Embodiments disclosed herein relate to methods, apparatus and systems that include an analytics rules engine that facilitates the processing of payment card transactions.
Payment card systems are in widespread use. A prominent payment card system is operated by the assignee hereof, MasterCard International Incorporated, and by its member financial institutions.
Assuming that all is in order, the issuer platform 130 transmits a favorable authorization response to the acquirer platform 110 through the payment system authorization platform 120. The transaction at the POS is then completed and the customer leaves the store with the goods. A subsequent clearing transaction initiated by the merchant results in a transfer of the transaction amount from the customer's payment card account to an account that belongs to the merchant. The customer's payment card account may be, for example, either a debit card account or a credit card account. In the former case, the clearing transaction results in the funds being debited directly from the account. In the latter case, the clearing transaction results in a charge being posted against the account, and the charge subsequently appears on the customer's monthly credit card statement.
The foregoing description of the typical transaction may be considered to be somewhat simplified in some respects. For example, a merchant processing system (not shown) may be interposed between the POS terminal and the acquirer platform 110. As is familiar to those who are skilled in the art, a merchant processing system may be operated by or on behalf of the merchant to form part of the communications path between the acquirer platform 110 and a considerable number of POS terminals operated by the merchant. It is also often the case that a third party transaction processing service, such as a Payment Services Provider (“PSP”), may operate to handle payment card transactions on behalf of the acquirer and on behalf of a large number of other like financial institutions.
In addition to POS transactions, the acquirer platform 110 may process transactions associated with Automated Teller Machine (“ATM”) withdrawals and Card Not Present (“CNP”) online transactions in a similar manner.
The payment cardholder, acquirer and issuer financial institutions, and payment system authorization platforms all have an interest in reducing fraudulent transactions. Moreover, it is desirable to reduce fraudulent transactions without declining transactions that are, in fact, not fraudulent.
The present inventors have recognized that there is a need for methods and/or systems to provide an analytics rules engine to facilitate the processing of payment card transactions.
In general, and for the purpose of introducing concepts of embodiments of the present invention, a “payment card” may be used to process transactions. As used herein, the phrase “payment card” might refer to, for example, a credit card, a debit card, a loyalty program card, a badge, a license, a passport card, a radio frequency apparatus, a smartphone, and/or a contactless card.
As before, an acquirement platform 210 may request authorization of a payment card transaction from an issuer platform 230 via a payment authorization platform 220. To reduce fraudulent transactions, the payment system authorization platform 220 may exchange information with an analytics rules engine 250 in accordance with any of the embodiments described herein.
For example,
At S310, the payment system authorization platform may receive an authorization message from an acquirer platform. At S320 the payment system authorization platform may determine that the authorization request meets a pre-determined condition. The determination might be based on, for example, a Bank Identification Number (“BIN”) and/or 16-digit primary account number associated with the authorization request.
Responsive to the determination, information about the authorization message may be transmitted to an analytics rules engine at S330. The transmitting might comprise, for example, forwarding the authorization message to the analytics rules engine.
At S340, the payment system authorization platform may receive information from the analytics rules engine. The information received from the analytics rules engine might comprise, for example, a supplemented authorization message. According to some embodiments, the supplemented authorization message includes at least one of: (i) a risk flag, (ii) a risk score, (iii) a cardholder category, (iv) a terminal category, and (v) enhanced expert monitoring service score data. Note that enhanced expert monitoring service score data is used herein only as an example and embodiments may provide information in any of a number of different ways. According to some embodiments, the system may supplement an authorization message with a reason code (e.g. alpha-numeric “A1”) which can then be interpreted by the customer (e.g. issuer, merchant) in some predefined manner (e.g. “A1” is a cardholder category for Frequent Traveler). A risk flag, risk score, and EMS score data may all be supplemented into the authorization message. These items might be added by other—services which could consume/reference the reason code to help generate a risk score for example.
The supplemented authorization message may then be forwarded to at least one of: (i) the acquirer platform, and (ii) an issuer platform. For example, the issuer platform might use the supplemental data to decide whether or not the transaction should be approved.
According to some embodiments, the rule is based on a travel category. For example a cardholder might be classified as an international traveler, an interstate traveler, or someone who never travels. This information can then be used to flag unusual activity (e.g., a card associated with someone who never travels is being used in a distant state or country.
In additional to an extended cardholder view, embodiments might provide an expanded terminal view (e.g., for an ATM). For example, a rule might ask if current ATM activity is normal, whether or not the current ATM transaction fits within this cardholder's historical ATM pattern, how much he or she typically withdraws, how many withdrawals typically occur at that terminal (e.g., per day, per week, or per month), how many withdrawals typically occur by that cardholder (e.g., per day, per week, or per month) the single largest withdrawal by the cardholder, and/or whether the cardholder is traveling. In some case, the rule might be based on whether the cardholder has made any recent transactions with a travel merchant that would indicate he or she may be traveling in the future, how likely is it this is a counterfeit card, whether or not the transaction is typical (for this ATM terminal or holder), whether a particular issuer's cards have been used at that location, cards have not been used this frequently in the past, how much money is typically withdrawn (per hour, day, week, or month), and/or what was the largest amount withdrawn. Note that embodiments may let one view terminal activity across multiple issuers.
According to some embodiments, the rules are based on an online spending category, whether or not the cardholder is a seasonal shopper, an established shopper, or someone who never shops online. Note that embodiments might review cardholder activity over a long enough time period to account for seasonal spending (e.g., Christmas, Valentine's Day, “Cyber Monday”), establish custom spend levels for each segment as well as within each segment, allow one to continually refresh this segmentation at a mutually desired frequency, and/or manage authorization strategies to optimize approvals while balancing fraud risk.
Note that the rules may be based on information about a terminal associated with the authorization message, such as (i) a transaction frequency, (ii) a transaction amount, and/or (iii) a transaction location. Further note that the rules may be based on issuers other than an issuer associated with the authorization message, a cardholder other than a cardholder associated with the authorization message, and/or a terminal other than a terminal associated with the authorization message. Note that that the rule may incorporate information from other issuers in addition to the issuer associated with the authorization message. In some embodiments, the rule(s) will not only be based on the issuer, cardholder, merchant, and terminal associated with the authorization message, but also include information from other issuers, cardholders, merchants, and terminals not associated with the authorization message.
Responsive to the result, information about the authorization message may be transmitted to the payment system authorization platform at 5430. The information transmitted to the payment system authorization platform might comprise a supplemented authorization message. According to some embodiments, the supplemented authorization message includes at least one of: (i) a risk flag, (ii) a risk score, (iii) a cardholder category, (iv) a terminal category, and (v) enhanced Expert Monitoring Service (“EMS”) score data.
By way of example, consider
Instead of transmitting a supplemented authentication message to be used by the issuer platform 530, the analytics rules engine 550 might instead make an initial approval (or decline) decision. By way of example, consider
Consider a relatively high dollar, cross border, ecommerce authorization received from an electronics merchant via the acquirer platform 610. The payment system authorization platform 620 may route the authorization message to the analytics rules engine 650. The analytics rules engine 650 may perform a real-time lookup on the account to learn additional characteristic about the cardholder. In particular, it is determined that the cardholder never shops online. As a result the analytics rules engine declines the transaction. According to some embodiments further online authorizations are blocked for a pre-determined window of time (e.g., two hours).
As another example, consider
Note that any of the analytics rules described herein may be associated with a wide variety of risk parameters. For example, cardholder and/or network level profiling may integrate data insights into real-time authorization and fraud strategies. Moreover, behavioral insight may be focused on merchant-level data that views activities across multiple payment card types. Examples of merchant-level profiling considerations include retail/spend categories (e.g., automobile fuel, bookstore purchases, subscription services, etc.) and spend category classifications (e.g., department stores, electric appliance stores, gasoline stations, mail order purchases, etc.). The analytics rules may also evaluate spending velocity parameters to look for transactions at an unusual volume at a particular time of day, unusual transaction amounts, and/or suspicious changes in approved and/or declined transaction volumes. According to some embodiments, historical rations may be used to allow for variances across merchant chants or specific locations.
The embodiments described herein may be implemented using any number of different hardware configurations. For example,
The processor 810 also communicates with a storage device 830. The storage device 830 may comprise any appropriate information storage device, including combinations of magnetic storage devices (e.g., a hard disk drive), optical storage devices, mobile telephones, and/or semiconductor memory devices. The storage device 830 stores a program 88 and/or a communications engine 814 (e.g., associated with a communications engine plug-in) for controlling the processor 810. The processor 810 performs instructions of the programs 812, 814, and thereby operates in accordance with any of the embodiments described herein. For example, the processor 810 may receive an authorization message from an acquirer platform. The processor 810 may determine that the authorization request meets a pre-determined condition and transmit information about the authorization message to an analytics rules engine, such as by transmitting the authorization message.
The programs 812, 814 may be stored in a compressed, uncompiled and/or encrypted format. The programs 812, 814 may furthermore include other program elements, such as an operating system, a database management system, and/or device drivers used by the processor 810 to interface with peripheral devices.
As used herein, information may be “received” by or “transmitted” to, for example: (i) the payment system authorization platform 800 from another device; or (ii) a software application or module within the payment system authorization platform 800 from another software application, module, or any other source.
In some embodiments (such as shown in
Referring to
The processor 1010 also communicates with a storage device 1030. The storage device 1030 may comprise any appropriate information storage device, including combinations of magnetic storage devices (e.g., a hard disk drive), optical storage devices, mobile telephones, and/or semiconductor memory devices. The storage device 1030 stores a program 1012 and/or a communications engine 1014 (e.g., associated with a communications engine plug-in) for controlling the processor 1010. The processor 1010 performs instructions of the programs 1012, 1014, and thereby operates in accordance with any of the embodiments described herein. For example, the processor 1010 may analyze the information about the authorization message in accordance with at least one rule to generate a result and transmit information about the authorization message to a payment system authorization platform, such as by transmitting a supplemented authorization message or an authorization approval decision.
The programs 1010, 1014 may be stored in a compressed, uncompiled and/or encrypted format. The programs 1010, 1014 may furthermore include other program elements, such as an operating system, a database management system, and/or device drivers used by the processor 1010 to interface with peripheral devices.
As used herein, information may be “received” by or “transmitted” to, for example: (i) the analytics rules engine 1000 from another device; or (ii) a software application or module within the analytics rules engine 1000 from another software application, module, or any other source.
In some embodiments (such as shown in
Referring to
Any of the databases and/or analytic rules described herein may be used to integrate data insights into real-time authorization and/or fraud strategies. For example,
By providing issuers with real-time comparative data intelligence using both card-level data and POI terminal level data, issuers may have a broader set of contextual information to better identify when it's safe to approve transactions that may have otherwise been declined before due to insufficient information.
The data intelligence associated with the analytics rules engine 1250 may include card level data that a payment card system collects and analyzes, such as short and long term card spend activity on an issuer's portfolio, including, for example; geographic location, transaction type, spend category and amount level patterns, and cardholder validation methods (i.e., EMV versus PIN or magnetic stripe). According to some embodiments, some or all of this comparative data may be provided in an online authorization message.
The data intelligence associated with the analytics rules engine 1250 may also include network level data. For example, a payment card system may analyze global network information to provide real-time scores in an authorization message, including spend levels and patterns as well as recent fraud rates at POI terminals.
For issuer accounts ranges participating in an analytics rules service, the analytics rules engine 1250 may evaluate key data element values within a transaction and compares those data to the short and long term historical data points for that specific cardholder PAN and the particular terminal where the transaction is occurring. The results of those compares may be provided in the online message before forwarding it to the issuer or associated party.
According to some embodiments, the analytics rules engine 1250 may populate contextual data points into the online message in real-time for transactions processed by the service. Each data value populated in the message may be coded to indicate to a receiving decisioning system, for example, valuable information relevant to that particular authorization request and can provide the issuer an improved level of confidence to appropriately approve or decline the transaction.
The value from the analytics rules engine may be provided in a number of different ways. According to some embodiments, the data segment values themselves (e.g., cardholder category, merchant category, terminal category, etc.) may be presented to a party allowing them to use the data in any manner they choose. According to other embodiments, the data segment values may be utilized with other available data inputs to generate a confidence score. This confidence score might, for example, represent a range between 000 and 999, with the highest score values indicating a greater likelihood that the transaction is fraudulent and the lowest score values indicating a greater likelihood the transaction is genuine (i.e., not fraudulent).
Note that the delivery of these two data types (data segment values and confidence score value) may also occur in a number of different ways. According to some embodiments, the data is provided within the authorization request itself via specified data elements that are dedicated to the system. According to other embodiments, a web application programming interface call may be made to a shared services portal (which can respond with the appropriate data). Such a shared service portal approach may, for example, improve software development expenses and/or delivery timelines associated with processing new data fields from authorization messages.
Thus, embodiments may provide a real-time information analytics platform that may enable a card provider to operationalize traditional engagement-oriented insight-driven offerings (Advisors, rewards, etc.) into the authorization process—extending the value of these analytics-based services on a long-term, ongoing basis. Moreover, embodiments may leverage established Rules Engine platform knowledge to capture data from multiple internal and external sources (customer batch files, data warehouse, etc.) and analyze it in real-time according to customer-defined business rules. Moreover, customers may integrate their strategies for approvals, fraud prevention, marketing, retention and more into the real-time authorization process to take more informed action based on the customized rules they define for their business.
Although the present invention has been described in connection with specific exemplary embodiments, it should be understood that various changes, substitutions, and alterations apparent to those skilled in the art can be made to the disclosed embodiments without departing from the spirit and scope of the invention as set forth in the appended claims.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/811,666 entitled “ANALYTICS RULES ENGINE FOR PAYMENT PROCESSING SYSTEM” and filed Apr. 12, 2013. The entire content of that application is incorporated herein by reference. Applicants further note: (1) U.S. Pat. No. 8,126,791 for a Methods and Systems for Providing a Decision Making Platform (directed to the decision making platform) and (2) U.S. patent application Ser. No. 13/748,939 for AUTOMATED TELLER MACHINE TRANSACTION BLOCKING filed on Jan. 24, 2013 (directed to a service specific to ATMs). The entire contents of both of those documents are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61811666 | Apr 2013 | US |