The invention relates to products and methods for stabilizing the head and neck of a human subject to maintain the head in a static upright position at rest. More specifically, the invention relates to sleep aids for firmly but comfortably restraining the head and neck of a seated subject in a relaxed upright position to facilitate sleep, for example during extended commercial travel.
Travelers and commuters are forced to sit in a confined upright position for long periods, making it difficult to rest or sleep. Thus restrained, sleep is typically prevented or compromised due to the passenger's inability to relax the musculature of the neck and head. Anyone who has tried to sleep on an airplane, bus or train understands this problem, where at the point of falling asleep the neck musculature relaxes and the head flops forward or lolls sideways. This results in an abortive sleep experience that is fitful, uncomfortable, unrestful, and in some cases even injurious, with the additional drawback that involuntary head movements can encroach on the personal space and comfort of neighboring passengers.
While awake humans subconsciously employ their neck muscles to hold their head in a normal upright orientation. These muscles are complex and can also function voluntarily to sweep the head sideways (lateral panning), crane the head forward (ventral flexion) or backward (dorsal flexion), or tilt the head sideways (lateral flexion). When we fall asleep or become fatigued, the muscles of the neck relax. For an individual seated upright, this can allow the head to inadvertently fall forward or sideways, causing discomfort and disrupting restful sleep. This is because the head is not balanced in an upright position, rather the load center of gravity of the head is forward of a pivot point or center of head flexion in the cervical portion of the spine. Off-vertical axial separation between the head's center of gravity and the center of head flexion dictates an imbalance of forces caused by gravity, which operate to pitch the head forward (ventrally) when the active restraint of neck flexor muscles (holding the head in an upright position by pulling the base of the skull backward, or dorsally) is absent. Thus, when the neck muscles are relaxed or “off duty”, as during sleep, the head of an upright seated individual will typically fall forward and/or loll sideways. The individual may react unconsciously by jerking the head back erect, which can cause discomfort or embarrassment and may even result in injury for individuals with orthopedic complications. If sleep continues with the head ventrally and/or laterally flexed without support, this too can result in prolonged discomfort, breathing impairment or injury.
Various devices have been proposed to restrain the head of an upright seated traveler in a comfortable position to facilitate sleep. Dozens of “travel pillow” devices have been designed and marketed for this purpose, generally sold as “head and neck support sleep aids” for commuters and commercial passengers. Most of these are horseshoe-shaped cushions worn around the neck as a collar, with a cylindrical or square cross-section foam core. These devices provide only limited restraint against involuntary, lateral head flexion, and essentially no restraint against ventral head flexion. Other collar restraint designs provide adjustable, higher-profile and more compression-resistant rear and side restraint designs, for example by affording adjustable thickness/height inserts (see, e.g., U.S. patent Ser. No. 10/051,967). One particularly complex collar design employs stiffening inserts to improve lateral compression resistance, as well as drawstrings to cinch the collar more firmly against the wearer's neck to afford greater support and compression resistance against rear and lateral head flexion (see, e.g., U.S. Pat. No. 9,635,962).
A common deficiency of collar-style head and neck supports is their open collar design, which provides no frontal section to resist forward head flexion. Indeed, collar designs generally preclude a frontal support structure, because the wearer's mandible would tend to compress that segment of the collar against the user's trachea resulting in airway restriction during sleep.
One alternative traveler's sleep aid described in U.S. patent Ser. No. 10/178,915 purports to address the problem of forward head flexion by providing a support collar with “anchoring straps” to “prevent or make less likely a user's head falling forward”. This device also features a horseshoe collar but with rear anchoring straps for attaching the collar to a seat or headrest to anchor the device against forward movement. The strap design is complicated and intrusive to deploy, and is suited to a limited range of seat types. Yet the key drawback to this device is, again, that its frontal opening provides little or no resistance to downward gravitational forces that drive downward-forward head flexion during sleep.
A different type of head support device is described in U.S. Pat. No. 7,004,545 issued in 2006 to Miller. The Miller device employs a substantially flexible, planar support member sandwiched between a user's back and a seat surface. A securing member attaches to the support member and encircles the user's head, securing the user's head relative to the support member. According to Miller, this design maintains the head of a user in a stable, upright position during sleep. For reasons that will become apparent from the description which follows, the support device of Miller presents fundamental deficiencies in design, operation, ease of use, comfort, and performance, evidently meeting with practical and commercial failure precedent to abandonment of Miller's '545 patent long before its expiration.
In view of the foregoing, there is a long unmet need in the art for head and neck support devices for commuters and travelers that adequately restrain forward and lateral head flexion during sleep when the user is constrained to an upright, seated position. A related need exists for traveler's sleep aid devices and methods that effectively restrain the head against forward and lateral flexion while imposing minimal orthopedic stress on the user's head, neck and back to provide optimal comfort over long periods of use.
The invention fulfills the foregoing needs and satisfies additional objects and advantages by providing a novel sleep aid head and neck restraint device for travelers and commuters, the device featuring an orthotic lever support and connecting head brace element that operate to restrain the user's head firmly but gently in a comfortable, upright equilibrium position against frontal and lateral flexion forces caused by gravity, turbulence, changes in vehicular direction, and vehicular deceleration.
The travel sleep aid device of the invention comprises a rigid elongate lever member sized and contoured to fit comfortably between a thoracic spinal region of the user's back and an upright seatback surface, and head-bracing means attached to the upper lever arm to positionally secure the user's head relative to the upper lever arm.
In certain embodiments a middle or mid-lower section of the lever member is bent or curved, at least on a frontal face, proscribing a frontal angular or arcuate anatomical load displacement bend between the upper and lower lever arms.
In exemplary embodiments the head bracing means includes a comfortable, textile strap, brace harness or other restraint element that grips or encircles the user's head, to securely engage and restrain the head against frontal and lateral flexion. In alternate embodiments, the head brace means can be tightened or loosened to fit the head sizes of different users, or increase or decrease force of engagement of the user's head, and/or adjusted vertically to position the head brace means in height to fit users of different sizes.
In certain embodiments, the travel sleep aid device of the invention is further orthotically modified to optimally distribute thoracic load, by providing a front surface of the lower lever arm, and optionally other portions of the device, that is/are transversely concave, defining a thoracic load distributing transverse arc having a radius of curvature of from 10 inches to 40 inches over at least a portion of the lower lever arm.
In alternate embodiments the travel sleep aid device of the invention may incorporate one or more stiffening members to afford increased rigidity in at least a longitudinal flexion axis, for example longitudinal stiffening rods, inserts, ribs, channels or other stiffening elements incorporated within a body of the lever member or structurally joined to the front or back of the lever member, providing longitudinal stiffening to prevent frontal deformation (bending or flexion) of the lever member to increase resistance against frontal head flexion. In exemplary embodiments the lever member incorporates longitudinal stiffening ribs extending from at least a portion of the back surface of the lever member.
In distinct aspects of the invention, a novel stiffening design is employed for the elongate lever member that optimizes anatomical load distribution and resistance, while at the same time affording novel benefits for commercial handling of the device. In one exemplary embodiment, the rigid elongate lever member incorporates longitudinal stiffening ribs extending rearward from right and left sides of the back surface of the lever member, wherein the stiffening ribs are highest at a middle region of the rigid elongate lever member and diminish in height from the middle region toward top and bottom edges of the lever member. At their highest points, corresponding to a functional mid-section of the lever member, the stiffening ribs extend from the back surface at an obtuse angle (i.e., rearward and laterally) relative to a horizontal stacking axis of the lever member. This novel construction provides for compact stacking of multiple lever members for efficient storage and shipping without unacceptable loss of rigidity provided by the stiffening ribs.
In other discrete aspects of the invention, novel methods for restraining the head of a fatigued or sleeping person seated in an upright position are provided, which effectively minimize involuntary forward and lateral flexion of the head. According to exemplary methods herein, the user positions a rigid elongate lever member between a thoracic spinal region of their back and an upright seatback surface, the lever member having front and back surfaces and comprising upper and lower lever arms, wherein a width dimension of the upper lever arm is less than a width dimension of the lower lever arm,
and a midsection of the lever member defines an angular or arcuate longitudinal anatomical load displacement bend of the frontal surface between the upper and lower lever arms. The user adjusts vertically and selects an anchored position of the lower lever arm and load displacement bend to locate an operative “fulcrum” of the rigid elongate lever member that yields optimum, comfortable force balancing, by positioning the load displacement bend between the seat surface and a mid-thoracic portion of his or her back, with the lower lever arm positioned between the seat surface and a mid-lower-thoracic portion of the back. Head-bracing means are attached to secure the head to the upper lever arm, whereby frontal flexion loads of the user's head when neck muscles are relaxed during fatigue or sleep are opposed by rearward forces operating on the upper lever arm from the lower lever arm and fulcrum, transmitted through the head-bracing means.
Turning now to illustrate more detailed embodiments of the invention, the novel travel sleep aid device 10 provided here functions as a Class I lever, integrating a rigid elongate lever member 12 anchored between a user's back 14 and an upright seat back 16 to delicately balance and resist frontal and lateral flexion loads of the user's head 18 (
The rigid elongate lever member 12 is typically substantially planar over at least one or more portion(s) of its structure, including most or all of the upper lever arm 20 and also the lower lever arm 24, although the latter may in some embodiments be transversely curved for additional advantages as described below.
As noted, the rigid elongate lever member 12 is sized and dimensioned to fit comfortably between a mid-thoracic spinal region (defined as an approximate region spanning the fourth thoracic vertebra, “T-4” in
The front and back profiles of the rigid elongate lever member 12 may be cost-effectively provided in a simple form, for example a rectangular form (i.e., with similar top and bottom, and opposing side, widths and lengths, respectively—in other words having flat, parallel and equal dimensioned top and bottom edges, and opposing side edges). More commonly, an upper width 30 of the lever member at a topmost point 32 (i.e., a top edge of the upper lever member) will be substantially less than a width of the lower lever arm, which may be relative to an entire length of the lower lever arm, or minimum as compared to a lower width 36 at a bottom edge 38 of the lower lever arm 24 (see, e.g.,
As noted, the travel sleep aid device 10 of the invention comprises a rigid elongate lever member 12 sized and contoured to fit comfortably between an approximate mid-thoracic spinal region 124 (spanning from T-4 to T-10 as depicted in
In certain embodiments the rigid elongate lever member 12 is anatomically modified to be frontally curved (bent forward or concave along a frontal surface 46) at a middle or mid-lower curved section 48 of the lever member (see
In more detailed embodiments, the longitudinal anatomical load displacement bend 26 comprises at least a five-degree angle or curve of the frontal surface 48 between the upper lever arm 20 and lower lever arm 24, whereby a frontal longitudinal axis of the upper lever arm 50 diverges frontally at least five degrees from a frontal longitudinal axis of the lower lever arm 52 (see
According to these aspects of the invention, the upper and lower lever arms, 20 and 24, are defined as the upper and lower portions of the rigid elongate lever member 12 separated by the anatomical load displacement bend (generally depicted in
The foregoing novel aspects of Applicant's device 10 uniquely anatomically optimize functionality of the rigid elongate lever member 12 for maintaining a user's head 18 position at an effortless equilibrium rest position, keeping the head upright with little or no activity of the neck muscles (i.e., during sleep or fatigue) when the user is resting in an upright seated position. In general terms, an upright seated position, for example in a commercial airliner, bus, train or auto, is determined by the seat's ability and range of tilt from a practical minimum of 0 degrees (vertical). Most travel seatback cushions have some degree of tilt angle inclining off-vertical toward a dorsal (rearward) direction for comfort. Additionally, many travel seats are contoured, whereby the tilt angle may vary as a function of height (for example, the head rest on many aircraft seats protrudes substantially in the ventral (frontal) direction. For general definition purposes, the following examples provide reference tilt angles for seatbacks measured at an illustrative height corresponding to a mid-upper thoracic portion of a user's back (e.g., at about a level corresponding to vertebra T-7 of an average user). Seated against a vertical wall the reference tilt angle as noted will be an extreme minimum of 0 degrees. A standard commuter bus seat provides an upright seating rearward tilt angle of about 10 degrees. An equilibrium seating angle, where the seated passenger's head is closely approximating equilibrium balance between ventral and dorsal flexion forces, was determined herein to be about 23 degrees. Beyond 30 degrees dorsal-directed forces are determinative and the passenger's head is driven back by gravity to make forcible contact with the seatback. Accordingly, as defined herein, an “upright” seated position generally describes all seat tilt configurations, as generally afforded in commercial transit environments, corresponding to less than about 25 degrees, and in some cases less than about 30 degrees, dorsal or rearward tilt. This broad range of applications is suitable here, because the invention is suited to restrain forward head flexion during such circumstances as air turbulence or bad road or rail conditions, when the head can be jogged to flex ventrally even when the user is seated “upright” with a dorsal or rearward tilt angle of between 23 degrees and 30 degrees (i.e., between an equilibrium position and a substantially rear- or dosal-biased tilt position). It is additionally contemplated that the device of the invention will serve substantial benefits even when the user is not seated upright, but is resting in a “reclined” position (e.g., in a seat tilted back between about 26-30 degrees, or greater than 30 degrees dorsal or rearward). In these circumstances, even when the risk of forward head flexion is minimal or absent, the invention continues to provide restraint against involuntary lateral head flexion and panning movements that can disturb sleep and impose on the space of adjacent travelers.
In related embodiments the remainder of the rigid elongate lever member 12, apart from the longitudinal anatomical load displacement bend 26 (and corresponding middle or mid-lower curved section 48 of the lever member), when present may be substantially straight or planar. Thus, in certain embodiments the frontal surfaces of the upper and lower lever arms (above and below the angled or curved bend when present) are substantially straight, at least along their mid-frontal, longitudinal axes (corresponding to lines 50 and 52 in
A diverse array of head bracing means 22 can be selected and adapted for use within the devices and methods of the invention, for example selected from comfortable, anatomically conforming, pliable textile straps, braces, harnesses, and cranial-conforming padded clamps, braces, cradles or molded shells, among other devices. As illustrated in
In certain embodiments, as depicted in
In more detailed embodiments, the head bracing means 22 comprises a flexible, optionally elastic or semi-elastic, textile strap 22′ or closure 22″ attached to an upper, brace-anchoring segment of the upper lever arm 20 and extending therefrom, sized and dimensioned to surround the user's head 18 in secure contact with at least the frontal portion 64 of the user's head. In exemplary embodiments, the strap or closure is sized and dimensioned to fit comfortably seat against and securely engage the user's forehead, passing above (or over) the ears and seating just above the brow, for which design the strap or closure optimally has a strap or closure width 68 of between about 1-4 inches, often between about 1.5-3.0 inches, or within a range of from 2.0 to 2.5 inches. The strap or closure can be constructed from any flexible inert (biologically compatible) textile material, for example a woven, knitted or braided natural or synthetic fiber material. In certain embodiments the strap or closure is formed at least in part from cotton, wool, leather, hemp, bamboo or any other suitable, natural textile or fiber material. In other embodiments the strap or closure is made at least in part of nylon, polyester, polypropylene or another synthetic textile or fiber material.
In more detailed embodiments, the head bracing means comprise a head engaging strap 22′, closure 22″ or harness that is not only flexible for bending and conforming to a user's head, but also elastic to improve fit and comfort. The skilled artisan will appreciate that a wide range of materials can be selected and tested, having a wide range of elasticity, to determine optimal elastic or semi-elastic strap, closure and harness materials for use within the devices and methods of the invention. In certain embodiments, the travel sleep aid device employs a flexible, elastic or semi-elastic strap or closure formed at least in part of latex, natural rubber or neoprene (polychloroprene). In exemplary embodiments, the strap or closure comprises a latex, natural rubber or neoprene layer covered on at least one surface with a bonded textile layer, for example a nylon cloth layer, for improved comfort and breathability. Thus, different head bracing means may be constructed of flexible, semi-elastic nylon 1 neoprene or nylon 2 neoprene covered on one or both sides of the strap or closure with nylon fabric bonded to the neoprene for enhanced comfort, semi-elastic performance, and improved breathability. As used herein, “semi-elastic” equates with functional properties, for example a degree of elasticity that provides adequate stretch ability to pull a head bracing strap over a user's forehead, and/or allow modest head movements within a seated strap or closure, while still affording sufficient friction of head engagement to ensure forcible restraint of the head against excessive lateral or frontal flexion. In more detailed embodiments, a flexible, semi-elastic strap 22′ or closure 22″ is provided having at least a portion of an inner surface of the strap or closure adapted for more securely contacting and engaging a user's forehead, generally above the brow 66, comprising open celled neoprene for improved breathability and enhanced friction to securely engage and restrain the forehead, particularly for users with an above average slope to the forehead (i.e., having a forehead that is less vertical than average, wherein the strap or closure tends to slide off the forehead toward the top of the head). For this anatomical feature as well, the strap or closure width 68 and/or height may also be widened and/or lowered, to increase the area of contact and optionally lower the strap or closure further down, e.g., to extend and seat more securely partly below the brow, or primarily below the brow to cover the eyes (in the latter design the bracing strap or closure may optionally have circum-orbital padding to keep the strap or closure from imposing pressure on the eyes). In alternate embodiments, when the strap or closure seats above the brow, the head brace means may additionally include or support eye-covering elements, for example fixed or detachable eye covering mask or patch(es), to enhance user comfort for privacy and sleep. In one exemplary embodiment, a front portion of the strap or closure has hook and loop material to which an eye mask or patch(es) equipped with complementary hook and loop material can be readily attached and detached to cover and uncover the user's eyes as desired.
In other detailed embodiments of the invention the head-bracing means 22 may comprise an adjustable-length strap 22′ or closure 22″ that can optionally be shortened and lengthened, or otherwise tensioned or loosened, to accommodate different sized user's heads, and/or to increase or decrease friction forces mediating secure contact of the strap or closure with the user's head. In the illustrative example of a flexible strap, strap-length adjustment means may be integral to a strap assembly or mounted to or integrated within the upper lever arm. In one example, the strap length adjustment means comprises a cam buckle or tri-glide slide anchored to one end of a strap assembly, the buckle or slide adapted to adjustably receive and secure a free strap end to mediate secure shortening and lengthening of the strap to adjust fit and tension of the strap relative to the user's head.
In other aspects of the invention, the head-bracing means comprise an adjustable closure 22″, for example having left and right closure strap ends 70 and 72, respectively, each anchored (separately, or as one contiguous strap element) to the upper lever arm 20, with the strap ends each sized and dimensioned to surround part of the user's head and to meet or overlap alongside or in front of the user's head (see,
Yet another aspect of the invention relates to novel features for anchoring the head bracing means 22 to the upper lever arm 20. In certain embodiments, the head bracing means comprises a flexible textile strap 22′ or closure 22″ anchored to the upper lever arm at one or more side or rear brace anchor point(s). Depending on the anchoring design, the brace anchor point(s) may be distributed over a portion of the upper lever arm substantially coincident with the upper terminal portion 60 identified in
With regard to restraining lateral head flexion, and additionally for restraining side to side head “panning” movements, yet another novel feature of the invention affording unexpected advantages relates to dimensioning and configuration of the head brace means relative to the upper lever arm 20. While for resisting forward (ventral) head flexion, a width of the upper lever arm where the head brace means attach can be with a broad range of from about 1-6 inches, a width of the upper lever arm 30 (at the upper lever arm top 32, or at a head brace-anchoring point or segment of the upper lever arm) within a range of from about 2-5 inches affords improved separation of the left and right anchoring segments 78, 80 of the strap or closure (when the strap or closure is anchored to side or rear points on the upper lever arm). In other embodiments the width of the upper lever arm 30 at the upper lever arm top 32 or brace-anchoring point or segment is from about 3-4 inches, or from about 3.5-4.5 inches, affording optimal separation of left and right head brace anchoring segments. This dimensioning is discovered here to provide for improved restraint of lateral head flexion and lateral head panning, without sacrificing comfort and while permitting modest, voluntary or user-directed lateral flexion and panning movements. As used herein, a brace-anchoring point is defined as a midpoint, longitudinally, of any one or more fixed or selectable strap attachment sites, for example at mid-strap 22′ or closure 22″ width of the embodiments depicted in
Yet additional aspects of the invention relate to design and implementation of novel head brace height adjustment features and methods. In illustrative embodiments depicted in
In certain embodiments, the head brace height adjustment means comprises an elongate, adjustable anchoring interface of hook and loop material affixed to the rear surface 42′ of the upper lever arm, and a segment of mating hook and loop material affixed to a frontal surface of an opposing attachment interface 94 of the head bracing means (see, e.g.,
Alternative height-adjustment designs for vertically repositioning the head bracing means include a series or linear array of anchoring holes 90, receptacles or detachable fastener elements arranged at different heights along the longitudinal axis of the upper lever arm (defining the height adjustable anchoring segment of the upper arm), wherein the head bracing means comprises complementary anchoring holes, receptacles or removable fastener elements 96 to allow adjustable anchoring of the head bracing means to the upper lever arm at different brace anchor points over a height adjustment range of between 3-7 inches along the longitudinal axis of the upper lever arm (see, e.g.,
Yet another alternative height-adjustment design for vertically repositioning the head bracing means includes a series of anchoring slots 98 arranged at different heights along the longitudinal axis of the upper lever arm 20, wherein the head bracing means comprises a strap portion threadable through the anchoring slots (as illustrated in
As noted above, the front surfaces 44 of the upper and lower lever arms (above and below the angular or arcuate longitudinal anatomical load displacement bend when present), can be substantially planar. In more detailed aspects of the invention, a further novel modification is employed wherein the front surface 44 of the lower lever arm 24 is profiled to be transversely concave, defining a thoracic load distributing transverse arc 104 having a radius of curvature of from 10 inches to 40 inches over at least a portion of the lower lever arm (see, e.g.,
In related embodiments, the front surface 44 of the lower lever arm 24 is thusly concave transversely at a bottom terminus 38 of the lower lever arm, to securely and comfortably engage a mid-lower thoracic portion (defined here as corresponding to thoracic vertebrae T8-T10, as depicted in
In other related embodiments, the rigid elongate lever member 12 may additionally be concave at the midsection (between the upper and lower lever arms), which is coincident with the angular or arcuate longitudinal anatomical load displacement bend when present (in which case the midsection of the rigid elongate lever member is frontally concave in both longitudinal and transverse axes).
The profile of the front surface 44 of the rigid lever member 12 is anatomically conceived, designed and manufactured to afford previously unforeseen advantages and operative benefits, whereas the rear surface 40 of the lever member is relatively unconstrained in design and construction, and thus can vary from the front surface in many independent aspects. Nonetheless, the rigid elongate lever member is often beneficially manufactured to have a body thickness that is substantially uniform throughout, whereby the front and rear faces will be profiled substantially parallel throughout. Thus, when the front surface of the rigid elongate lever member is concave at the midsection between the upper and lower lever arms, coincident with the angular or arcuate longitudinal anatomical load displacement bend 26, and thickness of the rigid elongate lever member is substantially uniform, the rear surface of the midsection of the lever member is convex in both longitudinal and transverse dimensions, or substantially dome-shaped, providing enhanced comfort, rigidity and durability of the device. (See
Profiling of the upper lever arm 20 is usually substantially flat along most or all of the front surface, whereby there is little or no curvature to the upper lever arm, transversely (e.g., as depicted in
In further detailed aspects of the invention, the lower lever arm 24 and midsection (coincident with the anatomical load displacement bend 26 when present) of the rigid lever member can be profiled to define a contoured frontal contact surface 46 of the lever member, wherein a width dimension at a midpoint of the midsection 106 (corresponding to section C-C in
Exemplifying these embodiments, a rigid elongate lever member may be provided having a width at the midpoint ranging from 3-8 inches, while the corresponding width at the bottom of the lower lever member may range from 4-10 inches. More typically the width of the lever member at the midpoint ranges from about 4-7 inches, and at the bottom of the lower lever member from about 5-9 inches. In illustrative embodiments, the width at the midpoint ranges between 5-6 inches, for example approximately 5.5-5.75 inches, and the width at the bottom ranges between 5.5 inches and 8 inches, for example about 6.5, 6.7 or 6.9 inches.
Other exemplary travel sleep aid devices of the invention employ a rigid elongate lever member sized and dimensioned for placement between a thoracic spinal region of a user's back and an upright seatback surface, having front and back surfaces and comprising upper and lower lever arms, with the lower lever arm comprising a frontally curved section of the lever member having the front surface transversely concave, defining a thoracic load distributing transverse arc having a radius of curvature of from 16 inches to 24 inches over at least a portion of the lower lever arm, wherein the lower lever arm and an adjacent midsection of the rigid lever member define a contoured frontal contact surface of the lever member having a width dimension at the midsection less than a width dimension at a bottom terminus of the lower lever arm. According to this novel combination, the contoured frontal contact surface is profiled and dimensioned to engage a narrow, mid-thoracic portion of a user's back to seat between medial borders of opposing scapulae and engage a wider, mid-lower thoracic portion of the user's back to optimally mediate application, whereby the lower lever arm and midsection collectively optimally distribute and transmit lever and fulcrum forces between a user's back and an opposing, surface of the upright seat back 16, through the lower lever arm 24 and midsection of the rigid lever member during use. This embodiment further includes head-bracing means 22 attached to the upper lever arm adapted to positionally secure the user's head in close proximity to the front surface of the upper lever arm 46. Operationally this embodiment functions to generate and transmit work forces from the lower lever arm and midsection (disposed between the user's mid and mid-lower thoracic back and an upright seat surface) to bias the upper lever arm with rearward work force that responsively opposes frontal flexion loading by the user's head during neck relaxation and sleep.
The novel anatomical, load displacement and load distribution features of the device 10 of the invention operates uniquely to generate dynamic, reflexive and finely responsive lever and fulcrum forces to maintain the user's head 18 in a position of comfortable, upright equilibrium, and to oppose involuntary frontal flexion and lateral flexion and panning movements, when the neck muscles are relaxed during sleep or fatigue. The dynamic load distribution and zonal fulcrum operation features are depicted in
The rigid elongate lever member 12 of the invention and head brace 22 height adjustment features are designed to accommodate a wide range of prospective human users, as described herein being adapted for comfortable use by individuals of heights ranging from a 20-percentile adult female height, to an 80-percentile male height. To accommodate this range and provide for ease of storage, transport and deployment, the rigid elongate lever member has an overall length dimension 130 (
In other dimensional design aspects, when the rigid elongate lever member incorporates an anatomical load displacement bend 26, when the elongate lever member incorporates an anatomical load displacement bend 26, the elongate lever member is often positioned below a longitudinal midpoint of the rigid elongate lever member, functionally biasing the resulting, shorter lower lever arm 24 with respect to location of an operative fulcrum, which bias is typically accompanied by a wider profile and more aggressive stiffening features (mentioned below) as compared to the longer upper lever arm. The comparatively overwhelming lever and fulcrum stabilizing forces generated against the lower lever member by opposition of the user's massive thoracic back region against the lever member and seat back biases loading of the lower lever member, functionally allows the lower lever arm to be shorter. In this way, the lower lever arm functions in terms of lever mechanics comparable to the fixed end of a diving board; it is effectively unmovable with respect to the user and seat. In this configuration, featuring a shorter lower lever arm, the lower lever arm has a length (defined from a midpoint 106 of the anatomical load displacement bend 26 when present, to a bottom terminus 38 of the lower lever arm), that is no greater than 45% of a total length dimension 130 of the rigid elongate lever member. In related embodiments, the lower lever arm has a length that is between 25% to 40% of a total length dimension of the rigid elongate lever member. In exemplary embodiments, the lower lever arm has a length between about 34% to 38%, for example about 36%, of the total length dimension of the rigid elongate lever member.
Yet another novel aspect of the invention is the employment of stiffening construction or stiffening elements to afford enhanced rigidity to the rigid elongate lever member 12, concurrent with the provision of novel shape, profile and size features described herein. In certain embodiments, the rigid elongate lever member further comprises one or more longitudinal stiffening members 136 for example integral steel, glass fiber, or other rigid support elements fabricated within or inserted into the rigid elongate lever member and oriented for resistance of longitudinal deformation of the lever member. In exemplary embodiments, the stiffening member or members may be constructed from one or a combination of stiffening ribs, stiffening channels, stiffening creases, stiffening grids, and disposed on the front and/or back surfaces, or on the longitudinal edges of the rigid elongate lever member.
In related embodiments depicted in
In illustrative embodiments, the travel sleep aid device of the invention includes longitudinal stiffening ribs 136 extending rearward from left 138 and right 140 sides of the back face 40 of the rigid elongate lever member 12, typically spanning lengthwise over 35% to 100% of the left and right sides of the back face of the rigid elongate lever member. In certain embodiment the longitudinal stiffening ribs extend from substantially the entire length of the left and right sides of the back face of the rigid elongate lever member. Given the load requirements of this functional system, the need for stiffening features diminishes as a function of longitudinal distance from the operative fulcrum.
In related aspects of the invention, novel stiffening rib design employs a non-uniform rib height at different points of the rigid elongate lever member, for example wherein the longitudinal stiffening ribs 136 have a maximum height dimension 142 at a midpoint 106 of the middle or mid-lower curved section 48 of the rigid elongate lever member and diminish in height from the midpoint in an angular or gradual curved height reduction profile toward top and bottom termini 32, 38 of the upper and lower lever arms 20, 24, respectively (i.e., the ribs are of a substantially lesser height at the termini than at the midsection midpoint). In exemplary embodiments, the longitudinal stiffening ribs may be between about 0.3 inches to 1.8 inches in height at the midsection midpoint, and less than 0.7 inches at the upper and lower arm termini. Alternatively, the longitudinal stiffening ribs may be between about 0.5 inches to 1.5 inches in height at the midsection midpoint, and less than 0.5 inches at the termini. Additional designs comprehend between about 0.7 inches to 1.0 inches, or between about 0.8 inches to 0.9 inches, in height at the midsection midpoint, and less than about 0.3 inches at the termini.
When stiffening ribs 136 are integrated in the rigid elongate lever member 12 construction, the ribs may extend perpendicularly or nearly perpendicularly rearward from the back 40 (typically from the back sides 138, 140) of the rigid elongate lever member, for maximum stiffening effectiveness. Alternatively, yet another novel design concept of the invention incorporates stiffening ribs extending from the back sides of the rigid lever member, wherein at their highest points (corresponding to the middle or mid-lower midsection 48 midpoint 106) the stiffening ribs extend rearward and laterally from the back surface 40 at an obtuse angle 148 of at least 100 degrees relative to a horizontal stacking axis of the rigid elongate member (see, e.g.,
In related embodiments, the stiffening ribs 136 may be further modified at a top terminus 32 of the upper lever arm 20 so that, in addition to having a substantially lower height compared to the midsection rib height, they extend rearward from the back surface at a perpendicular or nearly perpendicular angle 150 (see
In a related, illustrative embodiment, the invention thus provides a travel sleep aid device 10 for stably and comfortably restraining a head position of an upright seated human user, comprising a rigid
Within additional aspects of the invention, the rigid elongate lever member 12 is additionally strengthened or reinforced against torsional forces, for example as generated by the user's head driven laterally (flexed) or twisted (panning motion) by turbulence or adverse road conditions. In addition to increasing the stiffness of the rigid elongate lever member, to support the head under ventral/dorsal loading, various stiffening rib designs as described and contemplated herein will also contribute stiffness under torsional loads caused by head motion to the left and right. This type of force is negligible for air travel in cases apart from severe turbulence, however inadvertent left/right head motion is prevalent in auto and bus travel. The various rib designs described here resist such head movements by resisting torsional deformation of the lever member, or at least of the upper lever arm. Additionally, the transverse curvature described through the midsection and lower portion of the lever member additionally stiffens the lever arm to oppose torsional force/deformation, further stabilizing the user's head positionally to avoid or minimize involuntary lateral head flexion and panning movements.
Yet additional aspects of the invention provide novel and uniquely effective methods for restraining the head of a fatigued or sleeping person seated in an upright position to prevent involuntary forward and lateral flexion of the head. According to these methods, a seated user positions a rigid elongate lever member 12 between their thoracic spinal region and an upright seatback 16 surface, the lower lever member having front 44 and back 40 surfaces and comprising upper and lower lever arms 20, 24. The upper lever arm is typically narrower than the lever arm, and a midsection of the lever member optionally includes an angular or arcuate longitudinal anatomical load displacement bend 26 of the frontal surface (disposed between the upper and lower lever arms). The user further adjusts the lower lever arm, thus defining an operable fulcrum position of the rigid elongate lever member user-selected to a comfortable, optimum force balancing position, wherein the longitudinal anatomical load displacement bend is positioned between the seat surface and a mid-thoracic portion of the person's back, and the lower lever arm is positioned between the seat surface and a mid-lower-thoracic portion of the person's back. The user additionally engages head-bracing means 22 attached to the upper lever arm to positionally secure the person's head relative to the upper lever arm, whereby rearward work forces against the upper lever arm are transmitted through the head-bracing means to oppose frontal flexion loads of the user's head when neck muscles are relaxed during fatigue or sleep.
Further detailed methods of the invention employ the foregoing steps, refined by positioning the longitudinal anatomical load displacement bend between the seat surface and an optimal anatomical fulcrum position spanning or disposed between the person's fourth-seventh thoracic vertebrae. According to exemplary methods, the longitudinal anatomical load displacement bend is typically positioned between the seat surface and an optimal anatomical fulcrum position spanning or disposed between the person's fifth-sixth thoracic vertebrae. Frequently, the longitudinal anatomical load displacement bend is positioned between the seat surface and an optimal anatomical fulcrum position spanning or disposed between the person's fifth-sixth thoracic vertebrae.
In related methods, the rigid elongate lever member makes contact with the person's back spanning positions of at least fifth through ninth thoracic vertebrae. More commonly, contact of the rigid elongate lever member with the user's back is restricted to positions corresponding to between the third and eleventh thoracic vertebrae.
A primary component of the inventive device, the rigid elongate lever member 12, can be constructed from any of a wide range of suitable, rigid formable materials, for example plastics, resins, woods, metals, fiberglass, or any other suitable material capable of being fabricated to meet the above described structural and performance specifications. All thusly useful production materials and processes known in the art are therefore comprehended within the scope of the instant disclosure and claims.
To optimally fulfill the design, construction and performance requirements of the rigid elongate lever member 12, however, the most reliable, facile and economical production means is contemplated to involve unitary construction via molded polymer technology. Exemplary production methods and materials include polymer injection molding, for example using polycarbonate acrylic butyl polystyrene (PC/ABS), Polyethylene (PE), Polyvinylchloride (PVC), or Polyamide (PA) “nylon” (typically provided as beads/pellets) or another suitable plastic/polymer feedstock. Alternatively, the rigid elongate lever member can be fabricated using these and other plastics by vacuum-forming, pressure-forming, drape-forming or other deformation methods, optionally combined with machining or milling technologies as are well known to skilled artisans practicing in related fields to the invention. According to less desirable methods (at least in terms of efficiency and cost of production), the rigid elongate lever member may alternatively be fabricated using casting or hand lay-up methods, for example using fiberglass, carbon fiber, natural or synthetic laminates, in combination with polyester, epoxy or other binding resins and polymers. Additional processes comprehended for manufacture of the rigid elongate lever member include “rapid prototype processes” (e.g., 3-D printing “SLA”, “SLS”, and “FDM”).
The invention is described herein for illustrative purposes only, understanding that economy of description is encouraged by the Patent Laws. Accordingly, persons skilled in the art will appreciate that further aspects, embodiments, improvements and equivalents are comprehended fully within the scope of the invention, which is limited only by the following claims.
Number | Date | Country | |
---|---|---|---|
62857249 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18103375 | Jan 2023 | US |
Child | 18477415 | US | |
Parent | 17616683 | Dec 2021 | US |
Child | 18103375 | US |