The present invention relates to an in vitro method for identifying agents capable of inducing sensitization of human skin and arrays and analytical kits for use in such methods.
Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. It is commonly caused by immunological responses towards chemical haptens leading to substantial economic burden for society. Current tests for sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within, e.g. the pharmaceutical and cosmetic industries, have stimulated significant research efforts to develop alternative human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power.
Allergic contact dermatitis (ACD) is a common inflammatory skin disease characterized by eczema and recurrent episodes of itching [1]. The disease affects a significant proportion of the population, with prevalence rates of 7.2% to 18.6% in Europe [2, 3], and the incidence is increasing due to repeated exposure to sensitizing chemicals. ACD is a type IV delayed-type hypersensitivity response caused mainly by reactive T helper 1 (Th1) and interferon (IFN)γ producing CD8+ T cells at site of contact with small chemical haptens in previously exposed, and immunologically sensitized, individuals [4]. Dendritic cells (DC) in the epidermis initiate the immune reactions by responding to haptens bound to self-molecules and activating T cell-mediated immunity.
The REACH (Registration, Evaluation, and Authorisation of Chemicals) regulation requires that all new and existing chemicals within the European Union, involving approximately 30 000 chemicals, should be tested for hazardous effects [5]. As the identification of potential sensitizers currently requires animal testing, the REACH legislation will have a huge impact on the number of animals needed for testing. Further, the 7th Amendment to the Cosmetics Directive (76/768/EEC) posed a ban on animal tests for the majority of cosmetic ingredients for human use, to be in effect by 2009, with the exceptions of some tests by 2013. Thus, development of reliable in vitro alternatives to experimental animals for the assessment of sensitizing capacity of chemicals is urgent. To date, no non-animal replacements are available for identification of skin sensitizing chemicals, instead the preferred assay is the mouse Local Lymph Node Assay (LLNA) [6], followed by the Guinea pig maximization test (GPMT) [7]. An in vitro alternative to these animal models would preferably exhibit improved reliability, accuracy and importantly correlate to human reactivity.
Dendritic cells (DCs) play key roles in the immune response by bridging the essential connections between innate and adaptive immunity. They can, upon triggering, rapidly produce large amounts of mediators, which influence migration and activation of other cells at the site of inflammation, and selectively respond to various pathogens and environmental factors, by fine-tuning the cellular response through antigen-presentation. Thus, exploring and utilizing the immunological decision-making by DCs during stimulation with sensitizers, could serve as a potent test strategy for prediction of sensitization.
However, multifaceted phenotypes and specialized functions of different DC subpopulations, as well as their wide and scarce distribution, are complicating factors, which impede the employment of primary DCs as a test platform. Hence, there is a real need to establish accurate and reliable in vitro assays that also circumvent the problems associated with variability of and difficulty in obtaining DCs.
Thus, the development of assays based on the predictability of DC function should preferably rely on alternative cell types or mimics of in vivo DCs. For this purpose, a cell line with DC characteristics would be advantageous, as it constitutes a stable, reproducible and unlimited supply of cells. In terms of DC mimics, differentiated myelomonocytic MUTZ-3 cells are by far the preferred candidate [8]. MUTZ-3 is as an unlimited source of CD34+ DC progenitors and it can acquire, upon cytokine stimulation, phenotypes similar to immature DCs or Langerhans-like DCs [9], present antigens through CD1d, MHC class I and II and induce specific T-cell proliferation [8]. MUTZ-3 also displays a mature transcriptional and phenotypic profile upon stimulation with inflammatory mediators [10].
The present inventors have developed a novel test principle for prediction of skin sensitizers. It has surprisingly been found that skin sensitizers can be accurately identified/predicted using DC progenitor cells, such as MUTZ-3 cells, without further differentiation in a process whereby the cells are stimulated with a panel of sensitizing chemicals, non-sensitizing chemicals, and/or other controls (e.g. vehicle controls comprising diluent only, such as DMSO and/or distilled water). This was found to substantially simplify and improve the reproducibility of the procedure.
The transcriptional response to chemical stimulation was assessed with genome-wide profiling. From data analysis, a biomarker signature of 200 transcripts was identified which completely separated the transcriptional response induced by sensitizing chemicals vs. non-sensitizing chemicals and vehicle controls. Further, the potent predictive power of the signature was illustrated, using SVM and ROC curve analysis. The biomarker signature include transcripts involved in relevant biological pathways, such as DC maturation and cytokine responses, which may shed light on the molecular interactions involved in the process of sensitization. In conclusion, a biomarker signature with potent predictive power, which represents a compelling readout for an in vitro assay useful for the identification of human sensitizing chemicals has been identified.
Hence, a first aspect of the present invention provides an in vitro method for identifying agents capable of inducing sensitization of mammalian skin comprising or consisting of the steps of:
wherein the expression in the cells of the one or more biomarkers measured in step (b) is indicative of the sensitizing effect of the test agent.
By “agents capable of inducing sensitization of mammalian skin” we mean any agent capable of inducing and triggering a Type IV delayed-type hypersensitivity reaction in a mammal. Preferably, the Type IV delayed-type hypersensitivity reaction is DC-mediated.
In one embodiment, the “agents capable of inducing sensitization of mammalian skin” is an agent capable of inducing and triggering a Type IV delayed-type hypersensitivity reaction at a site of epidermal contact in a mammal.
The mammal may be any domestic or farm animal. Preferably, the mammal is a rat, mouse, guinea pig, cat, dog, horse or a primate. Most preferably, the mammal is human. As discussed above, in vivo methods of determining sensitisation are known in the art. A preferred method is the Local lymph node assay (for details, see Basketter, D. A., et al., Local lymph node assay—validation, conduct and use in practice. Food Chem Toxicol, 2002. 40(5): p. 593-8). A further suitable, but less preferred, method is the guinea pig maximization test (for details, see Magnusson, B. and A. M. Kligman, The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol, 1969. 52(3): p. 268-76).
By “dendritic-like cells” we mean non-dendritic cells that exhibit functional and phenotypic characteristics specific to dendritic cells such as morphological characteristics, expression of costimulatory molecules and MHC class II molecules, and the ability to pinocytose macromolecules and to activate resting T cells.
In one embodiment, the dendritic-like cells are CD34+ dendritic cell progenitors. Optionally, the CD34+ dendritic cell progenitors can acquire, upon cytokine stimulation, the phenotypes of presenting antigens through CD1d, MHC class I and II, induce specific T-cell proliferation, and/or displaying a mature transcriptional and phenotypic profile upon stimulation with inflammatory mediators (i.e. similar phenotypes to immature dendritic cells or Langerhans-like dendritic cells).
Dendritic cells may be recognized by function, by phenotype and/or by gene expression pattern, particularly by cell surface phenotype. These cells are characterized by their distinctive morphology, high levels of surface MHC-class II expression and ability to present antigen to CD4+ and/or CD8+ T cells, particularly to naïve T cells (Steinman et al. (1991) Ann. Rev. Immunol. 9: 271).
The cell surface of dendritic cells is unusual, with characteristic veil-like projections, and is characterized by expression of the cell surface markers CD11c and MHC class II. Most DCs are negative for markers of other leukocyte lineages, including T cells, B cells, monocytes/macrophages, and granulocytes. Subpopulations of dendritic cells may also express additional markers including 33D1, CCR1, CCR2, CCR4, CCR5, CCR6, CCR7, CD1a-d, CD4, CD5, CD8alpha, CD9, CD11b, CD24, CD40, CD48, CD54, CD58, CD80, CD83, CD86, CD91, CD117, CD123 (IL3Ra), CD134, CD137, CD150, CD153, CD162, CXCR1, CXCR2, CXCR4, DCIR, DC-LAMP, DC-SIGN, DEC205, E-cadherin, Langerin, Mannose receptor, MARCO, TLR2, TLR3 TLR4, TLR5, TLR6, TLR9, and several lectins.
The patterns of expression of these cell surface markers may vary along with the maturity of the dendritic cells, their tissue of origin, and/or their species of origin. Immature dendritic cells express low levels of MHC class II, but are capable of endocytosing antigenic proteins and processing them for presentation in a complex with MHC class II molecules. Activated dendritic cells express high levels of MHC class 11, ICAM-1 and CD86, and are capable of stimulating the proliferation of naive allogeneic T cells, e. g. in a mixed leukocyte reaction (MLR).
Functionally, dendritic cells or dendritic-like cells may be identified by any convenient assay for determination of antigen presentation. Such assays may include testing the ability to stimulate antigen-primed and/or naive T cells by presentation of a test antigen, followed by determination of T cell proliferation, release of IL-2, and the like.
By “expression” we mean the level or amount of a gene product such as mRNA or protein.
Methods of detecting and/or measuring the concentration of protein and/or nucleic acid are well known to those skilled in the art, see for example Sambrook and Russell, 2001, Cold Spring Harbor Laboratory Press.
Preferred methods for detection and/or measurement of protein include Western blot, North-Western blot, immunosorbent assays (ELISA), antibody microarray, tissue microarray (TMA), immunoprecipitation, in situ hybridisation and other immunohistochemistry techniques, radioimmunoassay (RIA), immunoradiometric assays (IRMA) and immunoenzymatic assays (IEMA), including sandwich assays using monoclonal and/or polyclonal antibodies. Exemplary sandwich assays are described by David et al., in U.S. Pat. Nos. 4,376,110 and 4,486,530, hereby incorporated by reference. Antibody staining of cells on slides may be used in methods well known in cytology laboratory diagnostic tests, as well known to those skilled in the art.
Typically, ELISA involves the use of enzymes which give a coloured reaction product, usually in solid phase assays. Enzymes such as horseradish peroxidase and phosphatase have been widely employed. A way of amplifying the phosphatase reaction is to use NADP as a substrate to generate NAD which now acts as a coenzyme for a second enzyme system. Pyrophosphatase from Escherichia coli provides a good conjugate because the enzyme is not present in tissues, is stable and gives a good reaction colour. Chemi-luminescent systems based on enzymes such as luciferase can also be used.
Conjugation with the vitamin biotin is frequently used since this can readily be detected by its reaction with enzyme-linked avidin or streptavidin to which it binds with great specificity and affinity.
Preferred methods for detection and/or measurement of nucleic acid (e.g. mRNA) include southern blot, northern blot, polymerase chain reaction (PCR), reverse transcriptase PCR (RT-PCR), quantitative real-time PCR (qRT-PCR), nanoarray, microarray, macroarray, autoradiography and in situ hybridisation.
In one embodiment the method comprises exposing a separate population of the dendritic cells or dendritic-like cells to a negative control agent that does not sensitize human skin, and measuring in the cells the expression of the one or more biomarker(s) measured in step (b). Hence, a sensitizing effect of the test agent is indicated in the event that the expression in the cell population of the one or more biomarker(s) measured in step (b) is/are different from the expression in the negative control sample.
In one embodiment, the negative control agent is a solvent for use with the test or control agents of the invention. Hence, the negative control may be DMSO and/or distilled water.
In another embodiment, the expression of one or more biomarkers measured in step (b) of the dendritic cells or dendritic-like cells prior to test agent exposure is used as a negative control.
A further embodiment comprises exposing a separate population of the dendritic cells or dendritic-like cells to a positive control agent that sensitizes human skin and measuring in the cells the expression of the one or more biomarker(s) measured in step (b). Hence, a sensitizing effect of the test agent is indicated in the event that the expression in the cell population of the one or more biomarker(s) measured in step (b) is/are similar to or the same as the expression in the positive control sample.
Preferably the method comprises, in step (b), measuring the expression of at least one biomarker selected from the group consisting of:
Hence, in one embodiment the expression of taste receptor, type 2, member 5 (TAS2R5) is measured in step (b). In a further embodiment, in step (b), the expression of keratinocyte growth factor-like protein 1/2/hypothetical protein FLJ20444 (KGFLP1/2/FLJ20444) is measured. The method may comprise measuring the expression of transmembrane anterior posterior transformation 1 (TAPT1) in step (b). In one embodiment, the method comprises measuring the expression of sprouty homolog 2 (SPRY2) in step (b). However, a further embodiment the method, in step (b), comprises measuring the expression of fatty acid synthase (FASN). The method may comprise measuring the expression of B-cell CLL/lymphoma 7A (BCL7A) in step (b). It may also comprise measuring the expression of solute carrier family 25, member 32 (SLC25A32) in step (b). It may additionally comprise, in step (b), measuring the expression of ferritin, heavy polypeptide pseudogene 1 (FTHP1). A still further embodiment comprises measuring the expression of ATPase, H+transporting, lysosomal 50/57 kDa, V1 subunit H (ATP6V1H) in step (b). In another embodiment step (b) comprises measuring the expression of squalene epoxidase (SQLE). In yet another embodiment the expression of histone cluster 1, H1e (HIST1H1E) is measured in step (b).
The method may comprise or consist of measuring, in step (b), the expression of at least 2 biomarkers from Table 3A, for example, at least 3, 4, 5, 6, 7, 8, 9, 10 or 11 biomarkers from Table 3A. In a preferred embodiment, the method comprises or consists of measuring the expression of fatty acid synthase (FASN) and squalene epoxidase (SQLE) in step (b).
The method may additionally or alternatively comprise or consist of, measuring in step (b) the expression of at least 2 biomarkers from Table 3B, for example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, or at least 189 biomarkers from Table 3B.
Thus, the expression of all of the biomarkers in Table 3A and/or all of the biomarkers in Table 3B may be measured in step (b).
In a preferred embodiment, step (b) comprises or consists of measuring the expression of a nucleic acid molecule encoding the one or more biomarker(s). The nucleic acid molecule may be a cDNA molecule or an mRNA molecule. Preferably, the nucleic acid molecule is an mRNA molecule.
In one embodiment the expression of the one or more biomarker(s) in step (b) is performed using a method selected from the group consisting of Southern hybridisation, Northern hybridisation, polymerase chain reaction (PCR), reverse transcriptase PCR (RT-PCR), quantitative real-time PCR (qRT-PCR), nanoarray, microarray, macroarray, autoradiography and in situ hybridisation. Preferably, the expression of the one or more biomarker(s) is measured using a DNA microarray.
The method may comprise measuring the expression of the one or more biomarker(s) in step (b) using one or more binding moieties, each capable of binding selectively to a nucleic acid molecule encoding one of the biomarkers identified in Table 3. In one embodiment the one or more binding moieties each comprise or consist of a nucleic acid molecule. In a further embodiment the one or more binding moieties each comprise or consist of DNA, RNA, PNA, LNA, GNA, TNA or PMO. Preferably, the one or more binding moieties each comprise or consist of DNA. In one embodiment, the one or more binding moieties are 5 to 100 nucleotides in length. However, in an alternative embodiment, they are 15 to 35 nucleotides in length.
Suitable binding agents (also referred to as binding molecules) may be selected or screened from a library based on their ability to bind a given nucleic acid, protein or amino acid motif, as discussed below.
In a preferred embodiment, the binding moiety comprises a detectable moiety.
By a “detectable moiety” we include a moiety which permits its presence and/or relative amount and/or location (for example, the location on an array) to be determined, either directly or indirectly.
Suitable detectable moieties are well known in the art.
For example, the detectable moiety may be a fluorescent and/or luminescent and/or chemiluminescent moiety which, when exposed to specific conditions, may be detected. Such a fluorescent moiety may need to be exposed to radiation (i.e. light) at a specific wavelength and intensity to cause excitation of the fluorescent moiety, thereby enabling it to emit detectable fluorescence at a specific wavelength that may be detected.
Alternatively, the detectable moiety may be an enzyme which is capable of converting a (preferably undetectable) substrate into a detectable product that can be visualised and/or detected. Examples of suitable enzymes are discussed in more detail below in relation to, for example, ELISA assays.
Hence, the detectable moiety may be selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety (for example, a radioactive atom); or an enzymatic moiety. Preferably, the detectable moiety comprises or consists of a radioactive atom. The radioactive atom may be selected from the group consisting of technetium-99m, iodine-123, iodine-125, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, phosphorus-32, sulphur-35, deuterium, tritium, rhenium-186, rhenium-188 and yttrium-90.
Clearly, the agent to be detected (such as, for example, the one or more biomarkers in the test sample and/or control sample described herein and/or an antibody molecule for use in detecting a selected protein) must have sufficient of the appropriate atomic isotopes in order for the detectable moiety to be readily detectable.
In an alternative preferred embodiment, the detectable moiety of the binding moiety is a fluorescent moiety.
The radio- or other labels may be incorporated into the biomarkers present in the samples of the methods of the invention and/or the binding moieties of the invention in known ways. For example, if the binding agent is a polypeptide it may be biosynthesised or may be synthesised by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as 99mTc, 123I, 186Rh, 188Rh and 111In can, for example, be attached via cysteine residues in the binding moiety. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Comm. 80, 49-57) can be used to incorporate 123I. Reference (“Monoclonal Antibodies in Immunoscintigraphy”, J-F Chatal, CRC Press, 1989) describes other methods in detail. Methods for conjugating other detectable moieties (such as enzymatic, fluorescent, luminescent, chemiluminescent or radioactive moieties) to proteins are well known in the art.
It will be appreciated by persons skilled in the art that biomarkers in the sample(s) to be tested may be labelled with a moiety which indirectly assists with determining the presence, amount and/or location of said proteins. Thus, the moiety may constitute one component of a multicomponent detectable moiety. For example, the biomarkers in the sample(s) to be tested may be labelled with biotin, which allows their subsequent detection using streptavidin fused or otherwise joined to a detectable label.
In another embodiment of first aspect of the present invention step (b) comprises determining the expression of the protein of the one or more biomarker(s). The method may comprise measuring the expression of the one or more biomarker(s) in step (b) using one or more binding moieties each capable of binding selectively to one of the biomarkers identified in Table 3. The one or more binding moieties may comprise or consist of an antibody or an antigen-binding fragment thereof such as a monoclonal antibody or fragment thereof.
The term “antibody” includes any synthetic antibodies, recombinant antibodies or antibody hybrids, such as but not limited to, a single-chain antibody molecule produced by phage-display of immunoglobulin light and/or heavy chain variable and/or constant regions, or other immunointeractive molecules capable of binding to an antigen in an immunoassay format that is known to those skilled in the art.
We also include the use of antibody-like binding agents, such as affibodies and aptamers.
A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) Nature 349, 293-299.
Additionally, or alternatively, one or more of the first binding molecules may be an aptamer (see Collett et al., 2005, Methods 37:4-15).
Molecular libraries such as antibody libraries (Clackson et al, 1991, Nature 352, 624-628; Marks et al, 1991, J Mol Biol 222(3): 581-97), peptide libraries (Smith, 1985, Science 228(4705): 1315-7), expressed cDNA libraries (Santi et al (2000) J Mol Biol 296(2): 497-508), libraries on other scaffolds than the antibody framework such as affibodies (Gunneriusson et al, 1999, Appl Environ Microbiol 65(9): 4134-40) or libraries based on aptamers (Kenan et al, 1999, Methods Mol Biol 118, 217-31) may be used as a source from which binding molecules that are specific for a given motif are selected for use in the methods of the invention.
The molecular libraries may be expressed in vivo in prokaryotic cells (Clackson et al, 1991, op. cit.; Marks et al, 1991, op. cit.) or eukaryotic cells (Kieke et al, 1999, Proc Natl Acad Sci USA, 96(10):5651-6) or may be expressed in vitro without involvement of cells (Hanes & Pluckthun, 1997, Proc Natl Acad Sci USA 94(10):4937-42; He & Taussig, 1997, Nucleic Acids Res 25(24):5132-4; Nemoto et al, 1997, FEBS Lett, 414(2):405-8).
In cases when protein based libraries are used, the genes encoding the libraries of potential binding molecules are often packaged in viruses and the potential binding molecule displayed at the surface of the virus (Clackson et al, 1991, supra; Marks et al, 1991, supra; Smith, 1985, supra).
Perhaps the most commonly used display system is filamentous bacteriophage displaying antibody fragments at their surfaces, the antibody fragments being expressed as a fusion to the minor coat protein of the bacteriophage (Clackson et al, 1991, supra; Marks et al, 1991, supra). However, other suitable systems for display include using other viruses (EP 39578), bacteria (Gunneriusson et al, 1999, supra; Daugherty et al, 1998, Protein Eng 11(9):825-32; Daugherty et al, 1999, Protein Eng 12(7):613-21), and yeast (Shusta et al, 1999, J Mol Biol 292(5):949-56).
In addition, display systems have been developed utilising linkage of the polypeptide product to its encoding mRNA in so-called ribosome display systems (Hanes & Pluckthun, 1997, supra; He & Taussig, 1997, supra; Nemoto et al, 1997, supra), or alternatively linkage of the polypeptide product to the encoding DNA (see U.S. Pat. No. 5,856,090 and WO 98/37186).
The variable heavy (VH) and variable light (VL) domains of the antibody are involved in antigen recognition, a fact first recognised by early protease digestion experiments. Further confirmation was found by “humanisation” of rodent antibodies. Variable domains of rodent origin may be fused to constant domains of human origin such that the resultant antibody retains the antigenic specificity of the rodent parented antibody (Morrison et al (1984) Proc. Natl. Acad. Sci. USA 81, 6851-6855).
That antigenic specificity is conferred by variable domains and is independent of the constant domains is known from experiments involving the bacterial expression of antibody fragments, all containing one or more variable domains. These molecules include Fab-like molecules (Better et al (1988) Science 240, 1041); Fv molecules (Skerra et al (1988) Science 240, 1038); single-chain Fv (ScFv) molecules where the VH and VL partner domains are linked via a flexible oligopeptide (Bird et al (1988) Science 242, 423; Huston et al (1988) Proc. Natl. Acad. Sci. USA 85, 5879) and single domain antibodies (dAbs) comprising isolated V domains (Ward et al (1989) Nature 341, 544). A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) Nature 349, 293-299.
The antibody or antigen-binding fragment may be selected from the group consisting of intact antibodies, Fv fragments (e.g. single chain Fv and disulphide-bonded Fv), Fab-like fragments (e.g. Fab fragments, Fab′ fragments and F(ab)2 fragments), single variable domains (e.g. VH and VL domains) and domain antibodies (dAbs, including single and dual formats [i.e. dAb-linker-dAb]). Preferably, the antibody or antigen-binding fragment is a single chain Fv (scFv).
The one or more binding moieties may alternatively comprise or consist of an antibody-like binding agent, for example an affibody or aptamer.
By “scFv molecules” we mean molecules wherein the VH and VL partner domains are linked via a flexible oligopeptide.
The advantages of using antibody fragments, rather than whole antibodies, are several-fold. The smaller size of the fragments may lead to improved pharmacological properties, such as better penetration of solid tissue. Effector functions of whole antibodies, such as complement binding, are removed. Fab, Fv, ScFv and dAb antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of the said fragments.
Whole antibodies, and F(ab′)2 fragments are “bivalent”. By “bivalent” we mean that the said antibodies and F(ab′)2 fragments have two antigen combining sites. In contrast, Fab, Fv, ScFv and dAb fragments are monovalent, having only one antigen combining sites.
The antibodies may be monoclonal or polyclonal. Suitable monoclonal antibodies may be prepared by known techniques, for example those disclosed in “Monoclonal Antibodies: A manual of techniques”, H Zola (CRC Press, 1988) and in “Monoclonal Hybridoma Antibodies: Techniques and applications”, J G R Hurrell (CRC Press, 1982), both of which are incorporated herein by reference.
When potential binding molecules are selected from libraries, one or more selector peptides having defined motifs are usually employed. Amino acid residues that provide structure, decreasing flexibility in the peptide or charged, polar or hydrophobic side chains allowing interaction with the binding molecule may be used in the design of motifs for selector peptides. For example:
Typically, selection of binding molecules may involve the use of array technologies and systems to analyse binding to spots corresponding to types of binding molecules.
The one or more protein-binding moieties may comprise a detectable moiety. The detectable moiety may be selected from the group consisting of a fluorescent moiety, a luminescent moiety, a chemiluminescent moiety, a radioactive moiety and an enzymatic moiety.
In a further embodiment of the methods of the invention, step (b) may be performed using an assay comprising a second binding agent capable of binding to the one or more proteins, the second binding agent also comprising a detectable moiety. Suitable second binding agents are described in detail above in relation to the first binding agents.
Thus, the proteins of interest in the sample to be tested may first be isolated and/or immobilised using the first binding agent, after which the presence and/or relative amount of said biomarkers may be determined using a second binding agent.
In one embodiment, the second binding agent is an antibody or antigen-binding fragment thereof; typically a recombinant antibody or fragment thereof. Conveniently, the antibody or fragment thereof is selected from the group consisting of: scFv; Fab; a binding domain of an immunoglobulin molecule. Suitable antibodies and fragments, and methods for making the same, are described in detail above.
Alternatively, the second binding agent may be an antibody-like binding agent, such as an affibody or aptamer.
Alternatively, where the detectable moiety on the protein in the sample to be tested comprises or consists of a member of a specific binding pair (e.g. biotin), the second binding agent may comprise or consist of the complimentary member of the specific binding pair (e.g. streptavidin).
Where a detection assay is used, it is preferred that the detectable moiety is selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety; an enzymatic moiety. Examples of suitable detectable moieties for use in the methods of the invention are described above.
Preferred assays for detecting serum or plasma proteins include enzyme linked immunosorbent assays (ELISA), radioimmunoassay (RIA), immunoradiometric assays (IRMA) and immunoenzymatic assays (IEMA), including sandwich assays using monoclonal and/or polyclonal antibodies. Exemplary sandwich assays are described by David et al in U.S. Pat. Nos. 4,376,110 and 4,486,530, hereby incorporated by reference. Antibody staining of cells on slides may be used in methods well known in cytology laboratory diagnostic tests, as well known to those skilled in the art.
Thus, in one embodiment the assay is an ELISA (Enzyme Linked Immunosorbent Assay) which typically involves the use of enzymes which give a coloured reaction product, usually in solid phase assays. Enzymes such as horseradish peroxidase and phosphatase have been widely employed. A way of amplifying the phosphatase reaction is to use NADP as a substrate to generate NAD which now acts as a coenzyme for a second enzyme system. Pyrophosphatase from Escherichia coli provides a good conjugate because the enzyme is not present in tissues, is stable and gives a good reaction colour. Chemiluminescent systems based on enzymes such as luciferase can also be used.
Conjugation with the vitamin biotin is frequently used since this can readily be detected by its reaction with enzyme-linked avidin or streptavidin to which it binds with great specificity and affinity.
In an alternative embodiment, the assay used for protein detection is conveniently a fluorometric assay. Thus, the detectable moiety of the second binding agent may be a fluorescent moiety, such as an Alexa fluorophore (for example Alexa-647).
Preferably, step (b) is performed using an array. The array may be a bead-based array or a surface-based array. The array may be selected from the group consisting of: macroarray; microarray; nanoarray.
In on embodiment, the method is for identifying agents capable of inducing a hypersensitivity response in human skin. Preferably, the hypersensitivity response is a cell-mediated hypersensitivity response, for example, a type IV hypersensitivity response. Preferably, the method is for identifying agents capable of inducing allergic contact dermatitis (ACD) (i.e. the hypersensitivity response is ACD).
In one embodiment, the population of dendritic cells or population of dendritic-like cells is a population of dendritic cells. Preferably, the dendritic cells are primary dendritic cells. Preferably, the dendritic cells are myeloid dendritic cells.
The population of dendritic cells or dendritic-like cells is preferably mammalian in origin. Preferably, the mammal is a rat, mouse, guinea pig, cat, dog, horse or a primate. Most preferably, the mammal is human.
In an embodiment the population of dendritic cells or population of dendritic-like cells is a population of dendritic-like cells, preferably myeloid dendritic-like cells.
In one embodiment, the dendritic-like cells express at least one of the markers selected from the group consisting of CD54, CD86, CD80, HLA-DR, CD14, CD34 and CD1a, for example, 2, 3, 4, 5, 6 or 7 of the markers. In a further embodiment, the dendritic-like cells express the markers CD54, CD86, CD80, HLA-DR, CD14, CD34 and CD1a.
In a further embodiment, the dendritic-like cells may be derived from myeloid dendritic cells. Preferably the dendritic-like cells are myeloid leukaemia-derived cells. Preferably, the myeloid leukaemia-derived cells are selected from the group consisting of KG-1, THP-1, U-937, HL-60, Monomac-6, AML-193 and MUTZ-3. Most preferably, dendritic-like cells are MUTZ-3 cells. MUTZ-3 cells are human acute myelomonocytic leukemia cells that were deposited with Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DSMZ), (Inhoffensrasse 7B, Braunschweig, Germany on 15 May 1995 (www.dsmz.de; deposit number ACC 295).
In one embodiment, the dendritic-like cells, after stimulation with cytokine, present antigens through CD1d, MHC class I and II and/or induce specific T-cell proliferation.
In one embodiment, the negative control agent(s) is/are selected from the group consisting of 1-Butanol, 4-Aminobenzoic acid, Benzaldehyde, Chlorobenzene, Diethyl phthalate, Dimethyl formamide, Ethyl vanillin, Glycerol, Isopropanol, Lactic acid, Methyl salicylate, Octanoic acid, Propylene glycol, Phenol, p-ydroxybenzoic acid, Potassium permanganate, Salicylic acid, Sodium dodecyl sulphate, Tween 80 and Zinc sulphate.
The method may comprise the use of at least 2 negative control agents (i.e. non-sensitizing agents), for example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or at least 20 negative control agents.
In another embodiment, the positive control agent(s) is/are selected from the group consisting of 2,4-Dinitrochlorobenzene, Oxazolone, Potassium dichromate, Kathon CH (MC/MCI), Formaldehyde, 2-Aminophenol, 2-nitro-1,4-Phenylendiamine, p-Phenylendiamine, Hexylcinnamic aldehyde, 2-Hydroxyethyl acrylate, 2-Mercaptobenzothiazole, Glyoxal, Cinnamaldehyde, Isoeugenol, Ethylendiamine, Resorcinol, Cinnamic alcohol, Eugenol, Penicillin G or Geraniol.
The method may comprise the use of at least 2 positive control (i.e. sensitizing agents) are provided, for example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or at least 20 positive control agents.
In one embodiment, the method is indicative of whether the test agent is or is not a sensitizing agent. In alternative or additional embodiment, the method is indicative of the sensitizing potency of the sample to be tested.
In one embodiment the method is indicative of the local lymph node assay (LLNA) classification of the sensitizing potency of the sample to be tested. For a detailed description of LLNA see Basketter, D. A., et al., Local lymph node assay—validation, conduct and use in practice. Food Chem Toxicol, 2002. 40(5): p. 593-8 which is incorporated herein by reference.
In an alternative embodiment, the method is indicative of the guinea pig maximization test classification of the sensitizing potency of the sample to be tested. For a detailed description of the guinea pig maximization test see Magnusson, B. and A. M. Kligman, The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol, 1969. 52(3): p. 268-76, which is incorporated herein by reference.
Thus, in one embodiment, the method is indicative that the test agent is either, a non-sensitizer, a weak sensitizer, a moderate sensitizer, a strong sensitizer or an extreme sensitizer. The decision value and distance in PCA correlates with sensitizer potency.
Generally, skin sensitizing agents are determined with an ROC AUC of at least 0.55, for example with an ROC AUC of at least, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.96, 0.97, 0.98, 0.99 or with an ROC AUC of 1.00. Preferably, skin sensitizing agents are determined with an ROC AUC of at least 0.85, and most preferably with an ROC AUC of 1.
Typically, agents capable of inducing sensitization are identified using a support vector machine (SVM), such as those available from cran.r-project.org/web/packages/e1071/index.html (e.g. e1071 1.5-24). However, any other suitable means may also be used.
Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. Intuitively, an SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall on.
More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training datapoints of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier. For more information on SVMs, see for example, Burges, 1998, Data Mining and Knowledge Discovery, 2:121-167.
In one embodiment of the invention, the SVM is ‘trained’ prior to performing the methods of the invention using biomarker profiles of known agents (namely, known sensitizing or non-sensitizing agents). By running such training samples, the SVM is able to learn what biomarker profiles are associated with agents capable of inducing sensitization. Once the training process is complete, the SVM is then able whether or not the biomarker sample tested is from a sensitizing agent or a non-sensitizing agent.
This allows test agents to be classified as sensitizing or non-sensitizing. Moreover, by training the SVM with sensitizing agents of known potency (i.e. non-sensitizing, weak, moderate, strong or extreme sensitizing agents), the potency of test agents can also be identified comparatively.
However, this training procedure can be by-passed by pre-programming the SVM with the necessary training parameters. For example, agents capable of inducing sensitization be identified according to the known SVM parameters using the SVM algorithm detailed in Table 5, based on the measurement of all the biomarkers listed in Table 3(A) and 1(B).
It will be appreciated by skilled persons that suitable SVM parameters can be determined for any combination of the biomarkers listed Table 3 by training an SVM machine with the appropriate selection of data (i.e. biomarker measurements from cells exposed to known sensitizing and/or non-sensitizing agents).
Preferably, the method of the invention has an accuracy of at least 73%, for example 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% accuracy.
Preferably, the method of the invention has a sensitivity of at least 73%, for example 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sensitivity.
Preferably, the method of the invention has a specificity of at least 68%, for example 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% specificity.
By “accuracy” we mean the proportion of correct outcomes of a method, by “sensitivity” we mean the proportion of all positive chemicals that are correctly classified as positives, and by “specificity” we mean the proportion of all negative chemicals that are correctly classified as negatives.
A second aspect of the invention provides an array for use in the method of the first aspect of the invention (or any embodiment or combination of embodiments thereof), the array comprising one or more binding moieties as defined above. In one embodiment, the binding moieties are (collectively) capable of binding to all of the biomarkers defined in Table 3A. In a further embodiment, the binding moieties are (collectively) capable of binding to all of the biomarkers defined in Table 3B. Preferably, the binding moieties are (collectively) capable of binding to all of the biomarkers defined in Table 3A and Table 3B.
The binding moieties may be immobilised.
Arrays per se are well known in the art. Typically they are formed of a linear or two-dimensional structure having spaced apart (i.e. discrete) regions (“spots”), each having a finite area, formed on the surface of a solid support. An array can also be a bead structure where each bead can be identified by a molecular code or colour code or identified in a continuous flow. Analysis can also be performed sequentially where the sample is passed over a series of spots each adsorbing the class of molecules from the solution. The solid support is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs, silicon chips, microplates, polyvinylidene difluoride (PVDF) membrane, nitrocellulose membrane, nylon membrane, other porous membrane, non-porous membrane (e.g. plastic, polymer, perspex, silicon, amongst others), a plurality of polymeric pins, or a plurality of microtitre wells, or any other surface suitable for immobilising proteins, polynucleotides and other suitable molecules and/or conducting an immunoassay. The binding processes are well known in the art and generally consist of cross-linking covalently binding or physically adsorbing a protein molecule, polynucleotide or the like to the solid support. Alternatively, affinity coupling of the probes via affinity-tags or similar constructs may be employed. By using well-known techniques, such as contact or non-contact printing, masking or photolithography, the location of each spot can be defined. For reviews see Jenkins, R. E., Pennington, S. R. (2001, Proteomics, 2,13-29) and Lal et al (2002, Drug Discov Today 15;7(18 Suppl):S143-9).
Typically the array is a microarray. By “microarray” we include the meaning of an array of regions having a density of discrete regions of at least about 100/cm2, and preferably at least about 1000/cm2. The regions in a microarray have typical dimensions, e.g. diameter, in the range of between about 10-250 μm, and are separated from other regions in the array by about the same distance. The array may alternatively be a macroarray or a nanoarray.
Once suitable binding molecules (discussed above) have been identified and isolated, the skilled person can manufacture an array using methods well known in the art of molecular biology; see Examples below.
A third aspect of the present invention provides the use of one or more (preferably two or more) biomarkers selected from the group defined in Table 3A and/or Table 3B in combination for identifying hypersensitivity response sensitising agents. Preferably, all of the biomarkers defined in Table 3A and Table 3B are used collectively for identifying hypersensitivity response sensitising agents. Preferably, the use is consistent with the method described in the first aspect of the invention, and the embodiments described therein.
A fourth aspect of the invention provides an analytical kit for use in a method according the first aspect of the invention, comprising or consisting of:
The analytical kit may comprise one or more control agents. Preferably, the analytical kit comprises or consists of the above features, together with one or more negative control agents and/or one or more positive control agents.
Preferred, non-limiting examples which embody certain aspects of the invention will now be described, with reference to the following figures:
Cell surface expression levels of CD14, CD1a, CD34, CD54, CD80, CD86 and HLA-DR were assessed with flow cytometry. Gates were set to exclude debris and dead cells, and quadrants were established by comparing with relevant isotype controls. Results are shown from one representative experiment out of six.
Cell surface expression levels of CD86 were monitored after stimulation with chemicals for 24 h.
mRNA levels in MUTZ-3 cells stimulated for 24 h with 20 sensitizing and 20 non-sensitizing chemicals were assessed with transcritomics using Affymetrix Human Gene 1.0 ST arrays. Structures and similarities in the gene expression dataset were investigated using principal component analysis (PCA) in the software Qlucore.
The method by which the “Prediction Signature” was constructed was validated by repeating the process on 70% of the data set, selected at random. The remaining 30% of data was used as a test set for signature validation. A) PCA demonstrates that the “Test Gene Signature” can separate sensitizers from non-sensitizers. Only the samples of the 70% training set, displayed in bright colours, were used to build the space of the first three principal components. The test set samples, displayed in dark colours, were plotted into this space based on expression levels of the analytes in the “Test Gene Signature”. B) An SVM was trained on the 70% training set, and validated with the 30% test set. The area under the ROC curve of 1.0 proves that the group belonging of all samples in the test set was correctly predicted, demonstrating the strength of the “Test Gene Signature”, and by association also the strength of our “Prediction Signature”.
Interactome of the 200 molecules (orange) and molecules connecting theses according to evidence from IPA. Direct interactions are shown as solid lines and indirect as dotted lines.
Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. This is commonly caused by immunological responses towards chemical haptens leading to substantial economic burden for society.
Current test of sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within e.g. pharmaceutical and cosmetic industries have stimulated significant research efforts to develop alternative human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power.
We have developed a novel cell-based assay for the prediction of sensitizing chemicals. By analyzing the transcriptome of the human cell line MUTZ-3 after 24 h stimulation with 20 different sensitizing chemicals, 20 non-sensitizing chemicals and vehicle controls, we have identified a biomarker signature of 200 genes with potent discriminatory ability. Using a Support Vector Machine for supervised classification, the prediction performance of the assay revealed an accuracy of 100%, sensitivity of 100% and specificity of 100%. In addition, categorizing the chemicals according to the LLNA assay, this gene signature could also predict potency. The identified markers are involved in biological pathways with immunological relevant functions, which can shed light on the process of human sensitization.
A gene signature predicting sensitization using a human cell line in vitro has been developed. This easy and robust cell-based assay can completely replace or drastically reduce current test systems, using experimental animals. Being based on human biology, the assay is considered to be more relevant and more accurate for predicting sensitization in humans than the traditional animal-based tests.
Results
The Cellular Rational of the In Vitro Cell Culture System
Acting as the link between innate and adaptive immunity, DCs are essential immunoregulatory cells of the immune system. Their unique property to recognize antigen for the purpose of initiating T cell responses, and their potent regulatory function in skewing immune responses, makes them targets for assay development. However, primary DCs constitute a heterogeneous and minor population of cells not suited for screening. The obvious advantages of using a cell line with characteristics compared to primary DCs for the basis of a predictive test are stability, reproducibility and unlimited supply of cells. So far, no leukemia with obvious DC-like properties has been reported, probably due to the fact that the characteristics of this cell type are determined by a complex terminal differentiation process that can occur only post-cell division [11], and thus, the generation of DC-like cell lines relies on available myeloid leukemia cell lines. MUTZ-3 is a human acute myelomonocytic leukemia cell line with a potent ability to differentiate into DCs, present antigens and induce specific T-cell proliferation. Among the available myeloid human cell lines, MUTZ-3 is by far the preferred candidate. Similar to immature primary DCs, MUTZ-3 progenitor express CD1a, HLA-DR and CD54, as well as low levels of CD80 and CD86 (
CD86 surface expression in response to sensitizer stimulation: CD86 is the most extensively studied biomarker for sensitization to date, in cell-systems such as monocyte derived dendritic cells (MoDCs) or dendritic cell-like human cell lines and their progenitors, such as THP-1, U-937 and KG-1. Thus, as a reference, cell surface expression of CD86 was measured with flow cytometry after 24 h stimulation with 20 sensitizers and 20 non-sensitizers, as well as with vehicle controls (Table 1). CD86 was significantly up-regulated on cells stimulated with 2-Aminophenol, Kathon CG, 2-nitro-1,4-Phenylendiamine, 2,4-Dinitrochlorobenzene, 2-Hydroxyethyl acrylate, Cinnamic aldehyde, p-Phenylendiamine, Resorcinol, and 2-Mercaptobenzothiazole. Hence, an assay based on measurement of a single biomarker, such as CD86, would give a sensitivity of 47% and a specificity of 100%. Consequently, CD86 cannot classify skin sensitizers, using a cell based system such as MUTZ-3.
Analysis of the transcriptional profiles in chemically stimulated MUTZ-3 cells: The genomic expression arrays were used to test 20 sensitizers and 20 non-sensitizers, in triplicates, and vehicle controls such as DMSO and distilled water, the latter in twelve replicates. In total, a data set was generated based on 144 samples. RMA normalization and quality controls of the samples revealed that the Oxazolone and Cinnamic aldehyde samples were significant outliers and had to be removed, or they would have dominated the data set prohibiting biomarker identification (data not shown). In addition, one of the replicates of potassium permanganate had to be removed due to a faulty array. This left a data set consisting of 137 samples, each with data from measurements of 33,297 transcripts. In order to mine the data set for information specific for sensitizers vs. non-sensitizers, the software Qlucore Omics Explorer 2.1 was used, which enable real time principal component analysis (PCA) analysis, while sorting the input genes after desired criteria, e.g. sensitizers and non-sensitizers, based on ANOVA p-value selection.
Furthermore, 2-Hydroxyethyl acrylate, 2-Aminophenol, Kathon CG, Formaldehyde, 2-nitro-1,4-Phenylendiamine, 2,4-Dinitrochlorobenzoic acid, p-Phenylendiamine, 2-Mercaptobenzothiazole, Cinnamic alcohol and Resorcinol have replicates that group together, separate from the negative group. Still, as can be seen in
Backward elimination identifies genes with the most discriminatory power: Even though the data set contains genes with p-values down to 1×10−17, lowering the p-value cutoff did not achieve complete separation between sensitizers and non-sensitizers. Gene signatures entirely selected on p-values does not provide the best possible predictive power, since a low p-value is no guarantee that a gene provides any additional information. To further reduce the number of transcripts for a predictive biomarker signature, we employed an algorithm for backward elimination (
Validation of the analysis method used to identify the Prediction Signature: To validate the predictive power of our signature, we used a supervised learning method called the Support Vector Machine (SVM) [12], which maps the data from a training set in space in order to maximize the separation of gene expression induced by sensitizing and non-sensitizing chemicals. As training set, 70% of the data set was selected randomly and the entire selection process (as described above) was repeated. Starting with 29,141 transcripts, the signature was reduced to 200 transcripts, termed “Test Gene Signature”, using ANOVA filtering and backward elimination. The remaining 30% of the data set was used to test the signature obtained. The partitioning of the data set into subsets of 70% training data set and 30% test data set was done in a stratified random manner, meaning that the proportion of sensitizers and non-sensitizers in the complete data set are maintained in both the subsets, although the samples included in either of the two subsets are selected at random. Thereafter, the “Test Gene Signature” was used to train an SVM model with the training set, and the predictive power of the model was assessed with the test set.
Molecular functions and canonical pathways of the “Prediction Signature”.
Using Ingenuity Pathways Analysis (IPA, Ingenuity Systems Inc.), 184 of the 200 molecules in the signature were characterized with regard to functions and known (canonical) pathways. The remaining 16 molecules could not be mapped to any IPA entries. The dominating functions identified were small molecule biochemistry (38 molecules), cell death (33), lipid metabolism (24), hematological system development (19), cellular growth and proliferation (16), molecular transport (15), cell cycle (15) and carbohydrate metabolism (15), see table 4 for details. 67 of the 184 molecules were involved in the listed functions. Of the remaining 117 molecules, 30 were known from a variety of human diseases and molecular functions, such as described biomarkers (SCARB2, RFC2, VPS37A and BCL7A) and drug targets (ABAT). Most of these molecules are metabolic markers. In the signature as a whole, there are several drug targets, such as HMGCR, HMOX1, ABAT, RXRA, CD33, MAP2K1, MAPK13 and CD86. Two are described for skin disorders: CD86 (psoriasis) and RXRA (eczema). The signature also contains skin development (DHCR24) and dendritic cell markers (MAP2K1, NLRP12 and RFC2).
Pathways possibly invoked by the molecules in the signature were also investigated using IPA. Those most highly populated were NRF2 mediated oxidative response (10), xenobiotic metabolism signaling (8), LPS/IL-1 mediated inhibition of RXR function (6), aryl hydrocarbon receptor signaling (6) and protein kinase A signaling (6). The five highest ranked of these pathways are all known to take part in reactions provoked by foreign substances, xenobiotics. Xenobiotics are natural or synthetic chemical compounds, foreign to the human body.
Conclusions
Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by dysregulated adaptive immune responses to allergens [13]. Small molecular weight chemicals, so-called haptens, can bind self-proteins in the skin, which enables internalisation of the protein-bound allergenic chemical by skin dendritic cell (DC). DCs, under the influence of the local microenvironment, process the protein-hapten complex, migrate to the local lymph nodes and activate naive T cells. The initiation and development of allergen-specific responses, mainly effector CD8+ T cells and Th1 cells, and production of immunoregulatory proteins, are hallmarks of the immune activation observed in ACD. This T-cell mediated type IV hypersensitivity reaction is characterised by symptoms such as rash, blisters and itching. ACD is the most common manifestation of immunotoxicity observed in humans [13] and hundreds of chemicals have been shown to cause sensitization in skin [14]. The driving factors and molecular mechanisms involved in sensitization are still unknown even though intense research efforts have been carried out to identify the immunological responses towards allergenic chemicals. The REACH legislation requires that all chemicals produced over 1 ton/year are tested for hazardous properties such as toxicity and allergenicity [5], which increase the demand for accurate assays for predictive power. Today, the identification of potential human sensitizers relies on animal experimentation, in particular the murine local lymph node assay (LLNA) [6]. The LLNA is based upon measurements of proliferation induced in draining lymph nodes of mice after chemical exposure [15]. Chemicals are defined as sensitizers if they provoke a three-fold increase in proliferation compared to control, and the amount of chemical required for the increase is the EC3 value. Thus, the LLNA can also be used to categorize the chemicals based on sensitisation potency. However, LLNA is in many ways not optimal. Besides the obvious ethical reasons, the assay is also time consuming and expensive. Human sensitization data often stem from human maximization tests (HMT) [16] and human patch tests (HPT). In an extensive report from the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the performance characteristics of LLNA were compared to other available animal-based methods and human sensitization data (HMT and HPT) [17]. The LLNA performance in comparison to human data (74 assessments) revealed an accuracy of 72%, a sensitivity of 72% and a specificity of 67%. Accuracy is defined as the proportion of correct outcomes of a method, sensitivity is the proportion of all positive chemicals that are correctly classified as positives, and specificity is the proportion of all negative chemicals that are correctly classified as negatives. Thus, there is a clear need to develop more reliable test methods for sensitization. Additionally, the 7th Amendment to the Cosmetics Directive (76/768/EEC) poses a complete ban on using animal experimentation for testing cosmetic ingredients by 2013 when a scientific reliable method is available. Thus, there is a great need from the industry for reliable predictive test methods that are based on human cells. Various human cell lines and primary cells involved in sensitization have been evaluated as predictive test system, such as epithelial cells, dendritic cells and T cells, however no validated test assay is currently available. Various single biomarkers have been suggested to be upregulated upon stimulation with sensitizing chemicals, such as CD40, CD80, CD54, CXCL8, IL-1β, MIP-1β, p38 MAPK as reviewed in [18], yet singlehanded, none of them have the predictive power to discriminate between sensitizing and non-sensitizing chemicals. CD86 is among the markers most extensively studied; however, determining the expression level of this marker in our assay is relevant but not sufficient as readout for sensitization (
Instead, we have validated the method by which the “Prediction Signature” was identified, by subdividing the samples into training and test sets at random, using unseen data for validation, as seen in
In conclusion, we present an in vitro assay, based on a MUTZ-3 cell system that with an identified “Prediction Signature” consisting of 200 genes, which have the ability to correctly classify a sample as sensitizer or non-sensitizer. In addition, this assay can predict the potency of sensitizing compounds, and may be used to revise such classifications.
Materials and Methods
Chemicals
A panel of chemicals consisting of 20 sensitizers and 20 non-sensitizers were used for cell stimulations. The sensitizers were 2,4-Dinitrochlorobenzene, Cinnamaldehyde, Resorcinol, Oxazolone, Glyoxal, 2-Mercaptobenzothiazole, Eugenol, Isoeugenol, Cinnamic alcohol and p-Phenylendiamine, Formaldehyde, Ethylendiamine, 2-Hydroxyethyl acrylate, Hexylcinnamic aldehyde, Potassium Dichromate, Penicillin G, Katchon CG (MCI/MI), 2-aminophenol, Geraniol and 2-nitro-1,4-Phenylendiamine (Table 1). The non-sensitizers were Sodium dodecyl sulphate, Salicylic acid, Phenol, Glycerol, Lactic acid, Chlorobenzene, p-Hydrobenzoic acid, Benzaldehyde, Diethyl Phtalate and Octanoic acid, Zinc sulphate, 4-Aminobenzoic acid, Methyl salicylate, Ethyl vanillin, Isopropanol, Dimethyl formamide, 1-Butanol, Potassium permanganate, Propylene glycol and Tween 80 (Table 1). All chemicals were from Sigma-Aldrich, St. Louis, Mo., USA. Compounds were dissolved in either Dimethyl sulfoxide (DMSO) or distilled water. Prior to stimulations, the cytotoxicity of all compounds were monitored, using Propidium Iodide (PI) (BD Biosciences, San Diego, Calif.) using protocol provided by the manufacturer. The relative viability of stimulated cells was calculated as
For toxic compounds, the concentration yielding 90% relative viability (Rv90) was used. For untoxic compounds, a concentration of 500 μM was used when possible. For non-toxic compounds that were insoluble at 500 μM in medium, the highest soluble concentration was used. For compounds dissolved in DMSO, the in-well concentration was 0.1% DMSO. The vehicle and concentrations used for each compound are listed in Table 2.
Chemical Exposure of the Cells
The human myeloid leukaemia-derived cell line MUTZ-3 (DSMZ, Braunschweig, Germany) was maintained in a-MEM (Thermo Scientific Hyclone, Logan, Utah) supplemented with 20% (volume/volume) fetal calf serum (Invitrogen, Carlsbad, Calif.) and 40 ng/ml rhGM-CSF (Bayer HealthCare Pharmaceuticals, Seattle, Wash.), as described [10]. Prior to each experiment, the cells were immunophenotyped using flow cytometry as a quality control. Cells were seeded in 6-well plates at 200.000 cells/ml. Stock solutions of each compound was prepared in either DMSO or distilled water, and were subsequently diluted so the in-well concentrations corresponded to the Rv90 value, and in-well concentrations of DMSO were 0.1%. Cells were incubated for 24 h at 37° C. and 5% CO2. Thereafter, cells were harvested and analysed with flow cytometry. In parallel, harvested cells were lysed in TRIzol reagent (Invitrogen) and stored at −20° C. until RNA extraction. Stimulations with chemicals were performed in three individual experiments, so that triplicates samples were obtained.
Phenotypic Analysis with Flow Cytometry
All cell surface staining and washing steps was performed in PBS containing 1% BSA (w/v). Cells were incubated with specific mouse mAbs for 15 min at 4° C. The following mAbs were used for flow cytometry: FITC-conjugated CD1a (DakoCytomation, Glostrup, Denmark), CD34, CD86, and HLA-DR (BD Biosciences), PE-conjugated CD14 (DakoCytomation), CD54 and CD80 (BD Biosciences). Mouse IgG1, conjugated to FITC or PE were used as isotype controls and PI was used to assess cell viability (BD Biosciences). FACSDiva software was used for data acquisition with FACSCanto II instrument (BD Bioscience). 10,000 events were acquired and gates were set based on light scatter properties to exclude debris and nonviable cells. Further data analysis was performed using FCS Express V3 (De Novo Software, Los Angeles, Calif.).
Preparation of cRNA and Gene Chip Hybridization
RNA isolation and gene chip hybridization was performed as described [22]. Briefly, RNA from unstimulated and chemical-stimulated MUTZ-3 cells, from triplicate experiments, were extracted and analysed. The preparation of labeled sense DNA was performed according to Affymetrix GeneChip Whole Transcript (WT) Sense Target Labeling Assay (100 ng Total RNA Labeling Protocol) using the recommended kits and controls (Affymetrix, Santa Clara, Calif.). Hybridization, washing and scanning of the Human Gene 1.0 ST Arrays were performed according to the manufacturer's protocol (Affymetrix).
Microarray Data Analysis and Statistical Methods
The microarray data were normalised and quality checked with the RMA algorithm, using Affymetrix Expression Console (Affymetrix). Genes that were significantly regulated when comparing sensitizers with non-sensitizers were identified using one-way ANOVA, with false discovery rate (FDR) as a correction for multiple hypothesis testing. In order to reduce the large number of identified significant gene, we applied an algorithm developed in-house for Backward Elimination of analytes (Carlsson et al, unpublished). With this method, we train and test a Support Vector Machine (SVM) model [12] with leave-one out cross-validation, with one analyte left out. This process is iterated until each analyte has been left out once. For each iteration, a Kullback-Leibler divergence (KLD) is recorded, yielding N KLDs, where N is the number of analytes. The analyte that was left out when the smallest KLD was observed is considered to provide the least information in the data set. Thus, this analyte is eliminated and the iterations proceed, this time with N-1 analytes. In this manner, the analytes are eliminated one by one until a panel of markers remain that have been selected based on each analyte's ability to discriminate between sensitizers and non-sensitizers. The script for Backwards Eliminations was programmed for R [23], with the additional package e1071 [24]. ANOVA analyses and visualisation of results were performed in Qlucore Omics Explorer 2.1 (Qlucore, Lund, Sweden). The selected biomarker profile of 200 transcripts were designated the “Prediction Signature”.
Validation of the method for identification of the “Prediction Signature” In the absence of an external test data set, the data set was divided into a training set of 70% and a test set of 30% of the samples. The division was performed randomly, while maintaining the proportions of sensitizers and non-sensitizers in each subset at the same ratio as in the complete data set. A biomarker signature was identified in the training set using ANOVA filtering and Backward Elimination, as described above. This test signature was used to train an SVM, using the training set, which was thereafter applied to predict the samples of the test set. The distribution of the area under the Receiver Operating Characteristic (ROC) curve [25] was used as a measurement of the performance of the model.
Assessment of Biological Functions of “Prediction Signature” Using Pathway Analysis
In order to investigate the biological functions the gene profile was analyzed using the Ingenuity Pathway Analysis software, IPA, (Ingenuity Systems, Inc. Mountain View, USA). The 200 top genes resulting from Backward Elimination were analyzed using the ‘build’ and ‘Path Explorer’ functions to build an interactome of the core genes from the “Prediction Signature” and connecting molecules suggested by IPA. The 200 molecules in the “Prediction Signature” were connected using the shortest known paths. In this process only human evidence from primary cells, cell lines and epidermal tissue was used. All molecules except for endogenous and chemical drugs were allowed in the network and all kinds of connections were allowed. Known ‘Functions’ and ‘Canonical Pathways’ from IPA were mapped to the interactome using the ‘Overlay’ function.
Abbreviations
ACD, atopic contact dermatitis;
AML, acute myeloid leukemia cell;
APC, Antigen Presenting Cell;
DC, Dendritic Cell;
GM-CSF, Granulocyte macrophage colony-stimulating factor;
GPMT, Guinea pig maximization test;
HMT, Human Maximation Test;
HPTA, Human Patch Test Allergen;
IL, Interleukin;
LLNA, Local Lymph Node Assay;
PCA, Principal Component Analysis
1HMT, Human Maximation Test;
2False positives in LLNA.
1Kathon CG is a mixture of the compounds MC and MCI. The concentration of this mixture is given in %.
Table 3 legend. The table shows the profile genes found by t-test and Backward Elimination. Genes were annotated, using the NetAffx database from Affymetrix (www.affymetrix.com, Santa Clara USA). When found, the Unigene (www.ncbi.nlm.nih.gov/UniGene/) ID was chosen as the gene identifier. In the twelve cases where no Unigene ID was reported the best alternative ID was given. Gene names and IDs were checked against the IPA database where 189 of the 200 could be matched. In one instance only an Affymetrix ID was reported. 6 duplicate genes were removed.
Number | Date | Country | Kind |
---|---|---|---|
1018014.9 | Oct 2010 | GB | national |
Number | Date | Country | |
---|---|---|---|
Parent | 13881576 | Jul 2013 | US |
Child | 15466141 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15466141 | Mar 2017 | US |
Child | 17194528 | US |