This application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2004-026483 filed Feb. 3, 2004, the entire content of which is hereby incorporated by reference.
The present invention relates to an analyzer, cartridge, cartridge kit, and analyzing method.
Devices for extracting glucose through the skin using the reverse iontophoretic method (for example, International Patent Publications WO9600110 and WO9710356) are known as transdermal analyte extraction assemblies for extracting the glucose from the interstitial fluid of living tissue.
These devices include a gel which is provided beforehand in a reservoir. The gel includes an enzyme, such as glucose oxidase (GOD) or the like, which is a catalyst for converting the glucose to gluconic acid and hydrogen peroxide. These devices measure glucose concentration by detecting the electrical charge generated by converting the glucose.
These devices, however, have problems inasmuch as the gel and the like is provided beforehand in a reservoir, and the water in the gel evaporates before the assembly is used such that the assembly cannot be used any more. Accordingly, the assemblies are difficult to store for long periods.
Furthermore, since enzymes, such as GOD and the like, deteriorate in a short time by contacting with moisture, these assemblies have poor storage stability, and are difficult to store for long periods.
The International Patent Publication WO9600110 even proposes to stabilize the constituents of the conductive medium by using a dry-type conductive medium, such as dehydrating gel, and adding water or electrolyte before mounting the conductive medium on the skin. However, the mechanism for adding the water is not described in International Patent Publication WO9600110. Furthermore, International Patent Publication WO9600110 requires adding water to two assemblies, thereby creating the problem of complex operation.
The scope of the present invention is defined solely by the appended claims, and is not affected to any degree by the statements within this summary.
An object of the present invention is to provide a novel analyzer, cartridge, cartridge kit, and analyzing method which solve these problems.
A first aspect of the present invention relates to an analyzer for extracting and analyzing an analyte from a subject, the analyzer comprising: a reservoir capable of holding a liquid for holding the analyte extracted from the subject; and a liquid supplying mechanism for holding a liquid to be supplied to the reservoir and supplying the liquid to the reservoir.
A second aspect of the present invention relates to a cartridge detachably mountable to an analyzer for extracting and analyzing an analyte from a subject, the cartridge comprising: a reservoir capable of holding a liquid for holding the analyte extracted from the subject; and a liquid supplying mechanism for holding a liquid to be supplied to the reservoir and supplying the liquid to the reservoir.
A third aspect of the present invention relates to a cartridge detachably mountable to an analyzer for extracting and analyzing an analyte from a subject, the cartridge comprising: a reservoir capable of holding a holding substance for holding the analyte extracted from the subject an enzyme which is a catalyst for the analyte, the enzyme being held in a dry state by the reservoir; a separating member to provide noncontact between the enzyme and the holding substance, and held by the reservoir; wherein the separating member is removable from the reservoir, such that the enzyme and the holding substance are brought into contact by removing the separating member from the reservoir.
A fourth aspect of the present invention relates to a cartridge kit for use in an analyzer for extracting and analyzing analyte from a subject, the cartridge kit comprising: a reservoir capable of holding a liquid for holding the analyte extracted from the subject; a single cartridge detachably mountable to an analyzer, and provided with an enzyme which is a catalyst for the analyte, the enzyme being held in a dry state by the reservoir; and a liquid container for accommodating a liquid supplied to the reservoir.
A fifth aspect of the present invention relates to an analyzing method for extracting an analyzing an analyte from a subject using an analyzer which includes an enzyme holder for holding an enzyme which is a catalyst for the analyte extracted from the subject, the method comprising: (a) a step of bringing the enzyme held in a dry state in the enzyme holder into contact with a holding substance for holding the analyte extracted from the subject; (b) a step of placing the analyzer on the subject; (c) a step of extracting analyte from the subject to the holding substance; and (d) a step of analyzing the analyte extracted to the holding substance.
The preferred embodiments of the present invention are described hereinafter with reference to the drawings.
The biological component analyzer 1 is described below referring to
The containment membrane 14 is a sheet the same size as the bottom surface (skin side surface) of the cartridge housing 12, and has an opening smaller than the opening 20 positioned opposite the opening 20.
The containment membrane 14 is adhered to the bottom surface of the cartridge housing 12, so as to cover the entire bottom surface of the cartridge housing 12 excluding the center area of the second opening 20.
Two working parts 13b of the extraction electrode 13 are disposed on the top surface of the containment membrane 14 in the area exposed to the analyzing unit 15 side from the second opening 20, so as to interpose the second opening 20 therebetween (refer to
The extraction electrode 13 has two round terminals 13a at the bilateral ends of the biological component extraction cartridge 11, and two center working parts 13b respectively connected to the terminals 13a, as indicated by the oblique shading in
As shown in
As shown in
As shown in
The sensor member 19 is arranged such that the measuring surface 43 is aligned with the first opening 18 of the cartridge housing 12.
When the glucose extracted from the subject is delivered to the measuring surface 43 through the physiological saline supplied from the syringe pump 25 to the reaction reservoir 30, the GOD applied to the measuring surface 43 acts as a catalyst in reaction with the glucose to produce H2O2 and gluconic acid. Then, the POD applied to the measuring surface 43 acts as a catalyst in reaction with the H2O2 to produce activated oxygen (O*) and water (H2O). Next, luminescence occurs when the activated oxygen reacts with the luminescence-producing reagent applied to the measuring surface 43. When the light transits within the second optical waveguide 44, the light changes the angle of reflection by the luminescence. Then the light reaches the photoreceptor 36 reservoir Accordingly, the electrical signal output from the photoreceptor 36 is of a magnitude which reflects the amount of glucose that reached the measuring surface 43.
Pyranose oxidase, hexokinase, glucokinase, glucose dehydrogenase and the like may be used rather than the glucose oxidase mentioned above. Furthermore, 3,3′,5,5′-tetramethylbenzylidene may be used alternatively to the N,N-bis(2-hydroxy-3-sulfopropyl)tolidene dipotassium salt as the luminescence-producing reagent.
The biological component analyzer 1 of the embodiment described above is used as follows. First, the biological component extraction cartridge 11 is loaded in the analyzing unit 15, and the biological component analyzer 1 is attached to the wrist of the user by the band 22 such that the containment membrane 14 on the bottom surface of the biological component extraction cartridge 11 is in contact with the skin of the user. Then, physiological saline is expressed from the syringe pump 25 through the flow path 24 and flow path 23 by pressing the piston 26, and the physiological saline fills the reaction reservoir 30. Next, glucose is extracted through the skin of the subject to the physiological saline in the reaction reservoir 30 by applying a predetermined voltage (2 V) from the constant-voltage power supply 32 to the extraction electrode 13 for a predetermined time (3 minutes). The glucose extracted to the physiological saline within the reaction reservoir 30 migrates within the physiological saline and reaches the measuring surface 43.
Then, as previously described, the GOD acts as a catalyst and luminescence occurs. The amount of light at this time is detected by the photoreceptor 36, and an electrical signal corresponding to the amount of detected light is input to the controller 31. The controller 31 calculates the glucose concentration based on the received signal, and a blood sugar value is calculated from the calculated glucose concentration. The calculated glucose concentration and blood sugar value are displayed on the display unit 38.
Although the physiological saline is supplied from the syringe pump 25 to the reaction reservoir 30 after the biological component analyzer 1 is mounted on the wrist of the user in the present embodiment, the present invention is not limited to this mode inasmuch as the physiological saline may be supplied from the syringe pump 25 to the reaction reservoir 30 before the biological component analyzer 1 is mounted on the wrist of the user, and the analyzer 1 may thereafter be mounted on the wrist of the user.
In the biological component analyzer 1 of the present embodiment, inactivation of the enzyme by moisture is prevented and the biological component extraction cartridge 11 can be stored for a long time because the enzymes and physiological saline are stored separately and the gel containing the enzymes is dried when the biological component extraction cartridge 11 is not used. Furthermore, since the biological component analyzer 1 of the present embodiment uses a liquid such as physiological saline, the liquid can be in close contact with the skin of the user. Consequently, the amount of glucose extracted from the subject is stable and analysis accuracy is improved. In addition, the biological component extraction cartridge 11 of the present embodiment can be used by supplying physiological saline from the syringe pump 25 to the reaction reservoir 30 even after the cartridge has been stored for a long period. Accordingly, it is possible to store the cartridge for longer periods compared to the conventional art. The biological component analyzer 1 is capable of extracting glucose by means of a simple operation when a single biological component extraction cartridge 11 is loaded in the analyzing unit 15.
The biological component analyzer 2 of another embodiment is described below with reference to
In the biological component analyzer 2, a first concavity 58 is formed at the approximate center within a concavity 17 of a cartridge housing 52. The measuring surface 43 of the sensor member 19 is arranged at the opening of the first concavity 58. Accordingly, in the biological component analyzer 2, the reaction reservoir 30 is formed by blocking the first concavity 58 with the sensor member 19.
The biological component analyzer 2 has an extraction concavity 59 provided on the bottom side of the cartridge housing 52 adjacent to the first concavity 58 (refer to
The containment membrane 14 is a seal the same size as the bottom surface of the cartridge housing 52, and has an opening smaller than the opening of the extraction concavity 59 positioned at the opening of the extraction concavity 59.
The containment membrane 14 is adhered to the bottom surface of the cartridge housing 52, so as to cover the entire bottom surface of the cartridge housing 52 excluding the part of the opening of the extraction concavity 59.
Two working parts 13b of the extraction electrode 13 are disposed on the top surface of the containment membrane 14 in the area exposed to the analyzing unit 15 side from the opening of the extraction concavity 59, so as to interpose the opening therebetween.
A extraction reservoir 50 is a chamber formed by the extraction concavity 59, and the containment membrane 14 which covers part of the opening. The sensor member 19 is not exposed within the extraction concavity 59. The reaction reservoir 30 and extraction reservoir 50 are connected by a flow path 18a. The reaction reservoir 30 is open to the outside (atmosphere) through a discharge path 27 and buffer space 28. The extraction reservoir 50 is connected to the syringe pump 25 through the flow path 23 and flow path 24.
In the biological component analyzer 2 of the present embodiment, glucose analysis is performed as described below. First, a biological component extraction cartridge 51 is loaded in the analyzing unit 15, and the analyzer 2 is attached to the wrist of the user by the band 22 such that the containment membrane 14 on the bottom surface of the extraction cartridge 51 is in close contact with the skin of the user. Then, physiological saline is expressed from the syringe pump 25 through the flow path 24 and flow path 23 by pressing the piston 26. Consequently, the saline solution fills the extraction reservoir 50. Next, the glucose is extracted through the skin of the subject to the physiological saline in the extraction reservoir 50 by applying a predetermined voltage (2 V) from the constant-voltage power supply 32 to the extraction electrode 13 for a predetermined time (3 minutes). Then, the piston 26 is operated again and the physiological saline containing the extracted glucose within the extraction reservoir 50 is moved to the reaction reservoir 30. In the reaction reservoir 30, the GOD applied to the measuring surface 43 acts as a catalyst and luminescence occurs as previously described, and an electrical signal reflecting the amount of glucose is output from the photoreceptor element 36 as previously described. The controller 31 calculates the glucose concentration based on the received signal, and a blood sugar value is calculated from the calculated glucose concentration. The calculated glucose concentration and blood sugar value are displayed on the display unit 38.
Although the above two embodiments have been described in terms of the physiological saline moving to the reaction reservoir 30 and the extraction reservoir 50 by the user operating the piston 26, the present invention is not limited to this mode inasmuch as the present invention may also be applied to biological component analyzers constructed so as to move physiological saline to the reaction reservoir 30 or extraction reservoir 50 by the automatic operation of a pump when the user presses a switch to start the measurement. A measurement start switch 26 also may be provided on a side surface of the analyzing unit 15, or near the display 33 or the like.
The biological component analyzer of still another embodiment is described below with reference to
As shown in
When the cartridge is in use, the user peels away the film 77. Consequently, the physiological saline accommodated in the concavity 76 is pushed toward the reaction reservoir by atmosphere pressure.
Since the physiological saline 78 is accommodated beforehand in the biological component extraction cartridge in the biological component analyzer of the present embodiment, a pump, such as the syringe pump 25, is not required in the analyzing unit 15, thereby providing a biological component analyzer of simpler structure.
In the cartridge of the embodiment shown in
Alternatively, a liquid supplying mechanism including the container 75, cutter, capsule, and flow path 23 may provided in the analyzing unit 15 rather than the syringe pump 25 and flow path 23.
The container 75 and flow path 23 also may be omitted from the cartridge of the embodiment in
In the construction of the embodiment shown in
Furthermore, a dropper also may be used to supply the physiological saline from a container to the reaction reservoir 30.
The glucose extraction and analysis method of another embodiment is described below based on
In the extracting and analyzing method of the present embodiment, the biological component analyzer 1 and the micro needle 101 shown in
As shown in
The part of the needle 103 extending from the endface 106a is conical, as shown in
The analyzing method of the present embodiment is described below referring to
In step S1, the user forms extraction holes by pressing the plurality of needles 103 of an insertion device 101 against the skin of the wrist.
In step S2, the user mounts the biological component analyzer 1 on the wrist, as shown in
In step S3, the user pushes the piston 26 and moves the physiological saline from the syringe pump 25 into the reaction reservoir 30. Consequently, the physiological saline fills the reaction reservoir 30, and some of the physiological saline flows from the reaction reservoir 30 through the second opening 20 into the extraction holes 122, as shown in
In step S4, a predetermined voltage (0.8 V) from the constant-voltage power supply 32 is applied to the extraction electrode 13 for a predetermined time (3 minutes). Consequently, since the body fluid extracted in the extraction holes 122 is charged, the body fluid is facilitated in moving in the direction of the reaction reservoir 30 (T direction in
In step S5, an electrical signal which reflects the glucose concentration is output by the photoreceptor element 36 as described previously, and the controller 31 calculates the glucose concentration based on the received signal, and a blood sugar value is calculated from the calculated glucose concentration. The calculated glucose concentration and blood sugar value are displayed on the display unit 38.
Although the previously described embodiments have been described in terms of a construction wherein a gel containing enzymes and luminescence-producing reagent is applied on and dried on the measuring surface 43 of the sensor member 19, the present invention is not limited to this construction inasmuch as alternative constructions include those in which enzymes and luminescence-producing reagent solidified by cross-linking macromolecules such as optical cross-linking polyvinyl alcohols and the like, and those in which enzymes are solidified by well known fatty molecules having molecular structures manifesting luminescence-producing functionality. Furthermore, the enzyme may be applied beforehand on the measuring surface 43 of the sensor member 19, and the luminescence-producing reagent may be dissolved in the physiological saline.
In the above embodiments, the enzymes and luminescence-producing reagents are applied in a dried state on the measuring surface 43 of the sensor member 19, however, the present invention is not limited to this mode inasmuch as the enzymes and luminescence-producing reagent may be applied in a dried state on an inner wall of the reaction reservoir 30.
Although the above embodiments have been described by way of examples of applying a biological component extraction cartridge to a biological component analyzer for detecting glucose concentration based on an optical signal, the present invention is not limited to this mode inasmuch as the present invention may be applied to biological component analyzers for detecting glucose based on electrical signals using an enzyme electrode method.
In the above embodiments, the electrically conductive fluid such as physiological saline is used to retain the glucose extracted from a subject, the present invention is not limited to this mode inasmuch as a nonconductive fluid such as purified water also may be used. In this case, both the extraction electrode and positive electrode may be disposed in the reaction reservoir 30 or extraction reservoir 50.
Although the above embodiments have been described in terms of a biological component analyzer which calculates glucose concentration and blood sugar value as the analysis result, the present invention is not limited to this mode inasmuch as the present invention also may be applied to biological component analyzers which calculate biochemical item, such as lactic acid, uric acid, cholesterol and the like, as the analysis result.
Number | Date | Country | Kind |
---|---|---|---|
2004-026483 | Feb 2004 | JP | national |