The present application is related to the following copending U.S. patent applications, assigned to the assignee of the present application, filed concurrently herewith and hereby incorporated by reference:
Software Reliability Analysis Using Alerts, Asserts, and User Interface Controls, U.S. Pat. No. 7,681,085;
Multidimensional Analysis Tool for High Dimensional Data, U.S. patent application Ser. No. 11/818,607;
Efficient Data Infrastructure for High Dimensional Data Analysis, U.S. patent application Ser. No. 11/818,879;
Software Feature Usage Analysis and Reporting, U.S. patent application Ser. No. 11/818,600;
Software Feature Modeling and Recognition, U.S. Pat. No. 7,680,645; and
Analyzing Software Usage with Instrumentation Data, U.S. patent application Ser. No. 11/818,611.
Understanding the way in which software users use software can be very valuable when working to improve the effectiveness and ease of use of software applications. Traditional ways to analyze software users include usability studies, user interviews, user surveys and the like.
Various data can be collected during actual software usage to obtain information related to how users use and otherwise interact with a software program. However, analyzing that data to obtain useful information about the users, including how to model and analyze a specific group of users, is a difficult problem.
This Summary is provided to introduce a selection of representative concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in any way that would limit the scope of the claimed subject matter.
Briefly, various aspects of the subject matter described herein are directed towards a technology by which software instrumentation data collected from user sessions corresponding to one or more programs is analyzed, including by determining program usage metrics and/or command usage metrics. Information representative of the program usage metrics and/or the command usage metrics is output, such as in the form of a report. The software instrumentation data may be further analyzed, such as to determine at least one usage trend over time, and to determine user groups.
Examples of program usage metrics include session count information based on a number of application sessions, session frequency information based on a time measurement between sessions, running time information based on session time, session length information based on session time and session count, and/or depth of usage information based on a percentage of commands used. Examples of command usage metrics include user count information based on a number of users of the set who use the selected command, percentage of users information corresponding to a percentage of users of the set who use the selected command, session count information based on a number of sessions in which the selected command occurred, percentage of session information corresponding to a percentage of application sessions in which the selected command was used, click count information corresponding to a number of clicks corresponding to the selected command, percentage of click count information corresponding to a percentage of program clicks corresponding to the selected command, click count per user information based on click count and user count of the selected command, and/or click count per session information corresponding to a click count per session.
The software instrumentation data may be analyzed to determine at least one type of user, and for modeling a user group. For example, users may be categorized by their depth of usage, and/or by the types of activities in which they engage. Potential outliers may be identified based on command usage that is significantly different from the command usage of other users. Users may be located from their sessions based on session criterion comprising a dimension and a value for that dimension, where each dimension comprises a variable recorded in a session, a feature, or results computed from a plurality of variables.
A subset of sessions that meet specified session criteria based on a set of session data may be located, along with a subset of users based on users whose sessions meet specified user criteria. The subsets may be combined via Boolean logic to produce a result set.
Other advantages may become apparent from the following detailed description when taken in conjunction with the drawings.
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
Various aspects of the technology described herein are generally directed towards analyzing software usage and software users, such as for the purpose of improving software products such as application programs, and improving the user experience with those software products. To this end as described below, various aspects are directed towards collecting and analyzing various application-related usage data, referred to as software instrumentation data, in an attempt to understand the usage of an application program, including concepts such as how long, how much, how often and how extensive users use the application, the use of commands by users, and/or usage trends over time.
In other aspects, the software instrumentation data includes information about the types of users that use a program, and helps to define one or more groups of users. A user interface may be provided to help define and model a user group, along with an example language to model a user group and example ways to analyze a user group. As will be understood, the use of user groups provides mechanisms for software feature usage analysis and application usage analysis.
For purposes of understanding, the technology is described herein by use of examples, including those that operate in various environments, such as internal users (e.g., corresponding to employees of the enterprise that is analyzing the software) and external users. Further, the programs exemplified herein are generally a suite of application programs such as those provided as part of the Microsoft® Office software product suite. However, as will be understood, these are only non-limiting examples, and the technology is applicable to different user environments and different software products, including individual application programs and operating system components.
As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various ways that provide benefits and advantages in computing in general.
Turning to
In general, the instrumentation data 102 comprise data collected from each user session, where a session corresponds to actual usage by a user of an executing program. A typical session starts from the application start (e.g., by double clicking on the application executable or a document that launches the application executable, or by choosing the application from a start menu), and ends when the application is closed (e.g., by choosing “Exit” in the application or closing the application window). Sessions can also be time limited, e.g., if a session exceeds twenty-four hours, the session is ended and the instrumentation data to that point recorded (the application continues to run). Sessions can also end by non-normal termination of a program, e.g., because of program or system crashes.
To analyze software product usage, the software instrumentation data 102 is processed, such as to measure the overall usage of an application by a group of users.
A user interface 310 (which may or may not be associated with or otherwise the same as the user interface 110 of
In one implementation, the metrics set forth in table below may be used for generating at least some of report 332 with respect to the usage of an application:
A distribution of the above measures can also be obtained by counting how many or what percentage of users have values that fall within an interval.
As part of the analysis processing and report 332 generation, the source of users may be specified. Some example user sources include all users from whom instrumentation data have been collected (All), users who are external customers and not internal employees of the company performing the analysis (External), users who are employees of the company performing the analysis (Internal), users who are from a particular group that the company performing the analysis has set up from which to collect data (e.g., a Study ID such as the beta participants of the next release of a software product), or another customized group.
In general, any filtering, grouping and sorting may be used in the processing of the instrumentation data; for example, a particular application and/or version for which the analysis is being conducted may be specified. The user interface 310 may be designed to help an operator filter, group and/or sort the data as desired, as well as to determine how the output should look and what results should be computed.
A typical example analysis report 332 summarizes the type of analysis performed, the parameters used (e.g., data source, program, build or version, time period of collection, user source, filtering criteria, user count and so forth). A summary section may show the metrics including session count, session frequency, average running time, average session length, and average depth of usage.
In this example, the application users, application sessions and application clicks described above refer to the total number of users, sessions and command clicks of the application for which command usage analysis is being performed. The total number of sessions of an application is the total number of sessions in which the application name (or other suitable identifier) that was recorded is the application of interest. The total number of users of an application is the total number of unique user identifiers (IDs) of the sessions of the application. The total number of command clicks of an application is the total number of command clicks in all the sessions of the application. Note that the application and version for which the analysis is being conducted, and the source of users, can be specified by the analyzer operator.
Another aspect with respect to analysis is referred to as trend analysis 444. More particularly, given the time information in the recorded instrumentation data, the trend of using an application may be measured, corresponding to the usage of an application over time. The application and version for which the analysis is being conducted and/or the source of users can be specified via the user interface 310. The trend data may be displayed as a table or a graph.
The period to analyze and the reporting interval may also be specified. The period to analyze can be an absolute period, e.g., the time period from a start date to an end date, or may be a relative period, e.g., each user's enrollment length, which is the time period from a user's first session to the last session. The reporting interval is the interval to report the measures, and for example may be monthly, weekly, daily, or any other suitable interval. Example measures may include:
One or more other types of analysis may be performed, as represented in
Other measures are directed towards users, and are represented in
The commands of an application also may be clustered into representative activities of the application, as represented in
Thus, another way to categorize users is by the types of activities in which they engage. For example, for a set of users, each of their levels of engagement in an activity can be measured by the ratio of the total number of command clicks of the activity and the total number of command clicks by the user across the sessions, such as exemplified in the table below:
Using activity grouping, users can be categorized into groups based on usage, that is, each group of users may represent a type of use of the application. For example, a word processing program may have users who primarily use the editing functionalities and not much of anything else, other users who primarily use the formatting functionalities, and so forth. In this manner, analysis parameters 460 such as the application and version for which the analysis is being conducted, and the source of users can be specified via filtering criteria. The number of categories can also be specified.
Outlier analysis (block 454) refers to a type of user (a potential outlier) if his or her use of a command is substantially different from those of most other users. Various criteria can be used, such as the entropy of the occurrence distribution of each command. The smaller the entropy, the more unevenly distributed the occurrence of the command among the set of all users. For example, if the entropy is less than one-half (0.5), a first criterion is met.
More particularly, in one example implementation, an outlier is determined for a particular application, version/build and each command, by determining that if a command is only used by one user, and the average clicks per session is larger than some threshold number (e.g., 100), this user is identified as an outlier. Alternatively, if a command is used by more than one user, the entropy of the command is calculated as the following:
where n is the total number of users who used the command, Ci is the total number of clicks of the command by user i, and Ctotal is the total number of clicks of the command.
If the entropy of a command is smaller than some threshold value, (e.g., 0.5), and the average clicks per session by a user is larger than some other threshold number (e.g., 100), this user is identified as an outlier.
The outlier analysis outputs all (or some specified subset of) users who are identified as outliers, including the application for which the user is considered as an outlier, total number of application sessions the user had, the command of unusual usage, total number of times the user used the command, number of application sessions where the user used the command more than 100 times.
Additionally, the average occurrence per session of the command by this user may be considered, e.g., the total occurrence of the command divided by application session count of the user. If the average occurrence per session is greater than some number, such as one-hundred, the second criterion is met. In this example, any user who meets the two criteria can be grouped and reported; in this example, the user is likely using automation.
To use a user group in analysis, a user group is defined and can thereafter be used in software feature usage analysis and application usage analysis. In the analysis configuration, the operator can specify the “User source” to be a user group. When the operator sets the user source to be a user group, the analysis is focused to that user group.
One approach to defining a user group is to define a set of sessions that meet certain criteria (block 462) based on per session data, define a user criterion specifying users whose sessions in a session set as a whole meet a certain criterion or criteria, and allow the specifying of multiple criteria mathematically combined in some way, e.g., using Boolean logic or weighted factors. For example, basic elements to define a user group may include user group, user criterion, union, intersection, and complement. Basic elements to define a session set may include: session set, session criterion, AND, OR and NOT. For example, in a user interface, the basic elements (or user modeling controls) may be listed on the left, with the user group and session set definition (user group modeling) on the right. To define a user group, the operator can drag the basic elements from the left to add to the right, and can also change the name of a session set or user group.
In one example implementation, a session criterion includes a “dimension” and a “value.” A dimension may be any variable recorded in a session (e.g., OfficeApplication), a feature, (e.g., copy and paste, typically comprising a series of commands), and/or variables that are commonly used but are not directly recorded in a session, but rather are calculated from variables that are recorded. For example, ImportantBuild is based on several variables such as OfficeProductVer, OfficeMajorVer, OfficeMinorVer and OfficeDotBuild.
Once the operator selects a dimension, the operator may specify the value or values that are of interest. For example, if “feature” is selected as the dimension, the operator can specify a feature file.
By default, the logical relationship between session criteria is AND. In the above example, for each session in the session set, by default the operator may specify that OfficeApplication=OneNote AND ImportantBuild=Office 12 Beta 1. The operator may specify other types of logical relationships by selecting the basic elements (e.g., dragging from the left to add to the right).
Once the operator has defined a session set, the session set may be used to define a user group, e.g., by selecting and dragging a user criterion to the right. The user criterion may be named, with the user criterion condition or conditions specified that a user's sessions need to meet. For example, to be considered a “OneNote12Beta1User,” a user needs to have at least one session that corresponds to OneNote Beta1 session.
Example measures that can be used to specify conditions are listed in the table below. The measures are calculated per user, e.g., for each user of the session set. In this example, if the chosen measure of a user meets the condition specified, the user is included in the user group:
The operator may also specify other criteria, such as that the total time since the user's first session until now needs to be less than a month.
The relationship between the user criteria in a user group is “Intersection” by default, e.g., the above examples would specify that the user group “OneNote 12 Starters” is the intersection of “OneNote12Beta1Users” and “OneNote12Beta1LessThanAMonth” users. The operator may specify other types of relationships via the basic elements, e.g., by dragging the basic elements on the left to add to the right. In this way, straightforward user interface interaction defines a user group. Note that the operator can also define a user group in other ways, e.g., via links shown when hovering on the user count of a category (“bucket”) that if selected provides a “user groups” creation dialog, wizard or the like.
To analyze a user group once defined, the instrumentation data may be queried to get results for the user group. As represented in
Example query results that may be included in the report 332 may include some or all of the data set forth in the following table, as well as additional data:
Step 504 represents obtaining the analysis criteria (e.g., application usage, command usage, trend analysis and/or others), and obtaining the user set, which may be all, external, internal, a user group and so forth as set above. Step 506 generates the query from the operator-input analysis and/or user filtering criteria.
Step 508 represents submitting the query against the software instrumentation data (in any appropriate format), with step 510 representing receiving the query results. Step 512 represents generating the report, which may include performing calculations on the results as needed to match the operator's requirements. For example, as described above, some of the report can include information that is not directly measured but is computed from a combination of two or more measured sets of data.
Exemplary Operating Environment
The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote computer storage media including memory storage devices.
With reference to
The computer 610 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer 610 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 610. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
The system memory 630 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 631 and random access memory (RAM) 632. A basic input/output system 633 (BIOS), containing the basic routines that help to transfer information between elements within computer 610, such as during start-up, is typically stored in ROM 631. RAM 632 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 620. By way of example, and not limitation,
The computer 610 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media, described above and illustrated in
The computer 610 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 680. The remote computer 680 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 610, although only a memory storage device 681 has been illustrated in
When used in a LAN networking environment, the computer 610 is connected to the LAN 671 through a network interface or adapter 670. When used in a WAN networking environment, the computer 610 typically includes a modem 672 or other means for establishing communications over the WAN 673, such as the Internet. The modem 672, which may be internal or external, may be connected to the system bus 621 via the user input interface 660 or other appropriate mechanism. A wireless networking component 674 such as comprising an interface and antenna may be coupled through a suitable device such as an access point or peer computer to a WAN or LAN. In a networked environment, program modules depicted relative to the computer 610, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
An auxiliary subsystem 699 (e.g., for auxiliary display of content) may be connected via the user interface 660 to allow data such as program content, system status and event notifications to be provided to the user, even if the main portions of the computer system are in a low power state. The auxiliary subsystem 699 may be connected to the modem 672 and/or network interface 670 to allow communication between these systems while the main processing unit 620 is in a low power state.
While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5500941 | Gil | Mar 1996 | A |
5542070 | LeBlanc et al. | Jul 1996 | A |
5548718 | Siegel et al. | Aug 1996 | A |
5619709 | Caid et al. | Apr 1997 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5867144 | Wyard | Feb 1999 | A |
5903886 | Heimlich et al. | May 1999 | A |
5956720 | Fernandez et al. | Sep 1999 | A |
6046741 | Hochmuth | Apr 2000 | A |
6079032 | Peri | Jun 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6131082 | Hargrave, III et al. | Oct 2000 | A |
6138159 | Phaal | Oct 2000 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6154746 | Berchtold et al. | Nov 2000 | A |
6167358 | Othmer et al. | Dec 2000 | A |
6182139 | Brendel | Jan 2001 | B1 |
6233570 | Horvitz et al. | May 2001 | B1 |
6237138 | Hameluck et al. | May 2001 | B1 |
6237143 | Fontana et al. | May 2001 | B1 |
6260050 | Yost et al. | Jul 2001 | B1 |
6317750 | Tortolani et al. | Nov 2001 | B1 |
6374369 | O'Donnell | Apr 2002 | B1 |
6385604 | Bakalash et al. | May 2002 | B1 |
6418427 | Egilsson et al. | Jul 2002 | B1 |
6434544 | Bakalash et al. | Aug 2002 | B1 |
6564174 | Ding et al. | May 2003 | B1 |
6567796 | Yost et al. | May 2003 | B1 |
6587970 | Wang et al. | Jul 2003 | B1 |
6601062 | Deshpande et al. | Jul 2003 | B1 |
6633782 | Schleiss et al. | Oct 2003 | B1 |
6662362 | Arora et al. | Dec 2003 | B1 |
6701363 | Chiu et al. | Mar 2004 | B1 |
6714940 | Kelkar | Mar 2004 | B2 |
6748555 | Teegan et al. | Jun 2004 | B1 |
6754312 | Gundlach | Jun 2004 | B1 |
6768986 | Cras et al. | Jul 2004 | B2 |
6801940 | Moran et al. | Oct 2004 | B1 |
6816898 | Scarpelli et al. | Nov 2004 | B1 |
6845474 | Circenis et al. | Jan 2005 | B2 |
6862696 | Voas et al. | Mar 2005 | B1 |
6901347 | Murray et al. | May 2005 | B1 |
6901536 | Davenport | May 2005 | B2 |
6912692 | Pappas | Jun 2005 | B1 |
6963826 | Hanaman et al. | Nov 2005 | B2 |
7003766 | Hong | Feb 2006 | B1 |
7028225 | Maso et al. | Apr 2006 | B2 |
7032214 | Rodrigues et al. | Apr 2006 | B1 |
7039166 | Peterson et al. | May 2006 | B1 |
7062483 | Ferrari et al. | Jun 2006 | B2 |
7111282 | Stephenson | Sep 2006 | B2 |
7117208 | Tamayo et al. | Oct 2006 | B2 |
7131070 | Motoyama et al. | Oct 2006 | B1 |
7171406 | Chen et al. | Jan 2007 | B2 |
7185231 | Mullally et al. | Feb 2007 | B2 |
7194386 | Parikh et al. | Mar 2007 | B1 |
7197447 | Susskind | Mar 2007 | B2 |
7216341 | Guarraci | May 2007 | B2 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7333982 | Bakalash et al. | Feb 2008 | B2 |
7392248 | Bakalash et al. | Jun 2008 | B2 |
7401331 | Leung | Jul 2008 | B2 |
20010044705 | Vardi et al. | Nov 2001 | A1 |
20020083003 | Halliday et al. | Jun 2002 | A1 |
20020144124 | Remer et al. | Oct 2002 | A1 |
20030009507 | Shum | Jan 2003 | A1 |
20030115207 | Bowman et al. | Jun 2003 | A1 |
20040049505 | Pennock | Mar 2004 | A1 |
20040088699 | Suresh | May 2004 | A1 |
20040117760 | McFarling | Jun 2004 | A1 |
20040122646 | Colossi et al. | Jun 2004 | A1 |
20040133882 | Angel et al. | Jul 2004 | A1 |
20040191743 | Chiu et al. | Sep 2004 | A1 |
20040230858 | Susskind | Nov 2004 | A1 |
20050015683 | Clark et al. | Jan 2005 | A1 |
20050021293 | Elbel et al. | Jan 2005 | A1 |
20050065910 | Welton et al. | Mar 2005 | A1 |
20050071807 | Yanavi | Mar 2005 | A1 |
20050081206 | Armstrong et al. | Apr 2005 | A1 |
20050125777 | Calder et al. | Jun 2005 | A1 |
20050131924 | Jones | Jun 2005 | A1 |
20050182750 | Krishna et al. | Aug 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050278290 | Bruce et al. | Dec 2005 | A1 |
20060075399 | Loh et al. | Apr 2006 | A1 |
20060106793 | Liang | May 2006 | A1 |
20060116981 | Krimmel et al. | Jun 2006 | A1 |
20060174346 | Carroll et al. | Aug 2006 | A1 |
20060218138 | Weare | Sep 2006 | A1 |
20060242636 | Chilimbi et al. | Oct 2006 | A1 |
20060242638 | Lew et al. | Oct 2006 | A1 |
20060259981 | Ben-Shoshan | Nov 2006 | A1 |
20070016672 | Wilson et al. | Jan 2007 | A1 |
20070033201 | Stienhans | Feb 2007 | A1 |
20070038974 | Albahari et al. | Feb 2007 | A1 |
20070038983 | Stienhans | Feb 2007 | A1 |
20070039009 | Collazo | Feb 2007 | A1 |
20070101311 | Castelli et al. | May 2007 | A1 |
20080127120 | Kosche et al. | May 2008 | A1 |
20080312899 | Li et al. | Dec 2008 | A1 |
20080313149 | Li et al. | Dec 2008 | A1 |
20080313184 | Li et al. | Dec 2008 | A1 |
20080313213 | Zhang et al. | Dec 2008 | A1 |
20080313507 | Mahmud et al. | Dec 2008 | A1 |
20080313633 | Zhu et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
1083486 | Mar 2001 | EP |
WO 0075814 | Dec 2000 | WO |
WO 0175678 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080313617 A1 | Dec 2008 | US |