B2
7424318 Brister et al. Sep 2008 B2
7429255 Thompson Sep 2008 B2
7448996 Khanuja et al. Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7476827 Bhullar et al. Jan 2009 B1
7492254 Bandy et al. Feb 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7565197 Haubrich et al. Jul 2009 B2
7569030 Lebel et al. Aug 2009 B2
7574266 Dudding et al. Aug 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7602310 Mann et al. Oct 2009 B2
7604178 Stewart Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7659823 Killian et al. Feb 2010 B1
7668596 Von Arx et al. Feb 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7741734 Joannopoulos et al. Jun 2010 B2
7775444 DeRocco et al. Aug 2010 B2
7779332 Karr et al. Aug 2010 B2
7780827 Bhullar et al. Aug 2010 B1
7782192 Jeckelmann et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7791467 Mazar et al. Sep 2010 B2
7792562 Shults et al. Sep 2010 B2
7831310 Lebel et al. Nov 2010 B2
7860574 Von Arx et al. Dec 2010 B2
7873299 Berner et al. Jan 2011 B2
7882611 Shah et al. Feb 2011 B2
7883464 Stafford Feb 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914460 Melker et al. Mar 2011 B2
7916013 Stevenson Mar 2011 B2
7920907 McGarraugh et al. Apr 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7955258 Goscha et al. Jun 2011 B2
7970448 Shults et al. Jun 2011 B2
7999674 Kamen Aug 2011 B2
8010174 Goode et al. Aug 2011 B2
8029441 Mazza et al. Oct 2011 B2
8072310 Everhart Dec 2011 B1
8090445 Ginggen Jan 2012 B2
8093991 Stevenson et al. Jan 2012 B2
8094009 Allen et al. Jan 2012 B2
8098159 Batra et al. Jan 2012 B2
8098160 Howarth et al. Jan 2012 B2
8098161 Lavedas Jan 2012 B2
8098201 Choi et al. Jan 2012 B2
8098208 Ficker et al. Jan 2012 B2
8102021 Degani Jan 2012 B2
8102154 Bishop et al. Jan 2012 B2
8102263 Yeo et al. Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103241 Young et al. Jan 2012 B2
8103325 Swedlow et al. Jan 2012 B2
8111042 Bennett Feb 2012 B2
8112240 Fennell Feb 2012 B2
8115488 McDowell Feb 2012 B2
8116681 Baarman Feb 2012 B2
8116683 Baarman Feb 2012 B2
8117481 Anselmi et al. Feb 2012 B2
8120493 Burr Feb 2012 B2
8124452 Sheats Feb 2012 B2
8130093 Mazar et al. Mar 2012 B2
8131351 Kalgren et al. Mar 2012 B2
8131365 Zhang et al. Mar 2012 B2
8131565 Dicks et al. Mar 2012 B2
8132037 Fehr et al. Mar 2012 B2
8135352 Langsweirdt et al. Mar 2012 B2
8136735 Arai et al. Mar 2012 B2
8138925 Downie et al. Mar 2012 B2
8140160 Pless et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8140299 Siess Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150516 Levine et al. Apr 2012 B2
8179266 Hermle May 2012 B2
8180423 Mang et al. May 2012 B2
8373544 Pitt-Pladdy Feb 2013 B2
8512243 Stafford Aug 2013 B2
8515518 Ouyang et al. Aug 2013 B2
8545403 Peyser et al. Oct 2013 B2
8585591 Sloan et al. Nov 2013 B2
8602991 Stafford Dec 2013 B2
8617071 Say et al. Dec 2013 B2
8622903 Jin et al. Jan 2014 B2
8628498 Safabash et al. Jan 2014 B2
8652043 Drucker et al. Feb 2014 B2
8684930 Feldman et al. Apr 2014 B2
8692655 Zimman et al. Apr 2014 B2
8771183 Sloan Jul 2014 B2
8797163 Finkenzeller Aug 2014 B2
8961413 Teller et al. Feb 2015 B2
9014774 Mao et al. Apr 2015 B2
9031630 Hoss et al. May 2015 B2
9060805 Goodnow et al. Jun 2015 B2
9066697 Peyser et al. Jun 2015 B2
20010037060 Thompson et al. Nov 2001 A1
20020019022 Dunn et al. Feb 2002 A1
20020057993 Maisey et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020111832 Judge Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020169635 Shillingburg Nov 2002 A1
20030788748 Blackwell et al. Dec 2002
20030004403 Drinan et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030032867 Ceothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030100821 Heller et al. May 2003 A1
20030144581 Conn Jul 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040039298 Abreu Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040073266 Haefner et al. Apr 2004 A1
20040078215 Dahlin et al. Apr 2004 A1
20040106858 Say et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040133164 Funderburk Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040152366 Schultz Aug 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004439 Shin et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096512 Fox et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050281234 Kawamura et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004270 Bedard et al. Jan 2006 A1
20060006141 Ufer et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060029177 Cranford, Jr. et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060202805 Schulman et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247710 Goetz et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060287691 Drew Dec 2006 A1
20070010950 Abensour et al. Jan 2007 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070055799 Koehler et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070071681 Gadkar et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070106135 Sloan et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070168224 Letzt et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070179349 Hoyme et al. Aug 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203539 Stone et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070231846 Cosentino et al. Oct 2007 A1
20070232880 Siddiqui et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244383 Talbot et al. Oct 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070285238 Batra Dec 2007 A1
20080004904 Tran Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080057484 Miyata et al. Mar 2008 A1
20080058626 Miyata et al. Mar 2008 A1
20080058678 Miyata et al. Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064943 Talbot et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080114228 McCluskey et al. May 2008 A1
20080119705 Patel et al. May 2008 A1
20080125636 Ward et al. May 2008 A1
20080127052 Rostoker May 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080167543 Say et al. Jul 2008 A1
20080167572 Stivoric et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080235469 Drew Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080255434 Hayter et al. Oct 2008 A1
20080255437 Hayter Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080255808 Hayter Oct 2008 A1
20080256048 Hayter Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287762 Hayter Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080288180 Hayter Nov 2008 A1
20080288204 Hayter et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312518 Jina et al. Dec 2008 A1
20080312841 Hayter Dec 2008 A1
20080312842 Hayter Dec 2008 A1
20080312844 Hayter et al. Dec 2008 A1
20080312845 Hayter et al. Dec 2008 A1
20090005665 Hayter et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018425 Ouyang et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090033482 Hayter et al. Feb 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090055149 Hayter et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062767 VanAntwerp et al. Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105554 Stahman et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112478 Mueller, Jr. et al. Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198118 Hayter et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090234200 Husheer Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090267765 Greene et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090289796 Blumberg Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100146300 Brown Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160760 Shults et al. Jun 2010 A1
20100161269 Kamath et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168540 Kamath et al. Jul 2010 A1
20100168541 Kamath et al. Jul 2010 A1
20100168542 Kamath et al. Jul 2010 A1
20100168543 Kamath et al. Jul 2010 A1
20100168544 Kamath et al. Jul 2010 A1
20100168546 Kamath et al. Jul 2010 A1
20100168547 Kamath et al. Jul 2010 A1
20100168645 Kamath et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179399 Goode et al. Jul 2010 A1
20100179400 Brauker et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179405 Goode et al. Jul 2010 A1
20100179407 Goode et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185073 Goode et al. Jul 2010 A1
20100185074 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100190435 Cook et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20110004276 Blair et al. Jan 2011 A1
20110046977 Goodnow et al. Feb 2011 A1
20110145172 Petisce et al. Jun 2011 A1
20110152637 Kateraas et al. Jun 2011 A1
20120190989 Kaiser et al. Jul 2012 A1
Foreign Referenced Citations (12)
Number Date Country
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
1669020 Jun 2006 EP
1729128 Dec 2006 EP
WO-2000059370 Oct 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2003082091 Oct 2003 WO
WO-2008001366 Jan 2008 WO
Non-Patent Literature Citations (68)
Entry
Armour, J.C. et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs,” Diabetes, vol. 39, 1990, pp. 1519-1526.
Bennion, N. et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Blank, T.B. et al., “Clinical Results from a Non-Invasive Blood Glucose Monitor,” Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Brooks, S.L. et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring,” Biosensors, vol. 3, 1987/88, pp. 45-56.
Bühling et al., Journal of Perinatal Medicine, 2005, vol. 33, pp. 125-131.
Cass, A.E. et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose,” Analytical Chemistry, vol. 56, No. 4, 1984, pp. 667-671.
Cheyne, E.H. et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers,” Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Csoegi, E. et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase,” Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Cullen, M.T., et al., “The Changing Presentations of Diabetic Ketoacidosis During Pregnancy”, Amer. J. Perinatol, 1996, vol. 13, No. 7, pp. 449-451 (abstract only).
Feldman, B. et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B. et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change,” Abbott Diabetes Case, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R. et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, P.C., “Peripheral Circulation,” John Wiley & Sons, 1978, pp. 198.
Jovanovic, Diabetes Technology & Therapeutics, 2000, vol. 2, Supplement 1, pp. S-67-71.
Jungheim, K. et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?” 2002, pp. 250.
Jungheim, K. et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lodwig, V. et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria,” Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Lortz, J. et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Malin, S.F. et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy,” Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
McGarraugh, G. et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger,” TheraSense, Inc., 2001, 16 pages.
McGarraugh, G. et al., “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D. et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Morbiducci, U. et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic algorithms for Parameter Estimation,” Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients,” Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Pickup, J. et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy,” Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J. et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer,” Diabetologia, vol. 32, 1989, pp. 213-217.
Parker, R. et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model,” AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pishko, M.V. et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels,” Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Quinn, C.P. et al., Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors, The American Physiological Society, 1995, E155-E161.
Roe, J.N. et al., “Bloodless Glucose Measurements,” Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M. et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentration,” Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M. et al., “Ferrocene-Medicated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane,” Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C. et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidtke, D.W. et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin,” Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W. et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M. et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M. et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M. et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor,” Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M. et al., “Needle-Type Glucose Sensor for Wearable Artificial Endocrine Pancreas,” Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M. et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M. et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, 1982, pp. 1129-1131.
Shults, M. C. et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R. et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M. et al., “In Vivo Probes: Problems and Perspectives,” Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A. et al., “Diabetes Mellitus: Biosensors for Research and Management,” Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J. et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G. et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wang et al., Journal of the Shanghai Medical University, 2000, vol. 27, pp. 393-395 (Abstract).
Wilson, G.S. et al., “Progress Toward the Development of an Implantable Sensor for Glucose,” Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Chinese Patent Application No. 200880005149.1, Notification of Granting a Patent Right for an Invention dated Jun. 21, 2013.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Aug. 17, 2011.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Dec. 3, 2012.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Feb. 16, 2012.
Chinese Patent Application No. 200880005149.1, Original Language and English Translation of Office Action dated Jul. 29, 2010.
PCT Application No. PCT/US2008/054165, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 27, 2009.
PCT Application No. PCT/US2008/054165, International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2008.
PCT Application No. PCT/US2008/067791, International Search Report and Written Opinion of the International Searching Authority dated Sep. 29, 2008.
PCT Application No. PCT/US2008/067791, International Search Report on Patentability and Written Opinion of the International Searching Authority dated Jan. 7, 2010.
Russian Patent Application No. 2009134334, Original Language and English Translation of Office Action dated Feb. 7, 2012.
U.S. Appl. No. 12/031,664, Advisory Action dated Oct. 19, 2010.
U.S. Appl. No. 12/031,664, Notice of Allowance dated Oct. 24, 2011.
U.S. Appl. No. 12/031,664, Office Action dated Aug. 2, 2010.
U.S. Appl. No. 12/031,664, Office Action dated Feb. 19, 2010.
U.S. Appl. No. 12/031,664, Office Action dated Mar. 18, 2011.
U.S. Appl. No. 13/400,026, Notice of Allowance dated Jan. 22, 2013.
U.S. Appl. No. 13/400,026, Office Action dated Sep. 17, 2012.
Related Publications (1)
Number Date Country
20190209058 A1 Jul 2019 US
Continuations (3)
Number Date Country
Parent 15132119 Apr 2016 US
Child 16210965 US
Parent 13252118 Oct 2011 US
Child 15132119 US
Parent 11365334 Feb 2006 US
Child 13252118 US