Analyzer-based Phase Contrast Imaging System Development and Evaluation

Information

  • Research Project
  • 10141235
  • ApplicationId
    10141235
  • Core Project Number
    R01EB023969
  • Full Project Number
    5R01EB023969-04
  • Serial Number
    023969
  • FOA Number
    PA-16-160
  • Sub Project Id
  • Project Start Date
    7/15/2018 - 6 years ago
  • Project End Date
    3/31/2022 - 2 years ago
  • Program Officer Name
    ZUBAL, IHOR GEORGE
  • Budget Start Date
    4/1/2021 - 3 years ago
  • Budget End Date
    3/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    3/31/2021 - 3 years ago

Analyzer-based Phase Contrast Imaging System Development and Evaluation

The proposed project concerns a new design for a novel, low-dose x-ray device for analyzer-based phase contrast imaging (ABI), a modality that uses x-ray refraction to produce dramatic improvements in imaging of the breast and other soft tissues. ABI has been well documented to produce extraordinary images at synchrotron facilities, but compact ABI prototypes have required imaging times that are far longer than what is practical for clinical use. We have developed a breakthrough approach, including a number of innovative design concepts that, when combined, are expected to deliver whole-breast imaging at 100 µm resolution in 8.3 seconds. The goal of the proposed project will be to methodically design, optimize, and construct such an ABI system and evaluate its output in an expert reader study. ABI imaging offers many important potential benefits: 1) ABI has very high inherent soft-tissue image contrast due to the physics of x-ray refraction and strong scatter rejection, promising to provide clear visualization of calcifications and spiculations; 2) ABI can act as a planar-imaging method like mammography, but can also be used in tomosynthesis or computed tomography (CT) modes; 3) ABI has no need for injected contrast agent; 4) ABI may reduce radiation dose, because it can operate at higher x-ray energies (quasi- monochromatic at ~60keV); 5) the image detail seen in ABI may ultimately eliminate the need for tomosynthesis or CT, resulting in fewer images to be read in the clinic; 6) ABI may permit calcification types to be discriminated, thereby improving specificity; and 7) ABI permits quantitative imaging of tissue density. Based on a preliminary prototype device, we have established strong evidence of feasibility of clinically practical ABI performance. ABI system development is a complex hardware-software co-design process. The main elements in this process will define the project's specific aims as follows: 1. Design and construct a compact ABI imaging system to demonstrate practical imaging time. 2. Develop simulation and phantom tools. 3. Optimize image processing and iterative reconstruction methods. 4. Evaluate imaging system using ex vivo whole breast specimens and hybrid tissue phantoms.

IC Name
NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
  • Activity
    R01
  • Administering IC
    EB
  • Application Type
    5
  • Direct Cost Amount
    357014
  • Indirect Cost Amount
    105654
  • Total Cost
    462668
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    286
  • Ed Inst. Type
    BIOMED ENGR/COL ENGR/ENGR STA
  • Funding ICs
    NIBIB:462668\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    BMIT
  • Study Section Name
    Biomedical Imaging Technology Study Section
  • Organization Name
    ILLINOIS INSTITUTE OF TECHNOLOGY
  • Organization Department
    ENGINEERING (ALL TYPES)
  • Organization DUNS
    042084434
  • Organization City
    CHICAGO
  • Organization State
    IL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    606163717
  • Organization District
    UNITED STATES