The present invention relates to telecommunications, and, in particular embodiments, to techniques for an analytics assisted self-organizing-network (SON) for coverage capacity optimization (CCO).
A self-organizing network (SON) is an automation technology designed to make the planning, configuration, management, optimization, and healing of mobile radio access networks simpler and faster. SON functionality and behavior has been defined and specified in generally accepted mobile industry recommendations produced by organizations such as 3rd Generation Partnership Project (3GPP) and Next Generation Mobile Networks (NGMN). SON is considered critical to operators' strategy for meeting the exploding demand for data in the coming decade—the era of the Internet of Things. SON is considered necessary to automate operations and optimize performance in a scalable manner for small cell driven heterogeneous networks (HetNets). As SON evolves it will be run on Big Data platforms in the cloud powered by “intelligent” predictive analytics algorithms.
Coverage Capacity Optimization (CCO) is a SON use case that initially configures and adjusts key RF parameters (antenna tilt and azimuth configuration and power) post-deployment to maximize some measure of user quality of experience (QoE) (in particular, coverage, quality and capacity) and adapt to changing traffic patterns and changes in environment. CCO is expected to work on a long time-scale in the order of hours/days to capture and react to long term or seasonal changes in traffic and environment and also allow for sufficient data collection for accurate observation and estimation of CCO performance.
Technical advantages are generally achieved, by embodiments of this disclosure which describe an analytics assisted self-organizing-network (SON) for coverage capacity optimization (CCO).
In accordance with an embodiment, a method for improving coverage and capacity of a wireless network having multiple cells is provided. The method includes receiving one or more measurement reports associated with communications in the wireless network during a first period, and assigning two or more status labels to a cell in the wireless network based on the one or more measurement reports. The two or more status labels are associated with different cell status categories. The method further includes instructing the cell to adjust an antenna tilt, a transmit power level, or both based on information including a combination of the two or more status labels. The antenna tilt or transmit power level is used to communicate wireless signals in the cell during a second period. An apparatus for performing this method is also provided.
In accordance with another embodiment, a method is provided, which includes identifying measurement reports, each of which fails to satisfy a performance criteria for a wireless network. The measurement reports are generated in the wireless network during a first period, and each of the measurement reports is associated with a unit of blame. The method further includes assigning, for each of the measurement reports, fractional units of blame to cells in the wireless network, and instructing at least one of the cells to adjust at least one parameter based on the fractional units of blame assigned to the at least one of the cells. The at least one parameter is used to communicate wireless signals in the at least one of the cells. An apparatus for performing this method is also provided.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of embodiments of this disclosure are discussed in detail below. It should be appreciated, however, that the concepts disclosed herein can be embodied in a wide variety of specific contexts, and that the specific embodiments discussed herein are merely illustrative and do not serve to limit the scope of the claims. Further, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of this disclosure as defined by the appended claims.
Aspects of the present disclosure provide methods and apparatus for adjusting configuration parameters of a plurality of cells in a wireless network based on measurement reports (MRs) received during a data collection period of the wireless network, so that coverage and capacity of the wireless network may be improved. A configuration parameter of a cell may be an antenna tilt or a transmit power.
In some embodiments, labels are assigned to the plurality of cells based on the MRs and configuration parameters of the plurality of cells are adjusted according to the labels. In one embodiment, each of the plurality of cells are assigned two or more status labels based on one or more MRs collected in the wireless network. The two or more status labels are associated with different cell status categories. In one embodiment, a cell status may be categorized as a coverage status, a quality status, an overshooter status, or an interference status. Each of the cell status categories may be further classified into different cell status types. For example, a quality status is classified into types of {good, bad}, or an interference status is classified into types of {strong, medium, weak}. A cell may be mapped to one of the cell status types corresponding to a cell status category based on MRs and is labeled by that type and category. A combination of the labels assigned to each of the cells in the wireless network reflects the current status of each corresponding cell with respect to different cell status categories, and is used to determine adjustment of one or more configuration parameters of each corresponding cell, for improving cell performance. In one embodiment, domain expertise, knowledge and experience are used to determine what actions to take to adjust the cells' configuration parameters based on the combinations of labels.
In some embodiments, blames are assigned to the plurality of cells based on the MRs, and the configuration parameters of the plurality of cells are adjusted according to the blames. Blames are associated with MRs that do not satisfy a pre-defined set of performance criteria, which are referred to as bad or unsatisfactory MRs, and indicate responsibilities that one or more cells should take for the bad MRs. In one embodiment, bad MRs are identified from the collected MRs, and each bad MR is associated with one unit of blame. For each bad MR identified in the wireless network, fractional units of blame are assigned to responsible cells. If one cell is fully responsible for a bad MR, the cell is assigned a unit of blame. Thus the joint impacts of cell performance issues, such as problems related to coverage, quality or interference, resulted from cell's configuration is captured into the blames assigned to the cell corresponding to bad MRs in the wireless network. Blames assigned to each of the plurality of cells are used to determine adjustment of one or more configuration parameters of each corresponding cell, in order to improve status of each corresponding cell. In one embodiment, domain expertise, knowledge and experience are used to determine what actions to take to adjust the cells' configuration parameters based on the blames assigned to the cells.
In some embodiments, blames are classified into different blame categories for determining configuration parameter adjustment of the cells. The different blame categories indicate different manners to adjust one or more configuration parameters of the cells in order to reduce the values of blames. In one embodiment, a blame is classified into an up-blame or a down-blame, indicating an increase or a decrease of a configuration parameter is needed in order to reduce the blame value. In one embodiment, blames assigned to each of the cells are classified into an up-blame or a down-blame, and a sub-total up-blame value and a sub-total down-blame value are calculated by summing all up-blames and all down-blames, respectively, assigned to each corresponding cell. In one embodiment, the sub-total up-blame value and the sub-total down-blame value of a cell are used to calculate an up-action probability and a down-action probability of the cell. A configuration parameter of the cell may be increased when the up-action probability is greater than a first threshold, and may be decreased when the down-action probability is greater than a second threshold.
In the example of
Optimizing Cell Specific Antenna Configuration Parameters
Process 200 does not need to know where UE devices 104 are located within LTE network 100 nor the exact antenna configuration parameter values in order to optimize performance. This contrasts with propagation model aided solutions (such as ACP) that require accurate user location and correct antenna configuration parameter values for each cell. Because correct configuration parameter values are not known, even if initial configuration parameters are erroneous, the antenna configuration parameter values can still be adjusted in a meaningful direction due to the fact that parameter changes lead to measurable change in cell/system metrics. As long as MRs (including RSRP, RS-SINR RSRQ, or the like) from representative UE devices 104 (e.g., UE devices 104 selected by unbiased random sampling) are available for a given antenna configuration parameter change, the objective function can be evaluated accurately.
In the disclosed embodiments, every MR that is adjudged to have “failed” a coverage criterion (e.g., by virtue of a reported reference channel signal strength not meeting a pre-defined threshold) or a quality criterion (e.g., by virtue of a reported reference channel quality, i.e., signal to interference plus noise, not meeting another pre-defined threshold) assigns a notional unit of “blame” for such failure to a “responsible” cell or cells. If multiple cells are held responsible, fractional units of “blame” (or “shares of blame”) are assigned to each responsible cell. When aggregated over all “failed” MRs, blame metrics can be calculated for each cell, and a base incremental action (e.g., antenna tilt or transmit power adjustment) can be taken by the cell in accordance with such blame metrics in order to reduce the rate of occurrence of MR failures.
Process 200 employs two closed loop phases—a base incremental adjustment phase 205 and a biased random adjustment phase 209. In the base incremental adjustment phase 205, cell level features or blame metrics are calculated from the MRs and, alternatively or in addition, cells are labeled according to a coverage, quality, interference, or overshooter state (described in greater detail below with respect to
The biased random adjustment phase 209 represents a mathematical search procedure that performs explorative techniques and chooses oppositional or random initial directions. Adjustments are accepted when the objective function is improved and accepted with decreasing probability as the objective function worsens and with passage of time (cooling) to steadily improve the solution. Over time, exploration direction can be conditioned to learn from mistakes and, in a later explorative pass, the action learned to be best (in the sense of maximizing instantaneous or cumulative rewards) for a given cell state is chosen. The key facts being exploited are that the system objective function and cell level metrics are aggregations of UE state information (MR) that don't require individual UE locations for evaluation, and that parameter changes matter but not the absolute value.
Process 200 begins at block 202 with the receipt of MRs from UE devices 104. Initiation of the optimization process is triggered at block 204. Optimization may be triggered manually, by network conditions, or automatically based on key performance indicators (KPIs) within LTE network 100. Examples of KPIs include call drop rate and call block rate. Other KPIs are known to those of skill in the art. If analysis of KPIs identify a degradation in network performance, then optimization is triggered. Upon triggering of optimization, process 200 proceeds to the base incremental adjustment phase 205, which includes blocks 206 and 208.
In the base incremental adjustment phase 205, MRs are used in block 206 to determine a direction of adjustment to the antenna configuration parameters (i.e., whether to adjust an antenna configuration parameter up or down). Only the direction of change is determined and not the specific current or starting values of the antenna configuration parameters. The direction of adjustment may be determined in several ways. In one example, the direction of change for each antenna configuration parameter is determined by a blame action metric where a majority rule of UE devices 104 provide MRs indicating a certain change in a direction (up or down) for a respective parameter. In another example, each cell is labeled with a cell state based on the MRs received from UE devices 104. A cell may be given one or more labels identifying a state of the cell, such as an interferer, non-interferer, good/weak coverage, good/weak quality, overshooter, and non-overshooter. Here, interference refers to downlink interference in the cell. These labels are typically determined based on a comparison with one or more thresholds. The exact determination of these thresholds is beyond the scope of this disclosure. The labels given to a particular cell determine the change in direction for the antenna configuration parameters associated with that particular cell.
After each change in the antenna configuration parameters of the cells, the objective function for network optimization is calculated upon receiving new MRs in block 208 to determine if network performance improves. The objective function is based on a coverage parameter such as RSRP and a quality parameter such as signal to interference and noise ratio of the reference signal (RS-SINR). The objective function is determined by identifying those MRs having their RSRP parameter greater than a first threshold value and identifying those MRs having their RS-SINR parameter greater than a second threshold value. In some embodiments, the objective function is calculated according to the equation:
k1*number of (RSRP>threshold1)+k2*number of (RS-SINR>threshold2),
where k1 and k2 are non-negative numbers that sum to 1.0 and are determined in advance, e.g., by a system user (such as a network engineer) or automatically in a configuration routine. As long as network performance improves as indicated by an increase in the objective function, process 200 will loop through the base incremental adjustment phase 205 in blocks 206 and 208.
Upon identifying a decrease in the objective function in block 208, the base incremental adjustment phase 205 ends and the biased random adjustment phase 209 including blocks 210, 212, and 214 begins. In the biased random adjustment phase 209, simulated annealing is performed where random direction changes are made to the antenna configuration parameters and chaotic jumps are made to escape local minima positions in order to steadily improve the objective function toward a global optimum level. The biased random direction changes are accepted upon obtaining an improvement in the objective function. If the objective function decreases, a probability factor is used in determining whether to accept the random direction changes. Table I shows an example of a simulated annealing algorithm.
An example of the simulated annealing process that can be performed in the biased adjustment phase 209 is represented by the graph 500 in
As shown in
As described above, an analytics assisted fully automatic closed loop self-organizing network provides a general framework for solving large scale near real time network optimization problems (SON use cases) The optimization process disclosed herein learns online the environment via real-time feedback of UE MRs and cell KPIs using machine learning analytics to assign actionable metrics/labels to cells. The optimizing process self-adapts internal algorithm parameters (like metric thresholds) to changing circumstances (data) and learns the correct action rule for a given cell in a given state. Domain expertise and sophisticated processes (explorative and learning based optimization) are combined in phases for deciding joint corrective actions. This approach contrasts to other approaches that use ad hoc engineering knowledge based rules and unreliable models. The optimization process is robust to engineering parameter database errors and lack of knowledge of UE locations and has minimal modeling assumptions in contrast to expensive and unreliable UE location based optimization techniques.
The optimization process is self-driving in that it uses machine learned cell labels or blame metrics with engineering knowledge guided small step actions to extract quick initial gains in network performance. For further optimization, action is taken in a biased random manner that balances reward with exploration risk. The optimization process learns from mistakes or wrong decisions with time to eventually pick a best action for a given cell state. As a result, the overall process is fast and outperforms engineers fazed by multi-cellular complex interactions. The optimization process provides a cost effective solution by reducing the need for an army of optimization engineers and expensive drive testing and model calibration. The optimization process may be readily extended to optimize additional CCO parameters like channel power offsets and CCO & Load Balancing (CCO+LB) scenarios. The optimization process works for diverse scenarios, including adapting to changes in the cellular network and traffic, and is readily transferable and scalable to other communication domains and deployments.
Determining Cell States to Adjust Antenna Configuration Parameters
The process for optimizing cell specific antenna configuration parameters described above can use various cell states to perform base incremental adjustments. Discussed below are embodiments for determining such cell states according to this disclosure.
Though discussed in terms of a LTE network 100, process 1000 may be implemented in other network types including a Universal Mobile Telecommunications System (UMTS) network. The reference signal strength values in a UMTS network can include a Received Signal Code Power (RSCP) or Energy per Chip and Interference Level (Ec/Io). Other values derived from the MRs may also be used in the cell state determinations. Though MR information and especially periodic MR information offer the best sampling of the network, other sources of network data may be used including, but not limited to, channel quality indicator (CQI), key performance indicators (KPI), Performance Monitoring (PM) counters, and key quality indicator (KQI) metrics.
The values derived from MRs transmitted by UE devices 104 are used to perform several cell state determinations for each cell in the network. A coverage state analysis is performed at block 1006 to determine whether the cell provides good or weak coverage. An example of such a coverage state analysis is described in detail below with respect to
The cell signature (i.e., the combination of cell labels) for each cell may be used in block 1016 to automatically perform adjustments to the antenna configuration parameters in order to optimize for coverage, quality, and capacity, making use of domain knowledge for actions. For example, a network component may instruct a cluster of cells to adjust their cell configuration parameters (e.g., their antenna tilts, transmit power, or both) based on the cell signature assigned to each cell. As a particular example, if a cell is labeled as “good” coverage and “bad” quality, the transmit power of the cell may be increased. In another example, if a cell is labeled as “good” coverage and “strong” interference, the antenna tilt and/or transmit power of the cell may be decreased. In some embodiments, a combination of labels assigned to each cell and the current antenna tilt and/or RS power level of each corresponding cell are used to determine cell configuration adjustment. In the example where the cell is labeled as “good” coverage and “strong” interference, if the current antenna tilt level of the cell is “small”, then the antennal tilt of the cell may be decreased by a small amount, which is a pre-defined level of antenna tilt amount. In some embodiments, the network component may map a combination of the status labels assigned to a cell and the current antenna tilt and/or RS power levels of the cell to an action and assign the action to the cell. An action represents a change of one or more of a cell's configuration parameters, such as increase or decrease of the antenna tilt and/or RS power of the cell. An action may be assigned based on domain knowledge, experience or expertise in consideration of status labels assigned to a cell, current configuration of the cell, and other factors that may affect its cell status.
In some embodiments, instead of a network component controlling automatic adjustments, the adjustments may be performed semi-automatically by providing the cell signatures to field optimization engineers to guide them in making adjustments to the antenna configuration parameters in the correct direction.
In addition, cells with similar signatures may be clustered in block 1018 to build KPI models for predictive analysis. In general, KPI predictive models are algorithms that identify which KPIs are likely to be a root cause of a poor key quality indicator (KQI), such as packet loss rate. For example, in the context of Coverage Capacity Optimization (CCO), antenna uptilt may be increased when a poor KQI is associated with an RSRP level, as that would indicate the root cause is poor coverage, while antenna downtilt may be increased when a poor KQI is associated with interference, as that would indicate the root cause is poor coverage. KPI predictive models for groups of similar cells can predict network performance given predictors such as traffic and resource consumption variables. KPI predictive models may also predict gains/losses due to the application of a new feature on a given type or group of cells. KPI predictive models are built based on actual historic/field trial data and have demonstrated value for use in feature recommendations, analysis, and improvement. Additional information regarding KPI predictive models can be found in commonly-owned U.S. patent application Ser. No. 14/810,699 filed Jul. 28, 2015, the contents of which are incorporated herein by reference. Cell labels and signatures generated from MRs transmitted by UE devices 104 offer a way of grouping like cells to pool data together in building more powerful predictive analytics models.
To be considered in a weak interior/insufficient state 1108, the cell has a certain number/percentage of UE devices 104 that are served by the cell RSRP values below a coverage threshold. In addition, these UE devices 104 do not report a RSRP value associated with a neighboring cell that is within the coverage reference range. A UE device 104 with a low RSRP value for the best serving cell coupled with no significant RSRP value for a neighboring cell is most likely located near the interior of the cell.
In
In
Cell y4, being in Region Y, is relatively far away from cell x1 as compared to the other cells in Region X. Typically, a cell that is relatively far away would not tend to be ranked near the top of the RSRP value list. Thus, it would be typical for cell y4 to be ranked much lower in Table H (e.g., at least below cells x4 and x5, which are much nearer to cell x1). By being in the top six of RSRP values for UE device 104, cell y4 is a potential overshooter. In addition, a UE device 104 is considered in an overlapped state if a pair of cells appears in the top k values of the RSRP value list determined from the transmitted MR and/or the difference between RSRP values is less than a certain threshold. An example threshold value is 3 dB, though any threshold value may be used as desired. Consideration of multiple overlapped UE devices 104 in an area or network is given to identify potential overshooters as overshooters or not overshooters, which will now be described.
Outlier cell pairs from the norm indicate an overshooter potential. The outlier cell pairs, such as cell pair x1,y4, have an abnormally high number of overlapped UE devices 104 as compared to cell pairs of a similar inter site distance. Identification of an outlier cell pair indicates that at least one cell in the cell pair may be in an overshooter state. Thus, cells x1 and y4 are both overshooter candidates; however, it is not clear just from looking at
In accordance with another embodiment, an algorithm for determining an overshooter state will now be described. The algorithm uses quantities termed N( ), Serving_Radius( ) and Planned_Radius( ) which are defined as follows.
N(s) is the set of all neighbor cells in an “estimated” neighbor list of a given serving cell s. The set N(s) can be inferred or estimated (either making use of cell azimuth information or without it) based on information extracted from one or more MRs. At a later point in the algorithm, N(s) can also be used to calculate a feature normalization factor, which is the sum of all MRs served by cell s and its neighbors.
Serving_Radius(s,o) maps one or more topology parameters involving a pair of cells (serving cell s and neighbor cell o) to a radius of serving cell s in the direction of cell o.
Planned_Radius(s) of a cell s is the average or median of Serving_Radius(s,o) over a predetermined most-related subset of cells o in the neighbor list of s, i.e., all o in N(s).
The algorithm performs overshooter detection as follows. In one or more cell-level variables for cell c, a counter for the algorithm counts the following values:
(1) The number of MRs served by a cell c with bad serving cell RSRQ (e.g., worse than T3 dB) and with no other significant overlapping cells (i.e., RSRPs in the MR list that are within T2 dB of the serving cell) that are “far away,” as determined by the TA distance from c. Here, T3 is a predetermined RSRQ threshold separating good RSRQ of an MR (for the serving cell) from bad RSRQ and may be in a range of, e.g., [−20,0]. T2 is a predetermined RSRP offset to determine whether a pair of cells have significant overlap in an MR and may be in a range of, e.g., [9, 20]. TA distance is a parameter that is found in the MR and represents an estimated distance of a UE device that submits the MR from its serving cell.
(2) The number of MRs served by cell c with bad serving cell RSRQ (e.g., worse than T3 dB) and other significant overlapping cells present that are “far away” in terms of TA distance from c and such that the number of significant “far away” non-neighbor overlapping cells form a significant fraction (e.g., larger than Tn threshold) of the total number of overlapping cells. Here, Tn represents a threshold of a proportion of neighbors to the total number of cells seen in an MR for overshooter detection. As this is a ratio of small integers, only certain quantized values (e.g., between 0 and 1) make sense as threshold choices.
(3) The number of MRs not served by cell c with bad serving cell RSRQ (e.g., worse than T3 dB) and in which cell c is a significant overlapper and also a “far away” non-neighbor of the serving cell (that itself has been judged to be “not far away” from the MR).
This counter is then normalized with a blame normalization factor of c (i.e., the number of MRs served by c and all of its neighbors) and compared with a threshold Tos. Here, Tos is a predetermined threshold and may be between 0 and 1.
The cell c is declared an overshooter if the normalized overshoot counter of cell c exceeds Tos AND the fraction of MRs served by cell c with respect to an analysis cluster average per cell exceeds Tosormintraf. Here, Tosormintraf is a predetermined threshold that represents a minimum fraction of traffic (i.e., served MRs of a cell/analysis cluster average of MRs per cell) that a cell must carry before it is eligible to be declared as an overshooter. This latter condition on cell c's traffic is for stable statistical inference purpose. It is noted that the “far away” judgment above for an MR is based on its TA distance ratio (with respect to the serving cell's planned radius) exceeding Factor1Upper. Here, Factor1Upper represents a predetermined threshold to compare the ratio of the TA based distance of MR to a planned radius of the serving cell and decide whether MR is far away.
Normalization of the counters using the total traffic (served MRs) of the serving cell s and its estimated neighbors N(s) is important to ensure the setting of standard thresholds invariant to traffic or the specific set of cells being analyzed.
Thresholds used for overshooting, such as Tos, can be learned by offline analysis of real field trial or market data. If labeled examples (by domain expert engineers) of overshooters are used to guide threshold setting, it is called supervised learning; otherwise it is called unsupervised learning (that looks at the groupings of the metrics and outliers to determine thresholds). Similarly, if automatic algorithms learn the thresholds, it is called machine learning.
The embodiment of
The transceiver 2200 may transmit and receive signaling over any type of communications medium. In some embodiments, the transceiver 2200 transmits and receives signaling over a wireless medium. For example, the transceiver 2200 may be a wireless transceiver adapted to communicate in accordance with a wireless telecommunications protocol, such as a cellular protocol (e.g., long-term evolution (LTE), etc.), a wireless local area network (WLAN) protocol (e.g., Wi-Fi, etc.), or any other type of wireless protocol (e.g., Bluetooth, near field communication (NFC), etc.). In such embodiments, the network-side interface 2202 comprises one or more antenna/radiating elements. For example, the network-side interface 2202 may include a single antenna, multiple separate antennas, or a multi-antenna array configured for multi-layer communication, e.g., single input multiple output (SIMO), multiple input single output (MISO), multiple input multiple output (MIMO), etc. The configuration parameters of these antennas are adjusted based on the one or more states of the cell as determined above. In other embodiments, the transceiver 2200 transmits and receives signaling over a wireline medium, e.g., twisted-pair cable, coaxial cable, optical fiber, etc. Specific processing systems and/or transceivers may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device.
The secondary storage 2304 is typically comprised of one or more disk drives or tape drives and is used for non-volatile storage of data and as an over-flow data storage device if RAM 2308 is not large enough to hold all working data. Secondary storage 2304 may be used to store programs that are loaded into RAM 2308 when such programs are selected for execution. The ROM 2306 is used to store instructions and perhaps data that are read during program execution. ROM 2306 is a non-volatile memory device that typically has a small memory capacity relative to the larger memory capacity of secondary storage 2304. The RAM 2308 is used to store volatile data and perhaps to store instructions. Access to both ROM 2306 and RAM 2308 is typically faster than to secondary storage 2304.
Solutions for Large Scale Near Real Time Network Optimization Problems
Embodiments of this disclosure provide a general approach for solving large scale near real time network optimization problems (e.g., SON use cases). Embodiments of this disclosure may divide large networks into subgroups of smaller networks, and then optimize control decisions for the subgroups using a simulated annealing technique. Simulated annealing (SA) is a generic probabilistic meta-heuristic approach for solving global optimization problems that locate a good approximation to the global optimum of a given function in a large search space. In an embodiment, a method may dynamically identify and/or sort problematic cells at the global or sub-group level, and optimize cells based on priority such that the more problematic cells are optimized first. In some embodiments, self learning solutions are executed online based real-time feedback (e.g., UE MRs, KPIs, mistakes, rewards). Self learning solutions may also be executed offline based on a simulation.
Embodiments of this disclosure may provide techniques for avoiding local optimization to obtain globally optimal, or near globally optimal, solutions. This can be achieved through simulated annealing (SA) based guided random search via online learning from experience with the system and proactive offline optimization via simulators, accepting worse solution according to some criterions (e.g., Metropolis), etc.
Embodiments of this disclosure provide autonomous, closed-loop, adaptive, self-learning techniques that are robust across different network implementations. Embodiment approaches may utilize minimal modeling assumptions, and may be insensitive to lack of UE location information and/or inaccurate engineering parameters.
Control parameters for the cluster of cells may be adapted using an embodiment autonomous adaptive simulated annealing algorithm. Aspects of this disclosure provide autonomous adaptive simulated annealing algorithms. An embodiment algorithm is described by the following ten steps.
The first step comprises obtaining an initial solution (S) and an initial temperature (T0). In one embodiment, the starting temperature (T0) is selected based on an objective or cost function during an offline simulation. In another embodiment, the starting temperature (T0) is selected by increasing the starting temperature (T0) until an acceptance ratio exceeds a threshold, e.g., ninety percent, etc.
The second step comprises evaluating the cost of the initial solution using constraints (e.g., thresholds and weights for parameters (e.g., RSRP, SINR) used in objective function). This may include a normalization process that considers the cost per cell, the ratio of total cost to the total number of UEs, and the ratio of cost to number of UEs per cell. The second step may also consider the cost per cell or per area (e.g., all cells or partial group of cells such as neighbors), cost percentage (e.g., ratio of cost per cell to UE number per cell), and distribution (e.g., weighted by cell).
The third step comprises generating a new solution (Snew). The new solution may be generated using various adaptive (e.g., on-line) algorithm algorithms, including a uniform algorithm, a guided random search (e.g., Gaussian, Cauchy). The new solution may also be generated via an offline simulation combined with reinforcement learning. Generating the new solution may include selecting which cell(s) are to be adjusted. The cells may be chosen randomly, using a heuristic approach, e.g., sorted by cost to UE no per cell, first m, exponential probability), or a using a hybrid approach (e.g., part random and part heuristic). The number of cells that are optimized may fixed (e.g., X number of cells), or adaptive (e.g., based on the priority or severity of problematic cells). One or more parameters may be adjusted per iteration. Various change/action/perturbation mechanisms may be applied to adjust the parameters to be adjusted. For example, parameters may be adjusted in the positive or negative direction. The adjustments can use different step size adjustment parameters, e.g., small step, large step, absolute step size, relative step size, fixed step-size/range, adaptive step-size/range depending on the temperature at system/cell level or offline simulation, etc.
The fourth step includes evaluating the cost of the new solution. The fifth step includes determining whether to select the new solution as the current solution. This decision may consider various criteria, and may be probability-based and/or threshold based. For example, the decision may consider criteria related to the cost of the new solution, e.g., difference between the cost of new solution and optimal cost, cost per UE or per cell, etc.
The sixth step determines whether an equilibrium condition (# of iterations carried out before update T) has not been reached. If not, then the technique reverts back to step three. The seventh step comprises learning from experience gained during the first six steps, e.g., feedback from the system, mistake, reward, etc. This step may update models and/or parameters, such as control parameters (e.g., system/cell level temperate Tn), propagation models used by simulators, engineering parameters, parameters/models for identifying problematic cells, generating new solution and accepting new solution, etc.
The eighth step determines whether a backward/safeguard condition has been met. If so, the technique back-steps to a previous solution according to some criteria. This step may be helpful in avoiding locally optimal solutions. The ninth step determines whether a termination criterion has been reached according to some criteria. If not, then the technique reverts back to step three. The tenth step returns all solutions and relevant parameters, e.g., Sbest, Cbest, S, C, Sall and Call.
If the new solution is selected at the system level, then the method 2400 determines whether or not to select the new solution at the cell level. If the new solution is selected at the system level, then the method 2400 proceeds to learn from its experience. When learning from the solution, the method 2400 may record the solution, and update the models/parameters. After learning from the experience, the method 2400 determines whether to terminate the subgroup. If the subgroup is terminated, then the method 2400 re-selects cells to be optimized in the subgroup. If the subgroup is not terminated, then the method 2400 outputs the best solution, and then determines whether to terminate the SON session. If the new system is rejected at the system level or at the cell level, then the method 2400 reverts back.
Aspects of this disclosure provide techniques for generating new solutions for selected cells during SA-based self learning.
Thereafter, parameter(s) are adjusted based on a step size in the selected direction, after which a solution is generated. Next, the method 2500 determines whether to continue stepping in the current direction. If so, the parameters are adjusted once more in the selected direction, and a solution is generated. At some point, a determination is made to change the direction for the current cell, at which point parameters are adjusted in a different direction. Outputs are generated iteratively until a termination condition is reached, e.g., all directions have been considered, a threshold number of directions have been considered, etc. Thereafter, a new cell is selected, and directions for the new cell are evaluated to generate corresponding solutions. Cells in the selected subset are evaluated iteratively until another termination condition is reached, at which point a new solution is output. Termination conditions may occur after performance of a threshold number of iterations or rounds. Termination conditions may also include results-based criteria, e.g., negative gain, number of negative gains, number of rejections, etc.
If the new solution is selected at the system level, then the method 2800 determines whether or not to select the new solution at the cell level. If the new solution is selected at the system level, then the method 2800 proceeds to learn from its experience. When learning from the solution, the method 2800 may record the solution, and update the models/parameters. After learning from the experience, the method 2800 determines whether to terminate the subgroup. If the subgroup is terminated, then the method 2800 re-selects cells to be optimized in the subgroup. If the subgroup is not terminated, then the method 2800 outputs the best solution, and then determines whether to terminate the SON session. If the new system is rejected at the system level or at the cell level, then the method 2800 reverts back.
Aspects of this disclosure provide techniques for dynamically adjusting cell-specific radio frequency (RF) configuration parameters (e.g., electrical antenna tilt, reference symbol (RS) pilot power, etc.) to optimize an objective function. In one embodiment, RF parameters of a single cell are adjusted to maximize a per-cell performance metric. In another embodiment, RF parameters for two or more cells are jointly adjusted to maximize a network performance metric, e.g., QoE in terms of coverage, capacity, etc.
In some embodiments, parameters are adjusted incrementally online. Parameters may be adjusted jointly for the different cells in a cluster, and the resultant feedback from UE measurement reports (MRs) may be observed continually in a closed loop for long term optimization. Real UE feedback (e.g., no propagation model estimate) in MRs to update the objective function, to identify cell state indicators, and to make step-wise parameter adjustments. In some embodiments, the objective function does not depend on UE location information.
As long as MRs (RSRP, RS-SINR or RSRQ) from representative UEs are available for a given parameter change, the objective function can be evaluated accurately. As such, the objective function may not require correct antenna tilt and power information. System objective functions and cell level metrics may be aggregations of UE state information (e.g., MRs, etc.) that don't require individual UE location for evaluation. Even if initial configuration parameters are inaccurate, they can be still adjusted in a meaningful direction using the fact that parameter changes lead to measurable changes in cell/system metrics.
Aspects of this disclosure provide adaptive simulated annealing (SA) techniques that combine online optimization of the real network via closed-loop SA-based guided random search and proactive offline optimization of relevant parameters and/or actions by efficiently exploring the solution space via simulated networks (e.g., Netlab, Unet) iteratively, in order to, learn from experiences, such as mistakes and rewards. This may allow actions to be selected based on the real-time feedback from the system. Embodiments may dynamically select and evolve the best possible actions for online optimization, which may allow the system to adapt to new unforeseen conditions or situations. Embodiments may also update the models and parameters used by SA and/or simulators based on online feedback from the system in real time, to provide fast convergence and to escape the trap of local optimization.
Aspects of this disclosure also provide embodiment SON optimization techniques that utilize an iterative learning approach to adjust wireless network configuration parameters. In particular, a controller iteratively generates and evaluates global solutions over a sequence of iterations. During this process, the controller uses experience obtained from evaluating global solutions during previous iterations when generating global solutions in subsequent iterations. This may be achieved by using the evaluation results to update parameters (e.g., topology model, traffic/usage patterns) of a heuristic/adaptive algorithm used to generate the global solutions. In this way, the controller learns more about the network (e.g., topology, conditions, traffic patterns, etc.) during each successive iteration, which ultimately allows the controller to more closely tailor global solutions to the network. As used herein, the term “global solution” refers to a set of local solutions for two or more wireless network coverage areas in a wireless network. Each “local solution” specifies one or more wireless configuration parameters for a particular wireless network coverage area. For example, in the context of CCO, a local solution may specify an antenna tilt of an access point in a wireless network coverage area and/or a transmit power level (e.g., uplink, downlink, or otherwise) for the wireless network coverage area. In some embodiments, the global solutions are evaluated during online implementation. In other embodiments, the global solutions are evaluated during offline simulation. In yet other embodiments, some global solutions are evaluated offline while others are evaluated online. For example, the best performing global solution obtained from a given number of iterative simulations may be implemented during an online test period. Global solutions may be generated in a manner that seeks to improve performance metrics of the worst performing cells. For example, wireless configuration parameters for a global solution may be selected in order improve performance metrics in wireless coverage areas associated with the highest costs.
Various techniques can be used to evaluate the global solutions. In some embodiments, each global solution is evaluated to determine whether it satisfies one or more global performance criteria, e.g., an overall cost, an average per-cell cost, etc. If the global solution does not satisfy the global performance criteria, then the controller may revert back to a previous global solution, e.g., a lowest cost global solution computed during an earlier iteration. If the global solution does satisfy the global performance criteria, then the controller may evaluate each local solution specified by the global solution to determine which local solutions satisfy corresponding local performance criteria. Different local performance criteria may be used to evaluate local solutions for different coverage areas. Local solutions that fail to satisfy their corresponding local performance criteria may be replaced with previous local solutions, e.g., a default local solution, a local solution defined by a global solution computed in a previous iteration, etc. In some embodiments, the global performance criteria is a relative benchmark established during a previous iteration (e.g., the lowest cost global solution computed prior to the current global solution), while the local performance criteria is an absolute benchmark, e.g., a minimum level of performance for a given cell.
In some embodiments, cost functions are used to evaluate global solution. The cost may be an overall cost for a set of coverage areas or an average per cell cost for a set of coverage areas. In the context of coverage and capacity optimization, a cost function for a global solution may include an RSRP parameter and an interference parameter, e.g., a SINR level, etc. In an embodiment, the RSRP component corresponds to a number of users reporting, or projected to report, an RSRP measurement below an RSRP threshold during a fixed period, and the interference component corresponds to a number of users reporting, or projected to report, an interference measurement above an interference threshold during the fixed period. In such an embodiment, the following cost function may be used: Cost=0.5*Num_UE(RSRP≦Thr_rsrp)+0.5*Num_UE(INT≧thrint), where Num_UE(RSRP≦Thr_rsrp) is the number of UEs reporting, or projected to report, RSRP levels below an RSRP threshold during a fixed period, and Num_UE(INT≧thr_int) is the number of UEs reporting, or projected to report, interference levels below an interference threshold during the fixed period. In such an example, the interference levels may correspond to SINR levels obtained by measuring reference signals.
In some embodiments, some or all of the functions or processes of the one or more of the devices are implemented or supported by a computer program that is formed from computer readable program code and that is embodied in a computer readable medium. The phrase “code” includes any type of computer code, including source code, object code, and executable code. The phrase “computer readable medium” includes any type of medium capable of being accessed by a computer, such as read only memory (ROM), random access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), or any other type of memory. Upon execution, the computer program may detect core traces, convert the core traces into a hierarchical format, generate the gene function database, and determine preemption costs associated with the gene functions.
Adjusting Cell Configuration Parameters Based on Measurement Reports
Aspects of the present disclosure provide methods and apparatus for adjusting configuration parameters of a plurality of cells in a wireless network based on measurement reports (MRs) received during a data collection period of the wireless network, so that coverage and capacity of the wireless network may be improved. A configuration parameter of a cell may be an antenna tilt or a transmit power.
In some embodiments, labels are assigned to the plurality of cells based on the MRs and configuration parameters of the plurality of cells are adjusted according to the labels. In one embodiment, each of the plurality of cells are assigned two or more labels based on one or more MRs collected in the wireless network. The two or more status labels are associated with different cell status categories. In one embodiment, a cell status may be categorized as a coverage status, a quality status, an overshooter status, or an interference status. Each of the cell status categories may be further classified into different cell status types. For example, a quality status is classified into types of {good, bad}, or an interference status is classified into types of {strong, medium, weak}. A cell may be mapped to one of the cell status types corresponding to a cell status category based on MRs and is labeled by that type and category. A combination of the labels assigned to each of the cells in the wireless network reflects the current status of each corresponding cell with respect to different cell status categories, and is used to determine adjustment of one or more configuration parameters of each corresponding cell, for improving cell performance. In one embodiment, domain expertise, knowledge and experience are used to determine what actions to take to adjust the cells' configuration parameters based on the combinations of labels.
In some embodiments, blames are assigned to the plurality of cells based on the MRs, and configuration parameters of the plurality of cells are adjusted according to the blames. Blames are associated with MRs that do not satisfy a pre-defined set of performance criteria, which are referred to as bad or unsatisfactory MRs, and indicate responsibilities that one or more cells should take for the bad MRs. In one embodiment, bad MRs are identified from the collected MRs, and each bad MR is associated with one unit of blame. For each bad MR identified in the wireless network, fractional units of blame are assigned to responsible cells. If one cell is fully responsible for a bad MR, the cell is assigned a unit of blame. Thus the joint impacts of cell performance issues, such as problems related to coverage, quality or interference, resulted from cell's configuration is captured into the blames assigned to the cell corresponding to bad MRs in the wireless network. Blames assigned to each of the plurality of cells are used to determine adjustment of one or more configuration parameters of each corresponding cell, in order to improve status of each corresponding cell. In one embodiment, domain expertise, knowledge and experience are used to determine what actions to take to adjust the cells' configuration parameters based on the blames assigned to the cells.
In some embodiments, blames are classified into different blame categories for determining configuration parameter adjustment of the cells. The different blame categories indicate different manners to adjust one or more configuration parameters of the cells in order to reduce the values of blames. In one embodiment, a blame is classified into an up-blame or a down-blame, indicating an increase or a decrease of a configuration parameter is needed in order to reduce the blame value. In one embodiment, blames assigned to each of the cells are classified into an up-blame or a down-blame, and a sub-total up-blame value and a sub-total down-blame value are calculated by summing all up-blames and all down-blames, respectively, assigned to each corresponding cell. In one embodiment, the sub-total up-blame value and the sub-total down-blame value of a cell are used to calculate an up-action probability and a down-action probability of the cell. A configuration parameter of the cell may be increased when the up-action probability is greater than a first threshold, and may be decreased when the down-action probability is greater than a second threshold.
A wireless communications network may include a cluster of cells associated with base stations, as illustrated in
Conventional SON methods for CCO, such as the automatic cell planner (ACP), typically require costly drive tests and human verification to configure RF configuration parameters of a cell. For example, drive test (MT) or minimization of drive test (MDT) data, along with user equipment (UE) geo-location (AGPS) and accurate antenna configuration parameters are required to achieve an accurate propagation modeling based on which cell configuration parameters are adjusted. Additionally, these methods also require significant manual effort to be applied for configuring different types of cells, which results in high expenditure and complicated configuration process.
Aspects of the present disclosure provide methods and apparatus to generally optimize a cluster of cells in terms of coverage and capacity, by utilizing measurement reports (MRs) obtained from UEs served by the cells and experts' domain knowledge to determine configuration parameter adjustment of the cells. Embodiments of the present disclosure do not reply on UE AGPS and do not require accurate antenna configuration parameters of the cells.
A measurement report generally includes measurement results that a UE measures and provides for delivery to its serving cell regarding various measurement items the serving cell requests. For example, a measurement report includes measurement results about signal strength or quality of the serving cell. Typically, a measurement report includes a reference signal received power (RSRP) and a reference signal receive quality (RSRQ). A RSRP generally provides information about strength of a received reference signal, and a RSRQ indicates quality of a received reference signal. Measurement and calculation of a RSRQ may be based on a RSRP and a received signal strength indicator (RSSI). A RSSI includes information about a reference signal power from a serving cell of a UE as well as co-channel interference and noise, and can help in determining interference and noise information. As used herein, MRs sent by UEs served by a cell is referred to as MRs of the cell. Embodiments of this disclosure use RSRP and RSRQ reported to indicate reference signal strength and reference signal quality of a cell, respectively. However, the use of RSRP and RSRQ are merely for illustrative purpose, and any other measures for reference signal strength and reference signal quality of a cell may also be used. For example, a signal to interference and noise ratio (SINR) may be used to indicate reference signal quality of a cell. One of ordinary skill in the art would recognize many variations and alternatives of measures for reference signal strength and reference signal quality of a cell. These variations and alternatives are all within the scope of this disclosure without departing from the spirit of this disclosure.
A cell may be characterized by its cell status in different categories. For examples, a cell status may be a coverage status, a quality status, an interference status, or an overshooter status, etc. In some embodiments, cell statuses may be estimated or indicated based on information included in MRs. For example, a RSRP, or any other measure for reference signal strength, may be used to indicate coverage status of a cell at its edge, and a RSRQ, or an SINR, or any other measure for reference signal quality, may be used to indicate quality status within a cell coverage area. In some embodiments, a cell status in a category may be further classified into different status types. Status types corresponding to a cell status category may be, as an example, represented by {type 1, type 2 . . . type n}. For example, a coverage status is classified into types of {good, weak, weak edge only, weak interior/insufficient only, weak edge and interior/insufficient}. In some embodiments, a cell's coverage status is “good” when an average RSRP included in MRs of the cell is greater than a first threshold, and the cell's coverage status is “weak” when the average RSRP is less than a second threshold. A coverage status type of “weak interior only” may indicate that signal strength within a cell is less than a threshold, and “insufficient only” may indicate there is a gap between two cells and UEs in the gap are not sufficiently covered. A coverage status type of “weak edge and interior” may indicate signal strength within and at the edge of the cell is less than a threshold. In an example, a quality status may include types of {good quality, bad quality}.
In another example, an overshooter status is classified into two types: {yes (i.e., with overshooter), no (i.e., without overshooter)}. In another example, an interference status may be categorized into types of {interferer zero, interferer one, interferer more}, or {none, single, multiple} depending on the number of interferee cells (e.g., victim cells of an interference) affected. Alternatively, an interference status of a cell, which is identified as an interferer, may have interference status types of {strong interferer, medium interferer, weak interferer} based on the number of UEs/MRs which are affected by the interferer and/or the number of interferee cells. One of ordinary skill in the art would recognize many variations and alternatives for classifying cell status categories and for classifying a cell status into different types corresponding to a category. The terms of “label” and “status label” are used interchangeably throughout this disclosure.
A cell may be mapped to one of the status types corresponding to a cell status category utilizing information in MRs, and is labeled by that type and category. For example, a cell may be assigned a label of “weak” corresponding to its coverage status, and/or be assigned a label of “yes” corresponding to its overshooter status based on RSRP information included in MRs obtained. In one embodiment, a label assigned to a cell may be referred to as a problematic label for it indicates a performance, e.g., cell capacity or coverage, problem of the cell. For example, a label of “bad” quality status indicates there may be a quality issue in the cell, and a label of “strong” interference status indicates that a cell may cause interference problems to other cells. Thus labels assigned to cells provide information indicating problems of cells and also guides to adjust the cells' configurations. In some embodiments, labels assigned to a cell are used to determine whether and how the cell's configuration parameters are adjusted, in expectation of improving one or more labels of the cell, and consequently improving the cell performance and MRs received in future.
At step 3004, each of the cluster of cells is assigned one or more status labels associated with different cell status categories based on the MRs, and optionally, the MDT/DT data. For example, each cell is assigned two labels corresponding to the coverage status and interference status. In another example, each cell is assigned four labels corresponding to the coverage status, the quality status, the interference status, and the overshooter status. What cell status category will be used to label the cells may depend on many factors, such as user experience, system load, number of user equipments, or impacting problems to be solved in the network. Since each cell status category may include different types, there may be various combination of labels assigned to a cell corresponding to the cell status categories used. For example, a cell may be labeled as “good” coverage, “bad” quality, and “no” overshooter. Alternatively, the cell may be labeled as “weak” coverage, “good” quality and “no” overshooter.
At step 3006, the network component estimates the current antenna tilt and/or RS power for each cell in the wireless network. In one embodiment, the current antenna tilt or RS power of a cell may be represented by: (original antenna tilt/RS power+change value). The original antenna tilt/RS power represents the antenna tilt value/RS power value of the cell at a point of time when the cell's configuration is set as original, and the change value represents increase or decrease of the cell's tilt or RS power with respect to its original value. In one example, the original values of each cell's antenna tilt and RS power and their change values over the time may be stored in a database. Thus a current value of a cell's antenna tilt or RS power may be obtained by adding the original value and a previous change value. In one embodiment, the estimation of the current antenna tilt or RS power for a cell may indicate a level of a value compared with the cell's original antenna tilt or RS power. For example, a cell's current antenna tilt may be estimated as “small”, which indicates that the current antenna tilt is small compared with the original antenna tilt. In another example, a cell's current RS power may be estimated as “large” indicating the current RS power is large compared with the original RS power. In one embodiment, the level of a tilt/RS power value may be classified as “large”, “moderate”, “small”, and “zero” which indicates there is no change. A person of ordinary skill in the art would recognize many variations for classifying the levels. In one embodiment, a cell's estimated antenna tilt and RS power may be represented by a vector: [antenna tilt level, RS power level]. For example, a cell's estimated antenna tilt and RS power may be [small, 0], [large, moderate], etc. The antenna tilt and RS power may also be taken into consideration when determining cell configuration parameter adjustment. For example, when a cell is assigned a label of “bad” quality and increase of transmit power of the cell is desired. However, if the current RS power is already “large”, the transmit power of the cell may not be adjusted.
At step 3008, the network component instructs the cluster of cells to adjust their cell configuration parameters, such as their antenna tilts, transmit power, or both, based on status labels assigned to the cell. In one embodiment, a combination of labels assigned to each cell may be used to determine cell configuration parameter adjustment. For example, if a cell is labeled as “good” coverage, and “bad” quality, the transmit power of the cell may be increased. In another example, if a cell is labeled as “good” coverage and “strong” interference, the antenna tilt and/or transmit power of the cell may be decreased. In another embodiment, a combination of labels assigned to each cell and the current antenna tilt and/or RS power level of each corresponding cell are used to determine cell configuration adjustment. In the example where the cell is labeled as “good” coverage and “strong” interference, if the current antenna tilt level of the cell is “small”, then the antennal tilt of the cell may be decreased by a small amount, which is a pre-defined level of antenna tilt amount. Alternatively, the antennal tilt of the cell may not be adjusted, and the transmit power of the cell may be decreased according to its current RS power level. In one embodiment, the network component may map a combination of the status labels assigned to a cell and the current antenna tilt and/or RS power levels of the cell to an action and assign the action to the cell. An action represents a change of one or more of a cell's configuration parameter, such as increase or decrease of the antenna tilt and/or RS power of the cell. An action may be assigned based on domain knowledge, experience or expertise in consideration of status labels assigned to a cell, current configuration of the cell, and other factors that may affect its cell status. Steps of 3002-208 of the method 3000 may be performed iteratively, with each cell's configuration parameter(s) adjusted in multiple “small steps”, for improving labels assigned to the cells.
In some embodiments, tables are used to indicate status labels and actions assigned to cells.
The embodiment methods illustrated in
In some embodiments, a concept of “blame” is provided to indicate a responsibility a cell may take for each MR that does not satisfy a performance criterion of a wireless communications network. Such a MR may be referred to as a “bad” or “unsatisfactory” MR. In some embodiments, the system may pre-define a set of performance criteria. If a MR does not satisfy one of the set of criteria, the MR is marked as a bad or unsatisfactory MR; otherwise, it is a good MR. For example, the set of performance criteria includes a coverage criterion, e.g., having a RSRP, or any other measure for reference signal strength, greater than a first threshold, and a quality criterion, e.g., having a RSRQ, or any other measure for reference signal quality, greater than a second threshold.
When a RSRP included in a MR is not greater than the first threshold, the MR does not satisfy the coverage criterion and is bad, or when a RSRQ in the MR is not greater than the second threshold, the MR is bad. A person of ordinary skill in the art would recognize many variations and alternatives for defining the performance criteria by which MRs may be identified as good or bad. For each bad MR, there should be one or more cells responsible for such an MR and thus taking the blame for it, and a blame is assigned to a cell if the cell takes at least a partial responsibility for a bad MR. Each assigned blame may be associated with a blame value. In one embodiment, each bad MR is associated with one unit of blame. If one cell is fully responsible for the bad MR, this one cell takes one unit of blame. If multiple cells are responsible for the bad MR, these multiple cells share the one unit of blame. The cells may include a serving cell of the UE reporting the bad MR, a non-co-site neighbor cell of the serving cell, or other cells in the system.
In one embodiment, the cells 3320 and 3330 may also be assigned blames for the bad MR 3322, with each having a blame value of “0”. Cells 3310, 3320 and 3330 are responsible for the bad MR 3324 reported by the mobile device 3314, and share the responsibility equally, so each of the cells 3310, 3320 and 3330 are assigned ⅓ unit of blame. In another word, each of the cells 3310, 3320 and 3330 is assigned a blame with a value of “⅓”. This may be the case when cells 3320 and 3330 cause interference on the mobile device 3314, while the cell 3310 has a low transmit power. The mobile device 3316's good MR 3326 is good and thus does not impose blames on any of the cells. In this example, the total blame value assigned to all the cells in the wireless communications system equals the number of bad MRs received, that is, (1+⅓+⅓+⅓)=2 (i.e., two bad MRs 3322 and 3324).
By using the concept of blame, responsibilities of a cell for causing bad MRs in the wireless communications network are captured and identified, based on which corresponding adjustment to the cell's configuration parameters may be determined in order to reduce the blame values of the cell and consequently the number of bad MRs, thus the entire network performance is improved.
At step 3404, for each of the identified bad MRs, the method 3400 assigns fractional units of blame to responsible cells. Thus for each of the bad MRs, a cell is assigned a blame associated with a blame value. The blame value may be “1” when the cell is fully responsible for the corresponding bad MR, may be “0” when the cell is not responsible for the corresponding bad MR, and may be between 0 and 1 when the cell is partially responsible for the corresponding bad MR. A blame corresponding to a bad MR may be assigned to a cell based on information included in the bad MR, such as a RSRP list, RSRQ and timing advance, topology information of the cell, and other information collected, such as MDT data. At step 3406, the method 3400 instructs one or more of the cells to adjust one or more of their configuration parameters based on their assigned blame values. Example configuration parameters include an antenna tilt, and a power parameter, such as a transmit power, etc. In one embodiment, blames assigned to a cell may be used to label the cell corresponding to different cell status categories, such as a coverage status or a quality status, taking into consideration of information, e.g., included in MRs received in the cell. The cell's configuration parameter may then be adjusted based on labels assigned to the cell, as illustrated in
In some embodiments, a blame assigned to a cell according to a bad MR may be classified into different blame categories. The blame categories are associated with different manners for adjusting one or more cell configuration parameters in expectation of reducing the value of the blame and thus the number of bad MRs. In some embodiment, a blame may be classified into an up-blame or a down-blame. An up-blame or a down-blame indicates increase or decrease of one or more cell configuration parameters is desired for reducing the value of the up-blame. So the up-blame and down-blame corresponds to an increase-action (or up-action) and a decrease-action (or down-action), respectively, for adjusting one or more cell configuration parameters. In one example, a blame assigned to a cell is classified as an up-blame if increasing the antenna tilt, transmit power, or both of the cell is expected to reduce the associated blame value, and the blame is classified as a down-blame if decreasing the antenna tilt, transmit power, or both of the cell is expected to reduce the cell's blame values. For example, a cell may be assigned a down-blame with a value “⅕” or an up-blame with a value “1”. In another example, a blame may be classified into three categories, where the first category indicates increase of both antenna tilt and transmit power are desired, the second category indicates decrease of both antenna tilt and transmit power are desired, and the third category indicates increase/decrease of an antenna tilt and decrease/increase of a transmit power. A person of ordinary skill in the art would recognize many variations and alternatives for defining the blame categories and adjusting a cell's configuration parameters.
Classifying blames assigned to cells into different categories is helpful in determining how configuration parameters of the cells may be adjusted based on blames.
At step 3506, the method 3500 calculates, for each cell, a sub-total blame corresponding to each of the blame categories. In some embodiments, the method 3500 sums the fractional units of blame that are assigned to each cell and that fall into a corresponding blame category, by which a sub-total blame value of the corresponding blame category is obtained. Taking the up-blame and down-blame categories as an example, a sub-total up-blame value for a cell is calculated by summing all up-blame values assigned to the cell, and a sub-total down-blame value for the cell is also calculated by summing all down-blame values assigned to the cell. Thus for each of the cells, two sub-total blame values are calculated, which include a sub-total down-blame value and a sub-total up-blame value.
At step 3508, the method instructs one or more of the cells to adjust their configuration parameters based on the sub-total blame values in different blame categories. In some embodiments, action probabilities may be calculated and used to determine how a cell's configuration parameters are adjusted. For example, when a sub-total down-blame value and a sub-total up-blame value are obtained for each of the cells, an up-action probability Pup-action and a down-action probability Pdown-action may be calculated for each cell as follows:
P
up-action=(sub-total up-blame value)/(total blame value)
P
down-action=1−Pup-action
where the total blame value equals (sub-total down-blame value+sub-total up-blame value), the up-action probability indicates a probability of a need for a cell to increase one or more of its configuration parameters for reducing its blames (responsibilities) for bad MRs, and the down-action probability indicates a probability of a need for the cell to decrease its configuration parameters in order to reduce its responsibilities for bad MRs. In one embodiment, the up-action probability and the down-action probability are compared with a pre-defined up-action threshold TPup and a pre-defined down-action threshold TPdown, respectively, to determine actions to be taken to adjust a cell's configuration parameters. For example, if the up-action probability of a cell is greater than the TPup, a configuration parameter of the cell, such as the antenna tilt or transmit power of the cell, may be increased. If the down-action probability of a cell is greater than the TPdown, a configuration parameter of the cell, may be decreased. Generally, the pre-defined up-action threshold TPup and the pre-defined down-action threshold TPdown should be greater than or equal to 0.5. As such a cell is only eligible for adjusting its configuration parameters by either increasing or decreasing the configuration parameters. If neither of the up-action probability and the down-action probability of a cell is greater than the corresponding threshold TPup or TPdown, then no action will be taken to adjust the cell's configuration parameters.
At step 3704, for each MR of a cell, the method 3700 determines whether the MR satisfies a cell coverage criteria, e.g., whether a RSRP, or any other measure for reference signal strength, included in the MR is greater than or equals a first threshold T1. If the RSRP is greater than or equals the first threshold T1, then the method 3700 continues to determine whether the MR satisfies a cell quality criteria at step 3706, e.g., whether a RSRQ, or any other measure for reference signal quality, included in the MR is greater than or equals a second threshold T2. If the MR also satisfies the quality criteria, i.e., the RSRQ is greater than or equals the second threshold T2, the MR is marked as a good MR at step 3708 and no blame will be assigned to any cell for this good MR. The method then goes back to step 3704 to determine whether a next MR of the cell is good or bad. The method may record the number of good MRs for each cell, which may be used to estimate performance of the wireless network.
If the MR does not satisfy the cell coverage criteria at step 3704, or if the MR satisfies the cell coverage criteria at step 3704 but fails to satisfy the cell quality criteria at the step 3706, the MR is marked bad at step 3710. At step 3712, the method 3700 classifies the bad MR into one of multiple MR categories, and assigns blames for the bad MR to responsible cells. Bad MRs are classified into different categories so that responsible cells may be identified and appropriate blame values may be assigned. In one embodiment, a bad MR is classified into four categories: weak coverage with non-co-site neighbor, weak coverage without non-co-site neighbor, poor quality with non-co-site neighbor, and poor quality without non-co-site neighbor. The weak coverage indicates that the MR fails the cell coverage criteria, and the poor quality indicates that the MR fails the cell quality criteria.
A non-co-site neighbor of a cell is a neighbor of the cell which does not share the same base station with the cell. When a bad MR of a cell includes RSRP information of its neighbors, i.e., the cell has non-co-site neighbors, interference or overshooting of its neighbors may be considered when assigning blames for this bad MR. Each MR category may be further classified into different sub-categories, so that blames may be assigned appropriately to responsible cells. For example, the weak coverage without non-co-site neighbor is classified into sub-categories of weak interior and insufficient coverage. Domain expertise, knowledge and experience may be used to define different MR categories and sub-categories. A person of ordinary skill in the art would recognize many variations, alternatives and modifications for categorizing bad MRs for blame assignment.
Blames for a bad MR may be assigned to responsible cells based on information included in the MR, such as the RSRP list, RSRQ, timing advance which may indicate distance of the UE reporting a bad MR to the cell (referred to as distance of the bad MR), topology information of the cell, information about the cell antenna, such as the main lobe radius and planned radius, and other information.
In an example when a bad MR is in a category of weak coverage with non-co-site neighbor, if the timing advance of the bad MR indicates that the distance of the bad MR falls in the downblame zone 3830, e.g., when the distance is less than a pre-defined down-blame distance threshold, a down-blame with a blame value “1” may be assigned to the cell. This is because the cell needs to decrease its antenna tilt in order to provide sufficient coverage to the bad MR (i.e., the UE reporting the bad MR) which is closer to the antenna 3810 of the cell. If the timing advance of the bad MR indicates that the distance of the bad MR falls in the upblame zone 3850, an up-blame with a blame value “1” may be assigned to the cell, indicating an increased antenna tilt of the cell is desired for providing coverage to a MR far away from the antenna 3810. If the distance of the bad MR falls in the non-action zone 3840, the blame is not assigned. In this case, the blame for the bad MR is unknown, since it is not clear what causes the bad MR.
In some embodiments, for various reasons, a blame corresponding to a bad MR of a cell is left un-assigned due to uncertainty or unknown root causes. In one embodiment, this un-assigned blame is accounted for in the total blame of the cell (so that the total blame value of the cell is conserved, and the total blame value of the wireless network is conserved). In another embodiment, the un-assigned blames of a cell are divided as additional up-blames and down-blames according to a ratio of the up-blames and down-blames to the total assigned blame value of the cell, and are allocated to the final sub-total up-blame value and the final sub-total down-blame value of the cell. For example, a cell has n1 un-assigned blames (i.e., the un-assigned blame values are n1), a sub-total up-blame value x1 and a sub-total down-blame value y1. The total blame value of the cell is (n1+x1+y1), and the total assigned blame value of the cell is (x1+y1). The final sub-total up-blame value may be calculated by: x1+[x1/(x1+y1)]*n1, and the final sub-total down-blame value is equal to (total blame value of the cell−final sub-total up-blame value), which is: (n1+x1+y1)−{x1+[x1/(x1+y1)]*n1}. This ensures that the up-action probability and the down-action probability of each cell remains the same regardless of whether the un-assigned blames are re-assigned or not.
Referring back to
Aspects of this disclosure may provide advantages over conventional automatic cell planner (ACP) solutions, which typically require minimization of drive test (MDT) data with UE geo-location (AGPS) and accurate antenna configuration parameters to achieve accurate propagation modeling. Notably, systems for providing UE geo-location information and accurate antenna configuration parameters may be costly and require human verification. Accordingly, embodiment techniques provide cost savings by reconfiguring RF parameters without relying on UE geo-location and/or antenna configuration feedback information.
Aspects of this disclosure may maximize CCO objective functions under constrained inputs. In some embodiments, techniques may utilize continuous closed loop measurement report (MR) feedback from a network. Drive tests (DT) and MDT data may also be used. Embodiment techniques may adjust RF configuration parameters without access to UE geo-location (AGPS), and without access to accurate antenna configuration parameters. Hence, embodiment techniques may offer similar accuracy to ACP CCO, but at a much lower cost.
Aspects of this disclosure provide a SON CCO algorithm. Embodiment algorithms may calculate cell level features or blame metrics from MRs. Embodiment Algorithms may label coverage/quality/interference/overshoot statuses that provide mappings for “intuitively correct” adjustment decisions based on domain knowledge applied simultaneously on multiple cells. This may allow the algorithm to substantially increase performance in a relatively short time frame. Embodiment algorithms may characterize a cell's coverage status as good, weak, weak edge only, weak interior/insufficient only, weak edge and interior/insufficient. Embodiment algorithms may characterize a cell's interference status as multiple interferer, single interferer, or non-interferer.
Aspects of this disclosure may provide a first phase of analytics assisted SON algorithms for CCO to achieve machine learned cell labels in addition to engineering knowledge guidelines for iterative action steps. This phase may be based at least partially on cell level features abstracted from MR data, labels or metrics of blame (e.g., multi-interferer, single/medium interferer, over-shooter, etc.), which may be gleaned using unsupervised or semi-supervised learning methods. Aspects of this disclosure may provide a feedback loop for UE MRs that sample the network state.
A clustering, machine learning algorithm that processes real-time local data and historical global data that represents key cell features as points in a multi-dimensional space, and which groups similar points together. Aspects of this disclosure may provide cell bottleneck labeling or blame metric assignment. A Cell (a point) is given a label based on cluster membership, e.g., non-interferer vs. multiple interferer, non-over-shooter vs. over-shooter. Alternatively, numerical blame metric and related blame action metric may be assigned.
Aspects of this disclosure may provide action rules that govern small step changes to cell parameters (power/tilt) in the “correct” direction. In white-box phase, engineering knowledge guides small step action based on machine learned cell labels or blame action metrics. Actions are designed to increase the score with high probability initially.
Aspects of this disclosure may provide an AA SON Approach that uses automatic software programming: to learn (online) the environment via real-time feedback (of UE MRs and cell KPIs) and analytics; to abstract the UE MR level information to cell level labels and metrics mapping to domain expertise guided incremental actions for optimizing configuration. Aspects of this disclosure provide a generalizable framework that is extendable to a variety of use cases, e.g., load balancing. Embodiment algorithms may provide significant improvement in 10-20 iterations. Labeling and blame metrics show good correlation with actual interferers, over-shooters, coverage/quality challenged cells etc.
Embodiment algorithms may calculates cell level features or blame metrics from MRs, as well as label cells based on their coverage/quality/interference/overshoot status.
Aspects of this disclosure provide an embodiment algorithm (version 2). The embodiment algorithm may be configured to record all positive NormBAM(j) metrics gathered from multiple scenarios in a global database and cluster them (1-D) into different levels, e.g., three levels. The embodiment algorithm may also be configured to map positive clusters to actions: The lowest magnitude clusters may be mapped to no action; the middle clusters may be mapped to a single parameter action (e.g., antenna down-tilt) by one step, and the highest clusters may be mapped to multiple or joint parameters (e.g., down-tilt and transmit power reduction) by one step each. The embodiment algorithm may also cluster negatives in a global database. Specifically, the embodiment algorithm may record all negative NormBAM(j) metrics in the global database and cluster them into multiple levels, e.g., three levels.
The embodiment algorithm may also map negative clusters to actions. For example, lowest magnitude clusters may be mapped to no action; middle clusters may be mapped to a single parameter (e.g., antenna up-tilt); and high clusters may be mapped to joint parameters (e.g., antenna up, power-up). The embodiment algorithm may also filter actions based on a current state. For example, the final action may be an adjustment of the action based on the above cluster mapping, and may depend on the coarse current estimated state (configuration). If a single parameter action is suggested (down-tilt or power-down), and current total tilt is estimated to be already high then the action may adjust the power. If current power is also already low, then no actions may be taken.
The embodiment algorithm may divide problems UEs/MRs into the following mutually exclusive categories:
Category 0 UEs/MRs have a weak coverage problem (best serving RSRP<−105 dBm). Category 0 UEs/MRs may be further divided into category 0.1 UEs/MRs that have weak edge coverage; and Category 0.2 UEs/MRs are those that are not in Category 0.1. Category 0.1 UEs may be defined as the second best RSRP>=best serving RSRP−6 dB. One unit of blame for UE u in category 0.1 is assigned to its own best serving cell i (self blame). The sign is positive because weak edge coverage is mitigated by up-tilt and thus have weak interior/insufficient coverage. One unit of blame may be assigned for each UE in category 0.2 based on its own best serving cell (e.g., self-blame). Typically weak interior versus insufficient coverage results in opposite actions (down-tilt vs. up-tilt). If COD triggers COC on a cell, then weak insufficient coverage can result with a positive sign for blame with action of up-tilt/up-power for mitigation.
Category 1 UEs/MRs are those not in Category 0 that have the problem of poor quality (e.g., SINR<3 dB) due to a combination of serving cell weakness and other cell interference and is further divided into sub-categories: Initially, self blame S(RSRP(i)) is assigned to serving cell i depending on its strength using a sigmoidal function to compute the blame: S(x) is S(x)→1 as x→−105 dBm from above and S(x)=1 for x<=−105 dBm and similarly, S(x)→0 as x→−95 dBm from below and S(x)=0 for x>=−95 dBm; also at the mid-point: S(−100)=½. The remaining (other) blame 1-S(RSRP(i)) is divided among interfering cells, if any, based on the following categories: Category 1.1 UEs/MRs are those not in category 0 reporting the second best RSRP>=best serving RSRP−3 dB. For a UE u best served by cell i, let C1.1(u) be the set of all other cells such that their RSRP>=RSRP(i)−3 dB. Then the remaining (other) blame for u's poor quality=(1−S(RSRP(i))/|C1.1(u)| is equally divided between these other cells. Thus if there is only one such cell, it is assigned the remaining blame regarding u. The rationale here is that even a single cell at more than half the power of the best server will likely cause the SINR to drop below 3 dB.
Category 1.2 UEs/MRs are those not in categories 0 or 1.1 reporting the second best RSRP>=best serving RSRP−6 dB. For a UE u best served by cell i, let C1.2(u) be the set of all other cells such that their RSRP>=RSRP(i)−6 dB. Then the remaining (other) blame for UE's poor quality=min(½,1/|C1.2(u)|)*(1−S(RSRP(0) is equally divided between these other cells. Thus if there are two or more such other cells, they are assigned to share the remaining (other) blame regarding u equally. The rationale here is that just two cells at more than quarter the power each of the best server will cause the SINR to drop below 3 dB. Note that if there is only one such other cell then its assignment is capped at half the remaining blame—the unaccounted blame is left unassigned as an approximation.
Category 1.3 UEs/MRs are those not in categories 0 or 1.1 or 1.2 reporting the second best RSRP>=best serving RSRP−9 dB. For a UE u best served by cell i, let C1.3(u) be the set of all other cells such that their RSRP>=RSRP(i)−9 dB. Then the remaining (other) blame for UE's poor quality=min(¼,1/|C1.3(u)|))*(1−S(RSRP(i)) is equally divided between these other cells. Thus if there are four or more such other cells, they are assigned to share the remaining (other) blame regarding u equally. The rationale here is that four cells at more than an eighth power each of the best server will cause the SINR to drop below 3 dB. Note that if there is only one, two or three such other cells then their assignment is capped at a quarter of the remaining blame—the unaccounted blame is left unassigned as an approximation. Category 2 UEs/MRs are those not in Category 0 or 1 that have the problem of poor quality (SINR<3 dB).
Category 2 UEs/MRs are those not in categories 0 or 1. Self blame S (RSRP(i)) is assigned to a serving cell in a similar manner to category 1 UEs. Such UEs do not have a clearly responsible interferer to assign remaining (other) blame and so the unaccounted blame is left unassigned as an approximation. Such instances are hopefully low—yet our algorithm will monitor the numbers of such UEs and their accumulated unassigned blame at cell and system level.
Embodiment algorithms may assign a blame counter matrix to cells.
Every best serving cell i has a set of served UEs/MRs Si. ;Si=Si,good U Si,problem (disjoint union); Si,problem=Si,0.1 U Si,0.2 U Si,1.1 U Si,1.2 U Si,1.3 U Si,2(disjoint union);
Each of the UEs/MRs u belonging to a problem sub-category is associated with a group of cells in the system that are assigned blame;
For category 0 UEs, the serving cell takes all the blame and for category 1 UEs, some other cells also share part of the blame;
For a fixed serving cell i and every cell j in the system, every served UE/MR of i with a problem distributes the blame (one unit maximum) for its problem across several or all js (including i);
For a given pair of cells i and j, accumulate the individual blame accorded to j over all UEs/MRs served by i and record in the B(i,j) entry of the blame matrix; B(i,i) along the diagonal is the self blame.
Category 0 and 2.1 UEs contribute to only self blame whereas Category 1 UEs contribute to other blame as well;
For any given i (fixing a row), summation over j of B(i,j) is the row-sum that is roughly equal to the number of problem UEs served by i (could be less because some blame may be unassigned) related to cell level O.F; and
The sum of all row-sums is roughly equal to the total number of problem UEs in the system’ For any given j (fixing a column), summation over i of B(i,j) is the column-sum that is roughly equal to the number of problem UEs caused by j. This is the Blame Metric of cell j, BM(j).
Instead of using the blame metric directly for action, some embodiment algorithms may use the blame action metric to exploit the fact that for self-blame, the action is typically opposite (up-tilt/power-up) to that of the action to mitigate other-blame (down-tilt/power-down). Reflecting this opposite action, the Blame Action Metric of cell j is (for example) defined as: BAM(j)=Σi< >j B(i,j)−B(j,j) (same cell blame is negative weighted); BAM(j)=i< >j, eNB(i)< >eNB(j)B(i,j)−B(j,j) (other cells of the same eNB are zero weighted); Normalize BAM(j) by the total number of UEs in the cluster formed by j and all its neighbors (can use neighbor list or infer it based on significant BM(i,j) values: NormBAM(j)=BAM(j)/Number of UEs in j and all of its RF neighbors. If NormBAM(j) is small in magnitude, there may be no action on cell j. It is possible to normalize BM(j) to yield NormBM(j). NormBM(j) provides some information about the cell. For instance, if a cell j has high NormBM(j) but low NormBAM(j) then that cell is in a very “tricky” or “ambiguous” action situation where its numerous problem UEs are requiring conflicting actions that essentially cancel out. If a cell has both of them high, then that cell is a problem cell but with a clear action for resolution. If a cell has both of them low, then that cell is not a problem cell.
Aspects of this disclosure may use an action rule for mapping a NormBAM metric to actions. Clustering of Positives in Global Database: All positive NormBAM(j) metrics gathered from multiple scenarios may be recorded in a global database and clustered into multiple levels, e.g., three levels. Mapping Positive Clusters to Actions: The lowest magnitude clusters map to no action; the middle cluster maps to single parameter action (e.g., antenna down-tilt) by one step and the highest cluster maps to joint parameter (e.g., down-tilt and power-down) action by one step each. Clustering of Negatives in Global Database: Negative NormBAM(j) metrics may be clustered in the global database and cluster them into multiple levels, e.g., three levels. Mapping Negative Clusters to Actions: Lowest magnitude cluster implies no action; middle one to single parameter action (Antenna up-tilt preferred) by one step and highest cluster maps to joint parameter (up) action by a step each. Filtering Actions Based on Current State: The final action is an adjustment of the action based on the above cluster mapping that depends on the coarse current estimated state (configuration) For example, if single parameter action is suggested (down-tilt or power-down), and current total tilt is estimated to be already high then power-down is done. If current power is also already low, then no action is taken.
Aspects of this disclosure may use semi-supervised learning (EM) to augment clustering for improved thresholding of the NormBAM metric, e.g., NormBAMs of good performing cells (low interferer, high quality, good coverage) taken from optimized configurations can provide labeled training examples in the “no action” range of points. The “dead zone” range of “no action” configuration states can be narrowed to be next to nothing (to essentially allow tilt and power actions to be unconstrained except for max and min allowed e-tilts and powers). In other words, if e-tilt range allowed by the vendor is [0, 12] degrees, then we may prescribe the small range of tilt as (−inf, 0], the moderate range as (0, 12) and the high range as [12, inf).
Embodiment algorithms may provide ways to deal with overshooting cells. They may be discovered by a similar learning procedure of the algorithm (version 1). The first way is to incorporate overshooting into the blame metric. More specifically, after assigning blame in category 0.x, we consider a new category 0.3 in which falls those UEs/MRs that are served by cell i but should not be (since i is an overshooter or overloaded). Thus when the serving cell (of a UE/MR at “large” distance) is itself the overshooter, we decrement B(i,i) by 1 keeping in mind that B(i,i) positively influences up-tilt/power-up (or increment B(j,i) by 1 where j is the strongest local cell). If an overshoot UE/MR (overlap at “large” distance) falls in category 1.x, we can continue the blame sharing as before or punitively assign all “remaining” or full blame to the overshooting cell (i.e., increment B(i,j) by 1−S(RSRP(i)) or 1 for each UE/MR served by cell i that is overlapped by overshooting cell j). We also optionally add a category 3.1 of blame assignment for overshoot UEs/MRs not falling under categories 0 or 1 (by adding/subtracting a new unit of blame to other/self over-shooters), i.e., even if that UE/MR reports no coverage/quality issues. The second way is to provide a separate Label for overshooter: If cell j is deemed overshooter and Action prescribed for cell j based on BAM(j) is down-tilt/power-down, then do nothing further. If Action prescribed for cell j based on BAM(j) is do nothing, then modify to single parameter down-tilt/power-down. If Action prescribed for cell j based on BAM(j) is up-tilt/power-up then cancel it to no action.
Embodiment algorithms may provide actions for configuring cells having excessive up-tilt and power-up parameters. The up-tilt/power-up action arises from a need to improve a cell's own coverage or quality. A consequence of this is the interference increase in UE/MRs served by neighboring cells and/or overshoot problems. Such action is selected to correct any imbalance between selfishness (for improving current served UEs' problems) and cooperation (for improving current interfered UEs of other cells). However, such action does not account for the consequent increase in number of interfered UEs in other cells. Several cells in the same area (neighbors of each other or have common neighbors) being up-tilted/powered-up at the same time may lend a multiplier effect to such increase in interfered UEs and worsen quality. This can create instability in system performance when successive similar actions run away (due to competition between neighbors) or successive opposite actions on a cell engender oscillations with no meaningful improvement.
Embodiment algorithms may address this issue by implementing the following steps. Construct an interaction graph GU of up-tilt/power-up candidate cell nodes with edges between them if they are neighbors or have significantly interacting common neighbors. Use the B(i,j) matrix (e.g., blame metric) as a guideline for figuring out “significant” interacting neighbors. In other words, the adjacency matrix AU(i,j) for graph GU is a function of B(i,j), B(i, neighbor of j) and B(neighbor of i, j). Note that GU is not the original network graph NG. GU has a subset of nodes of NG but with a superset of edges given a node. The complementary graph GU′ replaces edges with non-edges and non-edges with edges. The problem is then to find the Maximum Clique of GU′ (largest complete sub-graph or largest set of mutually inter-connected nodes). Maximum Clique is known to be an NP Hard Problem. Use a suitable heuristic for maximal clique (with high degree vertices for a sub-optimal solution: R implementations for max clique; GU″=approximate Max Clique of GU′ is a limited set of cells that can be used for Up-tilt/power-up Actions with reduced worry of unstable interaction that could increase interference
Embodiment algorithms may mitigate instability by picking separated cells for Down-tilt/Power-Down. Specifically, a problem may exist for those cells in the system identified for down-tilt/power-down, as identifying the largest subset of them such that they are not direct neighbors may cause down-tilting to open up edge holes.
Embodiment algorithms may address this issue by implementing the following steps. Construct an interaction graph GD of down-tilt/power-down candidate cell nodes with edges between them if they are neighbors. Use the B(i,j) matrix, i.e., blame metric as a guideline for figuring out neighbors. In other words, the adjacency matrix AD(i,j) for graph GD is a function of B(i,j). Note that GD is not the original network graph NG. GD has a subset of nodes of NG with same edges given a node. The complementary graph GD′ replaces edges with non-edges and non-edges with edges The problem is then to find the Maximum Clique of GD′ (largest complete sub-graph or largest set of mutually inter-connected nodes). Maximum Clique is known to be an NP Hard Problem. Use a good heuristic for maximal clique (with high degree vertices) for sub-optimal solution: R implementations for max clique: GD″=approximate Max Clique of GD′ is a limited set of cells that can be used for down-tilt/power-down Actions with reduced worry of unstable interaction that could cause coverage/quality holes.
Embodiment algorithms may learn from mistakes through maximizing gain in NormBM(j) and resultant M-out-of-N cell tuning. Usually NormBM(j) is a good indicator of cells that are root causes of problem UEs. Action Cells may have High NormBM(j). Actions on Cells are chosen with the expectation that their NormBM(j) is reduced (step-by-step). NormBM(j) reduction is tied to System Objective Function Improvement. However, actions taken on chosen cells are not guaranteed to reduce their NormBM(j) due to unknown hidden variables. In practice, NormBM(j) may not drop consistently or may even grow (due to interactions and hidden variable impacts). The algorithm may learn which cells j under which configurations under which current NormBM(j) and NormBAM(j) (action) values produce the largest reduction (Gain) in NormBM(j) on average. Initially target precisely such cells for WB action (M-out-of-N for Whitebox). Cells that produce extreme/sustained negative gain may be removed from Whitebox list first for no action and then passed on to Blackbox for Oppositional, Exploitative and Explorative Action.
In some embodiments, the processing system 4200 is included in a network device that is accessing, or part otherwise of, a telecommunications network. In one example, the processing system 4200 is in a network-side device in a wireless or wireline telecommunications network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an applications server, or any other device in the telecommunications network. In other embodiments, the processing system 4200 is in a user-side device accessing a wireless or wireline telecommunications network, such as a mobile station, a user equipment (UE), a personal computer (PC), a tablet, a wearable communications device (e.g., a smartwatch, etc.), or any other device adapted to access a telecommunications network. In some embodiments, one or more of the interfaces 4210, 4212, 4214 connects the processing system 4200 to a transceiver adapted to transmit and receive signaling over the telecommunications network, such as the transceiver illustrated in
It may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrases “associated with” and “associated therewith,” as well as derivatives thereof, mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
Although the description has been described in detail, it should be understood that various changes, substitutions and alterations can be made without departing from the spirit and scope of this disclosure as defined by the appended claims. Moreover, the scope of the disclosure is not intended to be limited to the particular embodiments described herein, as one of ordinary skill in the art will readily appreciate from this disclosure that processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, may perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
The present application is a continuation-in-part of and claims priority to U.S. non-provisional patent application Ser. No. 14/971,870 filed on Dec. 16, 2015, which is a continuation-in-part of and claims priority to U.S. non-provisional patent application Ser. No. 14/963,062 filed on Dec. 8, 2015, which claims priority to the following U.S. provisional applications: U.S. Provisional Application No. 62/089,654 filed Dec. 9, 2014; U.S. Provisional Application No. 62/096,439 filed Dec. 23, 2014; U.S. Provisional Application No. 62/093,283 filed Dec. 17, 2014; U.S. Provisional Application No. 62/099,854 filed Jan. 5, 2015; and U.S. Provisional Application No. 62/100,003 filed Jan. 5, 2015. All of these are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62089654 | Dec 2014 | US | |
62096439 | Dec 2014 | US | |
62093283 | Dec 2014 | US | |
62099854 | Jan 2015 | US | |
62100003 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14971870 | Dec 2015 | US |
Child | 14757764 | US | |
Parent | 14963062 | Dec 2015 | US |
Child | 14971870 | US |