Ancestry finder

Information

  • Patent Grant
  • 11468971
  • Patent Number
    11,468,971
  • Date Filed
    Thursday, October 22, 2020
    4 years ago
  • Date Issued
    Tuesday, October 11, 2022
    2 years ago
  • CPC
  • Field of Search
    • CPC
    • G16B30/00
    • G16B20/00
    • G16B20/10
    • G16B40/00
    • G16B50/00
    • G16B20/20
    • G16B30/10
    • G16B40/20
    • G16B25/00
    • G16B50/30
    • G16B15/00
    • G16B30/20
    • G16B40/30
    • G16B50/40
    • G16B10/00
    • G16B20/40
    • G16B45/00
    • G16B5/20
    • G16B50/10
    • G16B5/00
    • G16B50/20
    • G06F16/29
    • G06F16/248
    • G06F21/84
    • G06F16/21
    • G06F16/35
    • G06F16/43
    • G06F16/909
    • G06F16/9535
    • G06F17/11
    • G06F17/16
    • G06F17/18
    • G06F16/2457
    • G06F16/2246
    • G06F16/24558
    • G06F16/24564
    • G06F16/24578
    • G06F16/285
    • G06F16/288
    • G06N20/00
    • G06N3/08
    • G06N7/005
    • G06N3/0454
    • G06N5/04
    • G06N5/046
    • G06N20/20
    • G06N3/088
    • G06N5/003
    • G06N5/025
    • G06N7/00
    • G06K9/6256
    • G06K9/6228
    • G06K9/6215
    • G06K9/6218
    • G06K9/6221
    • G06K9/6223
    • G06K9/6227
    • G06K9/6261
    • G06K9/6262
    • G06K9/6289
    • G06T7/60
    • G06T11/00
    • G06T11/206
    • G06T11/60
    • G06T2207/10024
    • G06T7/143
    • G06T7/32
    • G06T7/77
    • G16H10/60
    • G16H50/20
    • G16H50/30
    • G16H10/40
    • G16H15/00
    • G16H50/70
    • G16H10/20
    • G16H80/00
    • G06Q10/0635
    • G06Q10/063114
    • C12Q2600/156
    • C12Q2600/172
    • C12Q2600/124
  • International Classifications
    • G16B50/30
    • G06F16/2457
    • G06F16/9535
    • G16B50/00
    • G16B10/00
    • G16B30/00
    • G06N5/04
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
Inferring a characteristic of an individual is disclosed. An indication that a first user and a second user have at least one shared chromosomal segment is received. Information about the second user is obtained. A characteristic of the first user is inferred based at least in part on the information about the second user.
Description
INCORPORATION BY REFERENCE

An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.


BACKGROUND OF THE INVENTION

Genealogy is the study of the history of families and the line of descent from ancestors. It is an interesting subject studied by many professionals as well as hobbyists. Traditional genealogical study techniques typically involve constructing family trees based on surnames and historical records. As gene sequencing technology becomes more accessible, there has been growing interest in genetic ancestry testing in recent years.


Existing genetic ancestry testing techniques are typically based on deoxyribonucleic acid (DNA) information of the Y chromosome (Y-DNA) or DNA information of the mitochondria (mtDNA). Aside from a small amount of mutation, the Y-DNA is passed down unchanged from father to son and therefore is useful for testing patrilineal ancestry of a man. The mtDNA is passed down mostly unchanged from mother to children and therefore is useful for testing a person's matrilineal ancestry. These techniques are found to be effective for identifying individuals that are related many generations ago (e.g., 10 generations or more), but are typically less effective for identifying closer relationships. Further, many relationships that are not strictly patrilineal or matrilineal cannot be easily detected by the existing techniques. In addition, improved techniques for inferring ancestry information for an individual would be desirable.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.


The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.



FIG. 1 is a block diagram illustrating an embodiment of a relative finding system.



FIG. 2 is a flowchart illustrating an embodiment of a process for finding relatives in a relative finding system.



FIG. 3 is a flowchart illustrating an embodiment of a process for connecting a user with potential relatives found in the database.



FIGS. 4A-4I are screenshots illustrating user interface examples in connection with process 300.



FIG. 5 is a diagram illustrating an embodiment of a process for determining the expected degree of relationship between two users.



FIG. 6 is a diagram illustrating example DNA data used for IBD identification by process 500.



FIG. 7 is a diagram illustrating example simulated relationship distribution patterns for different population groups according to one embodiment.



FIG. 8 is a diagram illustrating an embodiment of a highly parallel IBD identification process.



FIG. 9 is a diagram illustrating an example in which phased data are compared to identify IBD.



FIG. 10 is a block diagram illustrating an embodiment of an ancestry finder system.



FIG. 11 is a flowchart illustrating an embodiment of a process for inferring a characteristic of an individual.



FIG. 12 is a flowchart illustrating an embodiment of a process for determining that a first user and a second user share at least one IBD segment.



FIG. 13 shows an interface example for a table view of an ancestry finder system.



FIG. 14 shows an interface example for the discovery view of a relative finder system that incorporates an ancestry finder system.



FIG. 15 shows an interface example for a karyotype view of an ancestry finder system.



FIG. 16 shows an example of the effect of varying some of the settings in a karyotype view of an ancestry finder system.



FIG. 17 shows an interface example of a karyotype view of an ancestry finder system in which “Number of grandparents from the same country” is 2.



FIG. 18 shows an interface example for a geographical map view of an ancestry finder system.



FIG. 19 is a flowchart illustrating an embodiment of a process for inferring a characteristic of an individual.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


Because of recombination and independent assortment of chromosomes, the autosomal DNA and X chromosome DNA (collectively referred to as recombining DNA) from the parents is shuffled at the next generation, with small amounts of mutation. Thus, only relatives will share long stretches of genome regions where their recombining DNA is completely or nearly identical. Such regions are referred to as “Identical by Descent” (IBD) regions because they arose from the same DNA sequences in an earlier generation. The relative finder technique described below is based at least in part on locating IBD regions in the recombining chromosomes of individuals.


In some embodiments, locating IBD regions includes sequencing the entire genomes of the individuals and comparing the genome sequences. In some embodiments, locating IBD regions includes assaying a large number of markers that tend to vary in different individuals and comparing the markers. Examples of such markers include Single Nucleotide Polymorphisms (SNPs), which are points along the genome with two or more common variations; Short Tandem Repeats (STRs), which are repeated patterns of two or more repeated nucleotide sequences adjacent to each other; and Copy-Number Variants (CNVs), which include longer sequences of DNA that could be present in varying numbers in different individuals. Long stretches of DNA sequences from different individuals' genomes in which markers in the same locations are the same or at least compatible indicate that the rest of the sequences, although not assayed directly, are also likely identical.



FIG. 1 is a block diagram illustrating an embodiment of a relative finding system. In this example, relative finder system 102 may be implemented using one or more server computers having one or more processors, one or more special purpose computing appliances, or any other appropriate hardware, software, or combinations thereof. The operations of the relative finder system are described in greater detail below. In this example, various users of the system (e.g., user 1 (“Alice”) and user 2 (“Bob”)) access the relative finder system via a network 104 using client devices such as 106 and 108. User information (including genetic information and optionally other personal information such as family information, population group, etc.) pertaining to the users is stored in a database 110, which can be implemented on an integral storage component of the relative finder system, an attached storage device, a separate storage device accessible by the relative finder system, or a combination thereof. Many different arrangements of the physical components are possible in various embodiments. In various embodiments, the entire genome sequences or assayed DNA markers (SNPs, STRs, CNVs, etc.) are stored in the database to facilitate the relative finding process. For example, approximately 650,000 SNPs per individual's genome are assayed and stored in the database in some implementations.


System 100 shown in this example includes genetic and other additional non-genetic information for many users. By comparing the recombining DNA information to identify IBD regions between various users, the relative finder system can identify users within the database that are relatives. Since more distant relationships (second cousins or further) are often unknown to the users themselves, the system allows the users to “opt-in” and receive notifications about the existence of relative relationships. Users are also presented with the option of connecting with their newly found relatives.



FIG. 2 is a flowchart illustrating an embodiment of a process for finding relatives in a relative finding system. Process 200 may be implemented on a relative finder system such as 100. The process may be invoked, for example, at a user's request to look for potential relatives this user may have in the database or by the system to assess the potential relationships among various users. At 202, recombining DNA information of a first user (e.g., Alice) and of a second user (e.g., Bob) is received. In some embodiments, the information is retrieved from a database that stores recombining DNA information of a plurality of users as well as any additional user information. For purposes of illustration, SNP information is described extensively in this and following examples. Other DNA information such as STR information and/or CNV information may be used in other embodiments.


At 204, a predicted degree of relationship between Alice and Bob is determined. In some embodiments, a range of possible relationships between the users is determined and a prediction of the most likely relationship between the users is made. In some embodiments, it is optionally determined whether the predicted degree of relationship at least meets a threshold. The threshold may be a user configurable value, a system default value, a value configured by the system's operator, or any other appropriate value. For example, Bob may select five generations as the maximum threshold, which means he is interested in discovering relatives with whom the user shares a common ancestor five generations or closer. Alternatively, the system may set a default value minimum of three generations, allowing the users to by default find relatives sharing a common ancestor at least three generations out or beyond. In some embodiments, the system, the user, or both, have the option to set a minimum threshold (e.g., two generations) and a maximum threshold (e.g., six generations) so that the user would discover relatives within a maximum number of generations, but would not be surprised by the discovery of a close relative such as a sibling who was previously unknown to the user.


At 206, Alice or Bob (or both) is notified about her/his relative relationship with the other user. In some embodiments, the system actively notifies the users by sending messages or alerts about the relationship information when it becomes available. Other notification techniques are possible, for example by displaying a list or table of users that are found to be related to the user. Depending on system settings, the potential relatives may be shown anonymously for privacy protection, or shown with visible identities to facilitate making connections. In embodiments where a threshold is set, the user is only notified if the predicted degree of relationship at least meets the threshold. In some embodiments, a user is only notified if both of the user and the potential relative have “opted in” to receive the notification. In various embodiments, the user is notified about certain personal information of the potential relative, the predicted relationship, the possible range of relationships, the amount of DNA matching, or any other appropriate information.


In some embodiments, at 208, the process optionally infers additional relationships or refines estimates of existing relationships between the users based on other relative relationship information, such as the relative relationship information the users have with a third user. For example, although Alice and Bob are only estimated to be 6th cousins after step 204, if among Alice's relatives in the system, a third cousin, Cathy, is also a sibling of Bob's, then Alice and Bob are deemed to be third cousins because of their relative relationships to Cathy. The relative relationships with the third user may be determined based on genetic information and analysis using a process similar to 200, based on non-genetic information such as family tree supplied by one of the users, or both.


In some embodiments, the relatives of the users in the system are optionally checked to infer additional relatives at 210. For example, if Bob is identified as a third cousin of Alice's, then Bob's relatives in the system (such as children, siblings, possibly some of the parents, aunts, uncles, cousins, etc.) are also deemed to be relatives of Alice's. In some embodiments a threshold is applied to limit the relationships within a certain range. Additional notifications about these relatives are optionally generated.


Upon receiving a notification about another user who is a potential relative, the notified user is allowed to make certain choices about how to interact with the potential relative. FIG. 3 is a flowchart illustrating an embodiment of a process for connecting a user with potential relatives found in the database. The process may be implemented on a relative finder system such as 102, a client system such as 106, or a combination thereof. In this example, it is assumed that it has been determined that Alice and Bob are possibly 4th cousins and that Alice has indicated that she would like to be notified about any potential relatives within 6 generations. In this example, process 300 follows 206 of process 200, where a notification is sent to Alice, indicating that a potential relative has been identified. In some embodiments, the identity of Bob is disclosed to Alice. In some embodiments, the identity of Bob is not disclosed initially to protect Bob's privacy.


Upon receiving the notification, Alice decides that she would like to make a connection with the newly found relative. At 302, an invitation from Alice to Bob inviting Bob to make a connection is generated. In various embodiments, the invitation includes information about how Alice and Bob may be related and any personal information Alice wishes to share such as her own ancestry information. Upon receiving the invitation, Bob can accept the invitation or decline. At 304, an acceptance or a declination is received. If a declination is received, no further action is required. In some embodiments, Alice is notified that a declination has been received. If, however, an acceptance is received, at 306, a connection is made between Alice and Bob. In various embodiments, once a connection is made, the identities and any other sharable personal information (e.g., genetic information, family history, phenotype/traits, etc.) of Alice and Bob are revealed to each other and they may interact with each other. In some embodiments, the connection information is updated in the database.


In some embodiments, a user can discover many potential relatives in the database at once. Additional potential relatives are added as more users join the system and make their genetic information available for the relative finding process. FIGS. 4A-4I are screenshots illustrating user interface examples in connection with process 300. In this example, the relative finder application provides two views to the user: the discovery view and the list view.



FIG. 4A shows an interface example for the discovery view at the beginning of the process. No relative has been discovered at this point. In this example, a privacy feature is built into the relative finder application so that close relative information will only be displayed if both the user and the close relative have chosen to view close relatives. This is referred to as the “opt in” feature. The user is further presented with a selection button “show close relatives” to indicate that he/she is interested in finding out about close relatives. FIG. 4B shows a message that is displayed when the user selects “show close relatives”. The message explains to the user how a close relative is defined. In this case, a close relative is defined as a first cousin or closer. In other words, the system has set a default minimum threshold of three degrees. The message further explains that unless there is already an existing connection between the user and the close relative, any newly discovered potential close relatives will not appear in the results unless the potential close relatives have also chosen to view their close relatives. The message further warns about the possibility of finding out about close relatives the user did not know he/she had. The user has the option to proceed with viewing close relatives or cancel the selection.



FIG. 4C shows the results in the discovery view. In this example, seven potential relatives are found in the database. The predicted relationship, the range of possible relationship, certain personal details a potential relative has made public, the amount of DNA a potential relative shares with the user, and the number of DNA segments the potential relative shares with the user are displayed. The user is presented with a “make contact” selection button for each potential relative.



FIG. 4D shows the results in the list view. The potential relatives are sorted according to how close the corresponding predicted relationships are to the user in icon form. The user may select an icon that corresponds to a potential relative and view his/her personal information, the predicted relationship, relationship range, and other additional information. The user can also make contact with the potential relative.



FIGS. 4E-4G show the user interface when the user selects to “make contact” with a potential relative. FIG. 4E shows the first step in making contact, where the user personalizes the introduction message and determine what information the user is willing to share with the potential relative. FIG. 4F shows an optional step in making contact, where the user is told about the cost of using the introduction service. In this case, the introduction is free. FIG. 4G shows the final step, where the introduction message is sent.



FIG. 4H shows the user interface shown to the potential relative upon receiving the introduction message. In this example, the discovery view indicates that a certain user/potential relative has requested to make a contact. The predicted relationship, personal details of the sender, and DNA sharing information are shown to the recipient. The recipient has the option to select “view message” to view the introduction message from the sender.



FIG. 4I shows the message as it is displayed to the recipient. In addition to the content of the message, the recipient is given the option to accept or decline the invitation to be in contact with the sender. If the recipient accepts the invitation, the recipient and the sender become connected and may view each other's information and/or interact with each other.


Many other user interfaces can be used in addition to or as alternatives of the ones shown above. For example, in some embodiments, at least some of the potential relatives are displayed in a family tree.


Determining the relationship between two users in the database is now described. In some embodiments, the determination includes comparing the DNA markers (e.g., SNPs) of two users and identifying IBD regions. The standard SNP based genotyping technology results in genotype calls each having two alleles, one from each half of a chromosome pair. As used herein, a genotype call refers to the identification of the pair of alleles at a particular locus on the chromosome. Genotype calls can be phased or unphased. In phased data, the individual's diploid genotype at a particular locus is resolved into two haplotypes, one for each chromosome. In unphased data, the two alleles are unresolved; in other words, it is uncertain which allele corresponds to which haplotype or chromosome.


The genotype call at a particular SNP location may be a heterozygous call with two different alleles or a homozygous call with two identical alleles. A heterozygous call is represented using two different letters such as AB that correspond to different alleles. Some SNPs are biallelic SNPs with only two possible states for SNPs. Some SNPs have more states, e.g. triallelic. Other representations are possible.


In this example, A is selected to represent an allele with base A and B represents an allele with base G at the SNP location. Other representations are possible. A homozygous call is represented using a pair of identical letters such as AA or BB. The two alleles in a homozygous call are interchangeable because the same allele came from each parent. When two individuals have opposite-homozygous calls at a given SNP location, or, in other words, one person has alleles AA and the other person has alleles BB, it is very likely that the region in which the SNP resides does not have IBD since different alleles came from different ancestors. If, however, the two individuals have compatible calls, that is, both have the same homozygotes (i.e., both people have AA alleles or both have BB alleles), both have heterozygotes (i.e., both people have AB alleles), or one has a heterozygote and the other a homozygote (i.e., one has AB and the other has AA or BB), there is some chance that at least one allele is passed down from the same ancestor and therefore the region in which the SNP resides is IBD. Further, based on statistical computations, if a region has a very low rate of opposite-homozygote occurrence over a substantial distance, it is likely that the individuals inherited the DNA sequence in the region from the same ancestor and the region is therefore deemed to be an IBD region.



FIG. 5 is a diagram illustrating an embodiment of a process for determining the predicted degree of relationship between two users. Process 500 may be implemented on a relative finder system such as 102 and is applicable to unphased data. At 502, consecutive opposite-homozygous calls in the users' SNPs are identified. The consecutive opposite-homozygous calls can be identified by serially comparing individual SNPs in the users' SNP sequences or in parallel using bitwise operations as described below. At 504, the distance between consecutive opposite-homozygous calls is determined. At 506, IBD regions are identified based at least in part on the distance between the opposite-homozygous calls. The distance may be physical distance measured in the number of base pairs or genetic distance accounting for the rate of recombination. For example, in some embodiments, if the genetic distance between the locations of two consecutive opposite-homozygous calls is greater than a threshold of 10 centimorgans (cM), the region between the calls is determined to be an IBD region. This step may be repeated for all the opposite-homozygous calls. A tolerance for genotyping error can be built by allowing some low rate of opposite homozygotes when calculating an IBD segment. In some embodiments, the total number of matching genotype calls is also taken into account when deciding whether the region is IBD. For example, a region may be examined where the distance between consecutive opposite homozygous calls is just below the 10 cM threshold. If a large enough number of genotype calls within that interval match exactly, the interval is deemed IBD.



FIG. 6 is a diagram illustrating example DNA data used for IBD identification by process 500. 602 and 604 correspond to the SNP sequences of Alice and Bob, respectively. At location 606, the alleles of Alice and Bob are opposite-homozygotes, suggesting that the SNP at this location resides in a non-IBD region. Similarly, at location 608, the opposite-homozygotes suggest a non-IBD region. At location 610, however, both pairs of alleles are heterozygotes, suggesting that there is potential for IBD. Similarly, there is potential for IBD at location 612, where both pairs of alleles are identical homozygotes, and at location 614, where Alice's pair of alleles is heterozygous and Bob's is homozygous. If there is no other opposite-homozygote between 606 and 608 and there are a large number of compatible calls between the two locations, it is then likely that the region between 606 and 608 is an IBD region.


Returning to FIG. 5, at 508, the number of shared IBD segments and the amount of DNA shared by the two users are computed based on the IBD. In some embodiments, the longest IBD segment is also determined. In some embodiments, the amount of DNA shared includes the sum of the lengths of IBD regions and/or percentage of DNA shared. The sum is referred to as IBDhalf or half IBD because the individuals share DNA identical by descent for at least one of the homologous chromosomes. At 510, the predicted relationship between the users, the range of possible relationships, or both, is determined using the IBDhalf and number of segments, based on the distribution pattern of IBDhalf and shared segments for different types of relationships. For example, in a first degree parent/child relationship, the individuals have IBDhalf that is 100% the total length of all the autosomal chromosomes and 22 shared autosomal chromosome segments; in a second degree grandparent/grandchild relationship, the individuals have IBDhalf that is approximately half the total length of all the autosomal chromosomes and many more shared segments; in each subsequent degree of relationship, the percentage of IBDhalf of the total length is about 50% of the previous degree. Also, for more distant relationships, in each subsequent degree of relationship, the number of shared segments is approximately half of the previous number.


In various embodiments, the effects of genotyping error are accounted for and corrected. In some embodiments, certain genotyped SNPs are removed from consideration if there are a large number of Mendelian errors when comparing data from known parent/offspring trios. In some embodiments, SNPs that have a high no-call rate or otherwise failed quality control measures during the assay process are removed. In some embodiments, in an IBD segment, an occasional opposite-homozygote is allowed if there is sufficient opposite-homozygotes-free distance (e.g., at least 3 cM and 300 SNPs) surrounding the opposite-homozygote.


There is a statistical range of possible relationships for the same IBDhalf and shared segment number. In some embodiments, the distribution patterns are determined empirically based on survey of real populations. Different population groups may exhibit different distribution patterns. For example, the level of homozygosity within endogamous populations is found to be higher than in populations receiving gene flow from other groups. In some embodiments, the bounds of particular relationships are estimated using simulations of IBD using generated family trees. Based at least in part on the distribution patterns, the IBDhalf, and shared number of segments, the degree of relationship between two individuals can be estimated. FIG. 7 is a diagram illustrating example simulated relationship distribution patterns for different population groups according to one embodiment. In particular, Ashkenazi Jews and Europeans are two population groups surveyed. In panels A-C, for each combination of IBDhalf and the number of IBD segments in an Ashkenazi sample group, the 95%, 50% and 5% of obtained nth degree cousinships from 1 million simulated pedigrees are plotted. In panels D-F, for each combination of IBDhalf and the number of IBD segments in a European sample group, the 95%, 50% and 5% of obtained nth degree cousinships from 1 million simulated pedigrees are plotted. In panels G-I, the differences between Ashkenazi and European distant cousinship for the prior panels are represented. Each nth cousinship category is scaled by the expected number of nth degree cousins given a model of population growth. Simulations are conducted by specifying an extended pedigree and creating simulated genomes for the pedigree by simulating the mating of individuals drawn from a pool of empirical genomes. Pairs of individuals who appear to share IBDhalf that was not inherited through the specified simulated pedigree are marked as “unknown” in panels A-F. Thus, special distribution patterns can be used to find relatives of users who have indicated that they belong to certain distinctive population groups such as the Ashkenazi.


The amount of IBD sharing is used in some embodiments to identify different population groups. For example, for a given degree of relationship, since Ashkenazi tend to have much more IBD sharing than non-Ashkenazi Europeans, users may be classified as either Ashkenazi or non-Ashkenazi Europeans based on the number and pattern of IBD matches.


In some embodiments, instead of, or in addition to, determining the relationship based on the overall number of IBD segments and percent DNA shared, individual chromosomes are examined to determine the relationship. For example, X chromosome information is received in some embodiments in addition to the autosomal chromosomes. The X chromosomes of the users are also processed to identify IBD. Since one of the X chromosomes in a female user is passed on from her father without recombination, the female inherits one X chromosome from her maternal grandmother and another one from her mother. Thus, the X chromosome undergoes recombination at a slower rate compared to autosomal chromosomes and more distant relationships can be predicted using IBD found on the X chromosomes.


In some embodiments, analyses of mutations within IBD segments can be used to estimate ages of the IBD segments and refine estimates of relationships between users.


In some embodiments, the relationship determined is verified using non-DNA information. For example, the relationship may be checked against the users' family tree information, birth records, or other user information.


In some embodiments, the efficiency of IBD region identification is improved by comparing a user's DNA information with the DNA information of multiple other users in parallel and using bitwise operations. FIG. 8 is a diagram illustrating an embodiment of a highly parallel IBD identification process. Alice's SNP calls are compared with those of multiple other users. Alice's SNP calls are pre-processed to identify ones that are homozygous. Alice's heterozygous calls are not further processed since they always indicate that there is possibility of IBD with another user. For each SNP call in Alice's genome that is homozygous, the zygosity states in the corresponding SNP calls in the other users are encoded. In this example, compatible calls (e.g., heterozygous calls and same homozygous calls) are encoded as 0 and opposite-homozygous calls are encoded as 1. For example, for homozygous SNP call AA at location 806, opposite-homozygous calls BB are encoded as 1 and compatible calls (AA and AB) are encoded as 0; for homozygous SNP call EE at location 812, opposite-homozygous calls FF are encoded as 1 and compatible calls (EE and EF) are encoded as 0, etc. The encoded representations are stored in arrays such as 818, 820, and 824. In some embodiments, the length of the array is the same as the word length of the processor to achieve greater processing efficiency. For example, in a 64-bit processing system, the array length is set to 64 and the zygosity of 64 users' SNP calls are encoded and stored in the array.


A bitwise operation is performed on the encoded arrays to determine whether a section of DNA such as the section between locations 806 and 810 includes opposite-homozygous calls. In this example, a bitwise OR operation is performed to generate a result array 824. Any user with no opposite-homozygous calls between beginning location 806 and ending location 816 results in an entry value of 0 in array 824. The corresponding DNA segment, therefore, is deemed as an IBD region for such user and Alice. In contrast, users with opposite-homozygotes result in corresponding entry values of 1 in array 824 and they are deemed not to share IBD with Alice in this region. In the example shown, user 1 shares IBD with Alice while other users do not.


In some embodiments, phased data is used instead of unphased data. These data can come directly from assays that produce phased data, or from statistical processing of unphased data. IBD regions are determined by matching the SNP sequences between users. In some embodiments, sequences of SNPs are stored in dictionaries using a hash-table data structure for the ease of comparison. FIG. 9 is a diagram illustrating an example in which phased data are compared to identify IBD. The sequences are split along pre-defined intervals into non-overlapping words. Other embodiments may use overlapping words. Although a preset length of 3 is used for purposes of illustration in the example shown, many implementations may use words of longer lengths (e.g. 100). Also, the length does not have to be the same for every location. In FIG. 9, in Alice's chromosome pair 1, chromosome 902 is represented by words AGT, CTG, CAA, . . . and chromosome 904 is represented by CGA, CAG, TCA, . . . . At each location, the words are stored in a hash table that includes information about a plurality of users to enable constant retrieval of which users carry matching haplotypes. Similar hash tables are constructed for other sequences starting at other locations. To determine whether Bob's chromosome pair 1 shares any IBD with Alice's, Bob's sequences are processed into words at the same locations as Alice's. Thus, Bob's chromosome 906 yields CAT, GAC, CCG, . . . and chromosome 908 yields AAT, CTG, CAA, . . . . Every word from Bob's chromosomes is then looked up in the corresponding hash table to check whether any other users have the same word at that location in their genomes. In the example shown, the second and third words of chromosome 908 match second and third words of Alice's chromosome 902. This indicates that SNP sequence CTGCAA is present in both chromosomes and suggests the possibility of IBD sharing. If enough matching words are present in close proximity to each other, the region would be deemed IBD.


In some embodiments, relative relationships found using the techniques described above are used to infer characteristics about the users that are related to each other. In some embodiments, the inferred characteristic is based on non-genetic information pertaining to the related users. For example, if a user is found to have a number of relatives that belong to a particular population group, then an inference is made that the user may also belong to the same population group. In some embodiments, genetic information is used to infer characteristics, in particular characteristics specific to shared IBD segments of the related users. Assume, for example, that Alice has sequenced her entire genome but her relatives in the system have only genotyped SNP data. If Alice's genome sequence indicates that she may have inherited a disease gene, then, with Alice's permission, Alice's relatives who have shared IBD with Alice in the same region that includes the disease gene may be notified that they are at risk for the same disease.



FIG. 10 is a block diagram illustrating an embodiment of an ancestry finder system. In this example, ancestry finder system 102 may be implemented using one or more server computers having one or more processors, one or more special purpose computing appliances, or any other appropriate hardware, software, or combinations thereof. The operations of the ancestry finder system are described in greater detail below. In this example, various users of the system (e.g., user 1 (“Alice”) and user 2 (“Bob”)) access the ancestry finder system via a network 104 using client devices such as 106 and 108. User information (including genetic information and optionally other personal information such as family information, population group, etc.) pertaining to the users is stored in a database 110, which can be implemented on an integral storage component of the ancestry finder system, an attached storage device, a separate storage device accessible by the ancestry finder system, or a combination thereof. Many different arrangements of the physical components are possible in various embodiments. In some embodiments, the entire genome sequences or assayed DNA markers (SNPs, STRs, CNVs, etc.) are stored in the database to facilitate the relative finding process. For example, approximately 650,000 SNPs per individual's genome are assayed and stored in the database in some implementations.


System 1000 shown in this example includes genetic and other additional non-genetic information for many users. By comparing the recombining DNA information to identify shared IBD regions between various users, the ancestry finder system can infer ancestry information or other characteristics of a user.


In some embodiments, database 110 includes results of a survey of users. For example, the survey may be an ancestry survey that requests information such as the place (e.g., country and city) of birth, race, and ethnicity of the user. In some embodiments, the survey also requests information regarding relatives of the user, such as the place of birth and race/ethnicity of each of the user's parents and grandparents (if known to the user). For example, Alice may provide her place of birth and ethnicity, as well as the places of birth and ethnicities of each of her parents and grandparents. Such information may be useful for determining information about the ancestry of other users who are related to Alice and/or have a common IBD segment with Alice, as further described below. In some embodiments, Alice may also provide ancestry information for her direct maternal line (mother's mother's mother's . . . mother) as far back as possible. Alice's brother (or any male) might provide ancestry information for his direct paternal line (father's father's father's . . . father) as far back as possible. In various embodiments, the user survey results are stored separately from database 110, such as in a separate database. In various embodiments, relative finder system 102 and ancestry finder system 1002 are part of the same system and may share data.



FIG. 11 is a flowchart illustrating an embodiment of a process for inferring a characteristic of an individual. Process 1100 may be implemented on an ancestry finder system such as 1100. In some embodiments, if a user has a chromosomal segment that is associated with a particular population group (e.g., based on other users having that chromosomal segment who have identified themselves as being associated with the population group), this process infers that the user has ancestry associated with that population group. The process may be invoked, for example, at a user's request to look for ancestry information and/or potential relatives this user may have in the database. One or more steps of process 1100 may be part of a batch process used to obtain ancestry information (or information used to infer ancestry information) for a plurality of users.


At 1102, an indication that a first user (e.g., Alice) and a second user (e.g., Bob) have at least one shared IBD segment is received. In some embodiments, it is determined that the first user and the second user have at least one shared IBD segment based on information retrieved from a database that stores recombining DNA information of a plurality of users as well as additional user information. For purposes of illustration, SNP information is described extensively in this and following examples. Other DNA information such as STR information, CNV information, exomic sequence information, and/or full sequence information may be used in other embodiments. In some embodiments, the second user is an individual from a reference database, and not necessarily a user of the ancestry finder system.


At 1104, information about the second user is obtained. In some embodiments, the information about the second user comprises one or more characteristics of one or more relatives of the second user. In some embodiments, at least one characteristic is ancestry information. For example, the information about the second user could comprise ancestry information about the four grandparents of the second user, such as the birthplaces of the four grandparents. Such information could, for example, have been provided by the second user when filling out a survey of characteristics of the user and the user's relatives, such as an ancestry survey, an example of which was previously described. In other embodiments, such information could be provided by a reference database. In some embodiments, the information about the second user is obtained from a database, such as database 110.


At 1106, a characteristic of the first user is inferred based at least in part on the information about the second user. If the first user and second user share at least one common IBD segment, information about the first user could be inferred from known information about the second user. For example, if it is known that the second user's four grandparents were all born in Ireland, than it can be inferred that the first user has at least some Irish ancestry, or at least that there is someone of Irish ancestry associated with that segment value. Characteristics can include ancestry information. Other examples of characteristics that can be inferred besides ancestry information include any other inherited characteristic, such as information associated with diseases, traits, or any other form of phenotypic information.


At 1108, the inferred characteristic of the first user is presented in a user interface. Various examples of user interfaces for presenting, displaying, or notifying of the inferred characteristic are possible. Some examples of user interfaces include a table view, an (extended) discovery view, a karyotype view, a geographical map view, as more fully described below. For example, a discovery view may display a list or table of users that are found to be related to the user based on the relative finder system. In addition to displaying relative finder results, ancestry information is displayed next to each relative. For example, next to each relative, there may be a column for each grandparent of that relative. An indication of ancestry information for each grandparent may be displayed in each column, as more fully illustrated below. Other examples of user interfaces include a family tree, which displays a family tree filled with inferred ancestry information about each relative. In some embodiments, the system actively notifies the users by sending messages or alerts about ancestry information when it becomes available or at a given interval.


In some embodiments, it is determined that for a particular segment, the first user shares IBD with other users besides the second user. If the other users that share this chromosomal segment have conflicting inferred ancestry (or other characteristic) information, then this conflict may be handled in various ways in various embodiments. In some embodiments, all the information is presented. In some embodiments, the information is processed to infer ancestry (or other characteristic information). For example, the information may be processed using a majority rules technique. For example, if the ancestry associated with the majority of the matching users is German, then it is inferred that that segment is associated with German ancestry. In some embodiments, for each segment and each possible value of each segment, the information is processed (e.g., using majority rules), and the processed result is pre-computed and stored for future reference by any of the matching users.


In some embodiments, 1102 is part of a batch process in which a plurality of users (e.g., from a database) are preprocessed to determine shared IBD segments. The results comprise shared IBD segments for a plurality of users. For example, for a particular user, there may be 278 matches to various segments of the user's chromosomes. At 1104, these results are cross-referenced with a database of information (e.g., ancestry information) about those matching users. For example, of the 278 matches, 49 of those users have completed an ancestry information survey that can be used to infer ancestry information about the particular user.



FIG. 12 is a flowchart illustrating an embodiment of a process for determining that a first user and a second user share at least one IBD segment. Process 1200 may be implemented on an ancestry finder system such as 1100. The process may be performed, for example, at 1102 of process 1100. At 1202, recombining DNA information of a first user and recombining DNA information of a second user are received. At 1204, a shared IBD segment between the first user and the second user is determined based at least in part on the recombining DNA information of the first user and recombining DNA information of the second user. Any appropriate technique may be used to determine the shared IBD segment. For example, in some embodiments, one or more steps of process 500 are used to determine the shared IBD segment. In some embodiments, one or more steps of the process described with respect to FIG. 6, 8, or 9 is used to determine the shared IBD segment.



FIG. 13 shows an interface example for a table view of an ancestry finder system. In some embodiments, this interface is used to present inferred ancestry information for a user at 1108. In this example, a table is displayed or presented that illustrates the results a typical user of European ancestry might receive. Each row in the table corresponds to a chromosomal segment that the user shares by IBD with another individual (i.e., a relative finder hit). Three of the segments are to (one or more) individuals of Irish ancestry, and one is to an individual of German ancestry. This table shows a relatively low number of ancestry finder hits. In other words, only about 40 cM (roughtly 40 Mb), or a bit more than half a percent of this user's genome. (The calculation is 40 cM/6000 cM=0.7%. The denominator is not 3000 cM, the length of the diploid genome, but twice that, the length of the haploid genome, because there could be an ancestry finder hit to either chromosome. This typically is the case with Ashkenazim.) How much of the genome is covered depends on the number of individuals in the database from the same subpopulations as the user and the consanguinity of that subpopulation. A hit or match means that at least a portion of the user's genome was found in the indicated part of the world prior to the era of intercontinental travel.


In various embodiments, other types of interfaces, tables, charts, or views may be used. For example, a table of the top ten countries associated with the user's ancestral origin may be presented or displayed. These top ten countries are determined based on the total number of non-overlapping DNA segments attributable to each country. A pie chart may be used to show the breakdown among countries.



FIG. 14 shows an interface example for the discovery view of a relative finder system that incorporates an ancestry finder system. In some embodiments, this interface is used to present inferred ancestry information for a user at 1108. In this example, the user interface of FIG. 4C is shown in addition to four new columns: GP1-GP4, representing Grandparents 1-4. For each relative, ancestry information is shown in each of the columns for that relative. In this example, the ancestry information is represented by codes that indicate birth countries of the grandparents. DE is Germany, UK is the United Kingdom, IE is Ireland, US is the United States, and JP is Japan. For example, the first row shows a 4th cousin with four grandparents who are all of German ancestry. In other embodiments, other ancestry information could be displayed, such as race/ethnicity (e.g., NA for Native American). In various embodiments, various other ancestry information could be provided, such as information about the relative's parents or siblings. In various embodiments, various other information about characteristics of the relative could be provided, including disease, trait, or any other form of phenotypic information



FIG. 15 shows an interface example for a karyotype view of an ancestry finder system. In some embodiments, this interface is used to present inferred ancestry information for a user “Paul Pierce” at 1108.


In this example, the user interface shows a graphic of a user's chromosome on the left hand side. On each chromosome, various segments are colored based on with which ancestry (France, Austria, United States, etc.) that segment is associated. In some embodiments, a segment is associated with an ancestry based on an IBD match with an individual of known ancestry. For example, if a user's segment has an IBD match with another individual, and the birth country of all four grandparents of that individual is provided or known, then it can be inferred that the user's segment is associated with that birth country. In other words, that shared IBD segment was associated with that part of the world (prior to the era of intercontinental travel).


On the right hand side, a control panel is shown. In the control panel, the customer (user) name is shown, along with user configurable settings. “Minimum segment size” is the minimum length of a matching IBD segment, in this example, 5 cM. Minimum segment size governs the minimum length of displayed ancestry finder hits. It's given in centiMorgans (cM) in the example shown, but can also be expressed in terms of base pairs, kilobases, megabases, or any other appropriate unit. In this example, most hits are short, so increasing the minimum quickly reduces the number of segments displayed. These longer hits, although fewer, are increasingly likely to indicate recent shared ancestry, and therefore to represent genuine/applicable ancestry finder results. In this example, the great majority of IBD hits, and thus ancestry finder segments, are between 5 cM and 10 cM in length. The lower end is controlled by a few threshold parameters in the IBD matching technique and can take any appropriate value. The lower edge might be different for the IBD hits on live. One range might be 5 cm to 20 cM (20 cM is the approximate length of chromosome 22). Although a pull down menu is shown, in various embodiments, a slider or other element could be used, with a default initial value.


“Number of grandparents from the same country” indicates the minimum number of grandparents from the same country in order for an association to be made, as will be more fully described below. In this example, ancestry associations for a segment are only made if the birth countries of all four grandparents are the same. “Display type” indicates that this is a karyotype display.


“Show North American origin?” indicates whether to include the United States and Canada as ancestry finder matches. For example, a user may desire to exclude North American origin matches because they may not be as informative since most individuals born in North America have ancestry in other parts of the world. In some cases, if this option is unchecked, then relatively fewer number of hits will result because there are many users whose four grandparents are from the United States or Canada. This is a toggle in the example, but other user interface elements may be used.


In some embodiments, a dialog box such as the one shown may be used for a user to provide feedback in this view or any other view (such as the discovery view). For example, the dialog box may open when a cursor hovers over one of the segments. The shown dialog box asks the user whether the indicated ancestry information could be right. The user can indicate “Yes” or “No” and provide a reason. In some embodiments, this feedback is used by the ancestry finder system to improve future inferences. For example, a user may see one segment that is colored brown to indicate Japan. If the user knows that he does not have any Japanese ancestry, he may select “No” in the dialog box. This may happen, for example, if the individual with the matching IBD segment to the user has indicated his grandparents are all from Japan due to misinformation. This could also happen if there is misleading information. For example a user could be born in Australia, but not be Aborigines. In some cases, a particular IBD segment may be found in more than one part of the world, leading to this result. For example, there may be tracks of chromosome that do not actually correspond to recent shared ancestry—they could correspond to old ancestry and be shared by many users.


In various embodiments, other user configurable settings may be included, such as an option to Show Public Reference Individuals and/or Show Relative Finder Users. There may be hits to customers via the ancestry survey, and to anonymous reference individuals of known ancestry from public genotype databases. The customer may wish to toggle visibility of the public individuals/Relative Finder. In some embodiments, this could rotate through three states: Both->Relative Finder Users Only->Public Only.


An option to “Notify Me of Changes to My Ancestry Finder Results” may be provided. Ancestry finder results will change/improve with time. This would allow a user to indicate whether and how the user wishes to be notified of these changes. For example, the user could request to be notified as soon as they happen (up to daily), weekly in a batch, monthly in a batch. The user could indicate which results the user wants to be notified of (e.g., four grandparents, three grandparents, and/or Non-North American).



FIG. 16 shows an example of the effect of varying some of the settings in a karyotype view of an ancestry finder system, such as that shown in FIG. 15.


“Number of Grandparents from Same Country” is the minimum number of co-located grandparents for an ancestry finder match to be made. This governs how many grandparents of the individual matching a user must be associated with the same country/ethnicity. For example, if four, then only segments for which all four grandparents come from the same country will be shown. The table shows the overall distribution of ancestry survey responses across an example database of users. The possible values are integers from four to one, inclusive.


Varying “Number of Grandparents from Same Country” and “Show North American Origin?” affects the number and informativeness of ancestry finder hits displayed. For example, in an example database, most customers of European descent have about 100 relative finder hits in the database, and about a third of the users have taken an ancestry survey, this means there are 100*(⅓) or about 30 users who match and have provided ancestry information via the ancestry survey. Generally speaking, the most informative ancestry finder matches are those when there is a match who has four grandparents from the same country, and that country is not the US or Canada. Since such matches are relatively rare in the example database, perhaps 0 to 5 of the approximately 30 matches from above, users may wish to see their other matches, even though they may be less informative. Decreasing the number of grandparents required to be from the same country from 4 to 3 to 2 to 1 increases the number of hits displayed, as does allowing matches from the US and Canada to be shown.



FIG. 17 shows an interface example of a karyotype view of an ancestry finder system in which “Number of grandparents from the same country” is 2. In this example, the interface of FIG. 15 is shown for a user “Adrian Lee” who has selected 2 as the “Number of grandparents from the same country.” This means that for each shared IBD segment shown (colored), the user had shared IBD with someone who has at least two grandparents from the same country. As shown, some of the segments show two or more colors (split horizontally) to indicate that that segment is IBD matched with someone whose grandparents could be from as many as three different countries. In contrast, FIG. 15 shows only one color per segment because all four grandparents must be from the same country. In various embodiments, a variety of graphical elements or visual cues may be used to depict such inferences about characteristics (such as ancestry information) that have been made based on one or more shared IBD segments.



FIG. 18 shows an interface example for a geographical map view of an ancestry finder system. The left hand side shows a map of some region of the world. The dots are latitude/longitude coordinates inferred from text typed in by users describing their specific places of birth, and/or those of their ancestors. The dots are the birthplaces of US-born grandparents of other users who have an IBD match with user Paul Pierce. The match is based on a minimum segment size of 5 cM, minimum number of grandparents from the same country of 4, and North American origin. For example, the map could be of North America.



FIG. 19 is a flowchart illustrating an embodiment of a process for inferring a characteristic of an individual from the ancestry or other phenotypic information of a second individual, even if the two individuals are not related by DNA. Process 1900 may be implemented on an ancestry finder system such as 1100. The process may be invoked, for example, at a user's request to look for ancestry information. In some embodiments, this process is performed between 1106 and 1108 of process 1100, for cases in which a third user is requesting ancestry information. In this case, it is known that the third user is related to the first user, but the third user does not share an IBD segment with the second user. In some cases, the third user does not share an IBD segment with the first user either.


For example, the third user may be a sibling of the first user, but the third user does not have an IBD match with any other user in the database. However, the first user has an IBD match with the second user. Because it is known that the first user and the third user are siblings, and that the first user and second user have shared IBD for at least one segment, then, in some embodiments, ancestry information for the third user can be inferred from the ancestry information about the second user. In some cases, this means that it need not be determined whether the third user has any shared IBD segments with the second user, and this ancestry information can be inferred as soon as it is known that the third user is a sibling of the first user.


As a more specific example, the first user and the third user are full siblings, the second user is the father of the first user, the first user has a segment that is a shared IBD segment with his father (the second user), but the third user does not share that IBD segment with his father (the second user). If both of the father's parents are from Germany, then it can be inferred that the third user has at least two grandparents, his paternal grandparents, from Germany. If instead the relationship between the first user and second user is not known, perhaps because the second user is a distant cousin of the first user instead of the father, then it can at least be inferred that the third user has German ancestry, because the third user's lineages are identical to those of the first user's.


At 1902, an indication that a third user has a known degree of relationship to the first user is received. The third user does not necessarily share an IBD segment with either the first user or the second user. In the example above, the known degree of relationship between the third user and the first user is “sibling.”


At 1904, a characteristic of the third user is inferred based at least in part on the inferred characteristic of the first user. In the example above, it is inferred that the third user has German ancestry, or if it is known that the second user is the father of the first user, then it is inferred that the third user has at least two grandparents from Germany.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. An ancestry finder system comprising one or more processors and one or more memories, the one or more processors being configured to: An ancestry finder system comprising one or more processors and one or more memories, the one or more processors being configured to: (a) retrieve deoxyribonucleic acid (DNA) information of a first user and a plurality of other users, wherein the DNA information comprises genetic markers, and wherein each user of the plurality of other users has at least two grandparents who have a same birth country or a same ethnicity;(b) process in parallel the genetic markers of the first user and the plurality of other users to estimate lengths of one or more identical-by-descent (IBD) segments between the first user and each user of the plurality of other users, wherein:to process in parallel comprises to (i) perform a bitwise operation on a bit array to determine whether a segment of DNA on a pair of chromosomes includes opposite-homozygous calls between the first user and each user of the plurality of other users and (ii) estimate the lengths of the one or more IBD segments based on results of the bitwise operation on the bit array;the bit array has a dimension for user and a dimension for genetic marker; andeach element of the bit array indicates whether or not a genetic marker is opposite homozygous between the first user and a user of the plurality of other users;(c) determine an ancestral origin of at least one chromosomal segment of the first user to be a birth country, a geographical region, or an ethnicity of at least two grandparents of a matching user who have a same birth country, a same geographical region, or a same ethnicity, wherein the first user and the matching user share the least one chromosomal segment, and wherein the at least one chromosomal segment comprises at least one IBD segment whose length is estimated as meeting a minimum length based on the results of the bitwise operation on the bit array;(d) cause to display in a graphical user interface ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user, the ancestral information comprising a graphical representation of a karyotype of the first user, wherein the karyotype of the first user comprises one or more chromosome pairs, wherein the one or more chromosome pairs comprise the at least one chromosomal segment corresponding to the at least one IBD segment whose length is estimated as meeting the minimum length based on the results of the bitwise operation on the bit array, and wherein the ancestral origin of the at least one chromosomal segment is indicated on the at least one chromosomal segment(e) cause to display in the graphical user interface an input element for adjusting the minimum length;(f) receive via the input element a user input to adjust the minimum length;(g) repeat (c) using the adjusted minimum length, wherein the at least one IBD segment's length is estimated as meeting the adjusted minimum length; and(h) cause to update in the graphical user interface the graphical representation of the karyotype of the first user, wherein the at least one chromosomal segment of the karyotype of the first user corresponds to the at least one IBD segment whose length is estimated as meeting the adjusted minimum length.
  • 2. The system of claim 1, wherein the array comprises two or more rows corresponding to two or more users and two or more columns corresponding to two or more genetic markers.
  • 3. The system of claim 2, wherein the two or more users comprise at least 64 users.
  • 4. The system of claim 1, wherein the birth country, the geographical region, or the ethnicity of the at least two grandparents of the matching user are reported by the matching user.
  • 5. The system of claim 1, wherein the ancestral origin of the at least one chromosomal segment is indicated by a graphical characteristic.
  • 6. The system of claim 5, wherein the ancestral origin of the at least one chromosomal segment is indicated by a color.
  • 7. The system of claim 1, wherein the ancestral origin is based on a birth country or an ethnicity of at least two grandparents of each of two or more matching users.
  • 8. The system of claim 1, wherein the at least two grandparents comprise at least three or four grandparents.
  • 9. The system of claim 1, wherein the ancestral origin of the at least one chromosomal segment of the first user comprises two or more different birth countries, geographical regions, or ethnicities.
  • 10. The system of claim 1, wherein the first user and the matching user are related but previously unknown to be related.
  • 11. The system of claim 1, wherein the minimum length of the IBD segment is provided by a user through a GUI.
  • 12. The system of claim 1, wherein the genetic markers comprise 650,000 SNPs.
  • 13. A method of operating an ancestry finder database with hundreds of thousands of genetic markers to display an ancestry origin of at least one chromosomal segment of a first user, comprising: (a) retrieving deoxyribonucleic acid (DNA) information of a first user and a plurality of other users, wherein the DNA information comprises genetic markers, and wherein each user of the plurality of other users has at least two grandparents who have a same birth country or a same ethnicity;(b) processing, using one or more processors of an ancestry finder system, the genetic markers of the first user and the plurality of other users to estimate lengths of one or more identical-by-descent (IBD) segments between the first user and each user of the plurality of other users;(c) determining, using the one or more processors, an ancestral origin of at least one chromosomal segment of the first user to be a birth country, a geographical region, or an ethnicity of at least two grandparents of a matching user who have a same birth country, a same geographical region, or a same ethnicity, wherein the first user and the matching user share the least one chromosomal segment, and wherein the at least one chromosomal segment comprises at least one IBD segment whose length is estimated as meeting a minimum length based on the estimated lengths of the one or more IBD segments;(d) causing to display in a graphical user interface ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user, the ancestral information comprising a graphical representation of a karyotype of the first user, wherein the karyotype of the first user comprises one or more chromosome pairs, wherein the one or more chromosome pairs comprise the at least one chromosomal segment corresponding to the at least one IBD segment whose length is estimated as meeting the minimum length, and wherein the ancestral origin of the at least one chromosomal segment is indicated on the at least one chromosomal segment(e) causing to display in the graphical user interface an input element for adjusting the minimum length;(f) receiving via the input element a user input to adjust the minimum length;(g) repeating (c) using the adjusted minimum length, wherein the at least one IBD segment's length is estimated as meeting the adjusted minimum length; and(h) causing to update in the graphical user interface the graphical representation of the karyotype of the first user, wherein the at least one chromosomal segment of the karyotype of the first user corresponds to the at least one IBD segment whose length is estimated as meeting the adjusted minimum length.
  • 14. The method of claim 13, wherein the ancestral origin of the at least one chromosomal segment is indicated by a graphical characteristic.
  • 15. The method of claim 13, wherein the ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user comprises a table of countries associated with the first user's ancestral origin.
  • 16. The method of claim 13, wherein the ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user comprises a pie chart of countries associated with the first user's ancestral origin.
  • 17. The method of claim 13, wherein the ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user comprises a map of countries associated with the first user's ancestral origin.
  • 18. A computer program product, the computer program product being embodied in a tangible non-transitory computer readable storage medium and comprising computer instructions for estimating and displaying an ancestral origin of at least one chromosomal segment of a first user, the computer instructions comprising: (a) retrieving deoxyribonucleic acid (DNA) information of a first user and a plurality of other users, wherein the DNA information comprises genetic markers, and wherein each user of the plurality of other users has at least two grandparents who have a same birth country or a same ethnicity;(b) processing in parallel the genetic markers of the first user and the plurality of other users to estimate lengths of one or more identical-by-descent (IBD) segments between the first user and each user of the plurality of other users, wherein:the processing in parallel comprises (i) performing a bitwise operation on a bit array to determine whether a segment of DNA on a pair of chromosomes includes opposite-homozygous calls between the first user and each user of the plurality of other users and (ii) estimating the lengths of the one or more IBD segments based on results of the bitwise operation on the bit array;the bit array has a dimension for user and a dimension for genetic marker; andeach element of the bit array indicates whether or not a genetic marker is opposite homozygous between the first user and a user of the plurality of other users;(c) determining an ancestral origin of at least one chromosomal segment of the first user to be a birth country, a geographical region, or an ethnicity of at least two grandparents of a matching user who have a same birth country, a same geographical region, or a same ethnicity, wherein the first user and the matching user share the least one chromosomal segment, and wherein the at least one chromosomal segment comprises at least one IBD segment whose length is estimated as meeting a minimum length based on the results of the bitwise operation on the bit array;(d) causing to display in a graphical user interface ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user, the ancestral information comprising a graphical representation of a karyotype of the first user, wherein the karyotype of the first user comprises one or more chromosome pairs, wherein the one or more chromosome pairs comprise the at least one chromosomal segment corresponding to the at least one IBD segment whose length is estimated as meeting the minimum length based on the results of the bitwise operation on the bit array, and wherein the ancestral origin of the at least one chromosomal segment is indicated on the at least one chromosomal segment(e) causing to display in the graphical user interface an input element for adjusting the minimum length;(f) receiving via the input element a user input to adjust the minimum length;(g) repeating (c) using the adjusted minimum length, wherein the at least one IBD segment's length is estimated as meeting the adjusted minimum length; and(h) causing to update in the graphical user interface the graphical representation of the karyotype of the first user, wherein the at least one chromosomal segment of the karyotype of the first user corresponds to the at least one IBD segment whose length is estimated as meeting the adjusted minimum length.
  • 19. The computer program product of claim 18, wherein the ancestral origin of the at least one chromosomal segment is indicated by a graphical characteristic.
  • 20. The computer program product of claim 18, wherein the ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user comprises a table of countries associated with the first user's ancestral origin.
  • 21. The computer program product of claim 18, wherein the ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user comprises a pie chart of countries associated with the first user's ancestral origin.
  • 22. The computer program product of claim 18, wherein the ancestral information pertaining to the ancestral origin of the at least one chromosomal segment of the first user comprises a map of countries associated with the first user's ancestral origin.
  • 23. The system of claim 1, wherein the genetic markers comprise hundreds of thousands of genetic markers for each user.
  • 24. The system of claim 1, further comprising displaying in the graphical user interface an element for specifying a number of required grandparents of the matching user who have the same birth country, the same geographical region, or the same ethnicity.
  • 25. The system of claim 24, further comprising: receiving a user input specifying the number of required grandparents of the matching user; and updating the graphical representation of the karyotype of the first user to show the at least one chromosomal segment and the ancestral origin of the at least one chromosomal segment determined based on the number of required grandparents of the matching user.
US Referenced Citations (417)
Number Name Date Kind
5376526 Brown et al. Dec 1994 A
5551880 Bonnstetter et al. Sep 1996 A
5649181 French et al. Jul 1997 A
5660176 Iliff Aug 1997 A
5692501 Minturn Dec 1997 A
5752242 Havens May 1998 A
5769074 Barnhill et al. Jun 1998 A
5839120 Thearling Nov 1998 A
5940802 Hildebrand et al. Aug 1999 A
5985559 Brown Nov 1999 A
6063028 Luciano May 2000 A
6108647 Poosala et al. Aug 2000 A
6131092 Masand Oct 2000 A
6203993 Shuber et al. Mar 2001 B1
6216134 Heckerman et al. Apr 2001 B1
6253203 O'Flaherty et al. Jun 2001 B1
6269364 Kennedy et al. Jul 2001 B1
6321163 Graham et al. Nov 2001 B1
6393399 Even May 2002 B1
6487541 Aggarwal et al. Nov 2002 B1
6493637 Steeg Dec 2002 B1
6506562 Weissman et al. Jan 2003 B1
6507840 Ioannidis et al. Jan 2003 B1
6519604 Acharya et al. Feb 2003 B1
6601059 Fries Jul 2003 B1
6629097 Keith Sep 2003 B1
6629935 Miller et al. Oct 2003 B1
6640211 Holden Oct 2003 B1
6687696 Hofmann et al. Feb 2004 B2
6694311 Smith Feb 2004 B1
6730023 Dodds May 2004 B1
6738762 Chen et al. May 2004 B1
6873914 Winfield et al. Mar 2005 B2
6887666 Hager May 2005 B1
6912492 Johnson et al. Jun 2005 B1
6931326 Judson et al. Aug 2005 B1
6994962 Thilly Feb 2006 B1
7054758 Gill-Garrison et al. May 2006 B2
7062752 Simpson et al. Jun 2006 B2
7069308 Abrams Jun 2006 B2
7072794 Wittkowski Jul 2006 B2
7107155 Frudakis Sep 2006 B2
7127355 Cox et al. Oct 2006 B2
7162471 Knight et al. Jan 2007 B1
7271243 Dumas et al. Sep 2007 B2
7366719 Shaw Apr 2008 B2
7461006 Gogolak Dec 2008 B2
7572603 Small et al. Aug 2009 B2
7592910 Tuck et al. Sep 2009 B2
7720855 Brown May 2010 B2
7739247 Mount et al. Jun 2010 B2
7752215 Dettinger et al. Jul 2010 B2
7788358 Martino Aug 2010 B2
7797302 Kenedy et al. Sep 2010 B2
7818310 Kenedy et al. Oct 2010 B2
7844609 Kenedy et al. Nov 2010 B2
7877398 Kroeschel et al. Jan 2011 B2
7904511 Ryan et al. Mar 2011 B2
7917374 Walker Mar 2011 B2
7917438 Kenedy et al. Mar 2011 B2
7930156 Maruhashi et al. Apr 2011 B2
7933912 Kenedy et al. Apr 2011 B2
7941329 Kenedy et al. May 2011 B2
7941434 Kenedy et al. May 2011 B2
7951078 Scheuner May 2011 B2
7957907 Sorenson et al. Jun 2011 B2
7996157 Zabeau et al. Aug 2011 B2
8024348 Kenedy et al. Sep 2011 B2
8051033 Kenedy et al. Nov 2011 B2
8055643 Kenedy et al. Nov 2011 B2
8065324 Kenedy et al. Nov 2011 B2
8073708 Igoe et al. Dec 2011 B1
8099424 Kenedy et al. Jan 2012 B2
8108406 Kenedy et al. Jan 2012 B2
8185461 Kenedy et al. May 2012 B2
8187811 Eriksson et al. May 2012 B2
8200509 Kenedy et al. Jun 2012 B2
8209319 Kenedy et al. Jun 2012 B2
8224835 Kenedy et al. Jul 2012 B2
8255403 Kenedy et al. Aug 2012 B2
8326648 Kenedy et al. Dec 2012 B2
8386519 Kenedy et al. Feb 2013 B2
8428886 Wong et al. Apr 2013 B2
8452619 Kenedy et al. May 2013 B2
8458097 Kenedy et al. Jun 2013 B2
8458121 Kenedy et al. Jun 2013 B2
8463554 Hon Jun 2013 B2
8510057 Avey et al. Aug 2013 B1
8543339 Wojcicki et al. Sep 2013 B2
8589437 Khomenko et al. Nov 2013 B1
8606761 Kenedy et al. Dec 2013 B2
8635087 Igoe et al. Jan 2014 B1
8645343 Wong et al. Feb 2014 B2
8655899 Kenedy et al. Feb 2014 B2
8655908 Kenedy et al. Feb 2014 B2
8655915 Kenedy et al. Feb 2014 B2
8719045 Yoon et al. May 2014 B2
8738297 Sorenson et al. May 2014 B2
8786603 Rasmussen et al. Jul 2014 B2
8788283 Kenedy et al. Jul 2014 B2
8788286 Kenedy et al. Jul 2014 B2
8855935 Myres Oct 2014 B2
8990250 Chowdry et al. Mar 2015 B1
9031870 Kenedy et al. May 2015 B2
9116882 Macpherson et al. Aug 2015 B1
9170992 Kenedy et al. Oct 2015 B2
9213944 Do et al. Dec 2015 B1
9213947 Do et al. Dec 2015 B1
9218451 Wong et al. Dec 2015 B2
9336177 Hawthorne et al. May 2016 B2
9367663 Deciu et al. Jun 2016 B2
9367800 Do Jun 2016 B1
9390225 Barber et al. Jul 2016 B2
9405818 Chowdry et al. Aug 2016 B2
9582647 Kenedy et al. Feb 2017 B2
9836576 Do et al. Dec 2017 B1
9864835 Avey et al. Jan 2018 B2
9977708 Do et al. May 2018 B1
10025877 Macpherson Jul 2018 B2
10162880 Chowdry et al. Dec 2018 B1
10275569 Avey et al. Apr 2019 B2
10296847 Do May 2019 B1
10379812 Kenedy et al. Aug 2019 B2
10432640 Hawthorne et al. Oct 2019 B1
10437858 Naughton et al. Oct 2019 B2
10516670 Hawthorne et al. Dec 2019 B2
10572831 Do Feb 2020 B1
10643740 Avey et al. May 2020 B2
10658071 Do et al. May 2020 B2
10691725 Naughton et al. Jun 2020 B2
10699803 Do Jun 2020 B1
10755805 Do et al. Aug 2020 B1
10777302 Chowdry et al. Sep 2020 B2
10790041 Macpherson et al. Sep 2020 B2
10803134 Kenedy et al. Oct 2020 B2
10841312 Hawthorne et al. Nov 2020 B2
10854318 Macpherson Dec 2020 B2
10891317 Chowdry et al. Jan 2021 B1
10896233 Kenedy et al. Jan 2021 B2
10936626 Naughton et al. Mar 2021 B1
10957455 Kenedy et al. Mar 2021 B2
10991467 Kenedy et al. Apr 2021 B2
10999285 Hawthorne et al. May 2021 B2
11003694 Kenedy et al. May 2021 B2
11031101 Hon et al. Jun 2021 B2
11049589 Hon et al. Jun 2021 B2
11170047 Macpherson Nov 2021 B2
11170873 Avey et al. Nov 2021 B2
11171962 Hawthorne et al. Nov 2021 B2
11322227 Hon et al. May 2022 B2
20010000810 Alabaster May 2001 A1
20020010552 Rienhoff, Jr. et al. Jan 2002 A1
20020019746 Rienhoff, Jr. et al. Feb 2002 A1
20020048763 Penn et al. Apr 2002 A1
20020052697 Serita May 2002 A1
20020052761 Fey et al. May 2002 A1
20020077775 Schork et al. Jun 2002 A1
20020094532 Bader et al. Jul 2002 A1
20020120623 Vivier et al. Aug 2002 A1
20020123058 Threadgill et al. Sep 2002 A1
20020126545 Warren et al. Sep 2002 A1
20020128860 Leveque et al. Sep 2002 A1
20020133299 Jacob et al. Sep 2002 A1
20020137086 Olek et al. Sep 2002 A1
20020138572 Delany et al. Sep 2002 A1
20020156043 Pfost Oct 2002 A1
20020161664 Shaya et al. Oct 2002 A1
20020169793 Sweeney Nov 2002 A1
20020174096 O'Reilly et al. Nov 2002 A1
20020179097 Atkins Dec 2002 A1
20020183965 Gogolak Dec 2002 A1
20030009295 Markowitz et al. Jan 2003 A1
20030030637 Grinstein et al. Feb 2003 A1
20030040002 Ledley Feb 2003 A1
20030046114 Davies et al. Mar 2003 A1
20030065241 Hohnloser Apr 2003 A1
20030065535 Karlov et al. Apr 2003 A1
20030101000 Bader et al. May 2003 A1
20030113727 Girn et al. Jun 2003 A1
20030130873 Nevin et al. Jul 2003 A1
20030135096 Dodds Jul 2003 A1
20030135488 Amir et al. Jul 2003 A1
20030165926 Olek et al. Sep 2003 A1
20030167260 Nakamura et al. Sep 2003 A1
20030171876 Markowitz et al. Sep 2003 A1
20030172065 Sorenson et al. Sep 2003 A1
20030195706 Korenberg Oct 2003 A1
20030198970 Roberts Oct 2003 A1
20030203370 Yakhini et al. Oct 2003 A1
20030204418 Ledley Oct 2003 A1
20030212579 Brown et al. Nov 2003 A1
20030224394 Schadt et al. Dec 2003 A1
20030233377 Kovac Dec 2003 A1
20040002816 Milosavljevic Jan 2004 A1
20040006488 Fitall et al. Jan 2004 A1
20040009495 O'Malley et al. Jan 2004 A1
20040014097 McGlennen et al. Jan 2004 A1
20040015337 Thomas et al. Jan 2004 A1
20040018500 Glassbrook et al. Jan 2004 A1
20040019598 Huang et al. Jan 2004 A1
20040019688 Nickerson et al. Jan 2004 A1
20040024534 Hsu Feb 2004 A1
20040034652 Hofmann et al. Feb 2004 A1
20040093331 Garner et al. May 2004 A1
20040093334 Scherer May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040122705 Sabol et al. Jun 2004 A1
20040158581 Kotlyar et al. Aug 2004 A1
20040172287 O'Toole et al. Sep 2004 A1
20040172313 Stein et al. Sep 2004 A1
20040175700 Geesaman Sep 2004 A1
20040177071 Massey et al. Sep 2004 A1
20040193019 Wei Sep 2004 A1
20040197799 Williamson et al. Oct 2004 A1
20040219493 Phillips Nov 2004 A1
20040221855 Ashton Nov 2004 A1
20040242454 Gallant Dec 2004 A1
20040243443 Asano et al. Dec 2004 A1
20040243545 Boone et al. Dec 2004 A1
20040254920 Brill et al. Dec 2004 A1
20050021240 Berlin et al. Jan 2005 A1
20050026117 Judson et al. Feb 2005 A1
20050026119 Ellis et al. Feb 2005 A1
20050032066 Heng et al. Feb 2005 A1
20050037405 Caspi et al. Feb 2005 A1
20050055365 Ramakrishnan et al. Mar 2005 A1
20050064476 Huang et al. Mar 2005 A1
20050090718 Dodds Apr 2005 A1
20050112684 Holzle May 2005 A1
20050120019 Rigoutsos et al. Jun 2005 A1
20050143928 Moser et al. Jun 2005 A1
20050154627 Zuzek et al. Jul 2005 A1
20050158788 Schork et al. Jul 2005 A1
20050164704 Winsor Jul 2005 A1
20050170321 Scully Aug 2005 A1
20050170528 West et al. Aug 2005 A1
20050176057 Bremer et al. Aug 2005 A1
20050181516 Dressman et al. Aug 2005 A1
20050191678 Lapointe et al. Sep 2005 A1
20050191731 Judson et al. Sep 2005 A1
20050203900 Nakamura et al. Sep 2005 A1
20050208454 Hall Sep 2005 A1
20050216208 Saito et al. Sep 2005 A1
20050228595 Cooke Oct 2005 A1
20050256649 Roses Nov 2005 A1
20050260610 Kurtz et al. Nov 2005 A1
20050278125 Harwood et al. Dec 2005 A1
20060020398 Vernon et al. Jan 2006 A1
20060020614 Kolawa et al. Jan 2006 A1
20060025929 Eglington Feb 2006 A1
20060052945 Rabinowitz et al. Mar 2006 A1
20060059159 Truong et al. Mar 2006 A1
20060064415 Guyon et al. Mar 2006 A1
20060129034 Kasabov et al. Jun 2006 A1
20060136143 Avinash et al. Jun 2006 A1
20060195335 Christian et al. Aug 2006 A1
20060200319 Brown Sep 2006 A1
20060218111 Cohen Sep 2006 A1
20060235881 Masarie et al. Oct 2006 A1
20060257888 Zabeau et al. Nov 2006 A1
20060293921 McCarthy et al. Dec 2006 A1
20070011173 Agostino Jan 2007 A1
20070016568 Amir et al. Jan 2007 A1
20070027850 Chan et al. Feb 2007 A1
20070027917 Ariel et al. Feb 2007 A1
20070037182 Gaskin et al. Feb 2007 A1
20070050354 Rosenberg Mar 2007 A1
20070061085 Fernandez Mar 2007 A1
20070061166 Ramasubramanian et al. Mar 2007 A1
20070061197 Ramer et al. Mar 2007 A1
20070061424 Mattaway Mar 2007 A1
20070078680 Wennberg Apr 2007 A1
20070106536 Moore May 2007 A1
20070106754 Moore May 2007 A1
20070111247 Stephens et al. May 2007 A1
20070116036 Moore May 2007 A1
20070122824 Tucker et al. May 2007 A1
20070220017 Zuzarte et al. Sep 2007 A1
20070239554 Lin et al. Oct 2007 A1
20070271292 Acharya et al. Nov 2007 A1
20070294113 Settimi Dec 2007 A1
20080040046 Chakraborty et al. Feb 2008 A1
20080040151 Moore Feb 2008 A1
20080081331 Myres et al. Apr 2008 A1
20080082955 Andreessen et al. Apr 2008 A1
20080108881 Stupp et al. May 2008 A1
20080114737 Neely et al. May 2008 A1
20080131887 Stephan et al. Jun 2008 A1
20080154566 Myres et al. Jun 2008 A1
20080162510 Baio et al. Jul 2008 A1
20080189047 Wong et al. Aug 2008 A1
20080227063 Kenedy et al. Sep 2008 A1
20080228043 Kenedy et al. Sep 2008 A1
20080228410 Kenedy et al. Sep 2008 A1
20080228451 Kenedy et al. Sep 2008 A1
20080228677 Kenedy et al. Sep 2008 A1
20080228698 Kenedy et al. Sep 2008 A1
20080228699 Kenedy et al. Sep 2008 A1
20080228700 Kenedy et al. Sep 2008 A1
20080228701 Kenedy et al. Sep 2008 A1
20080228702 Kenedy et al. Sep 2008 A1
20080228704 Kenedy et al. Sep 2008 A1
20080228705 Kenedy et al. Sep 2008 A1
20080228706 Kenedy et al. Sep 2008 A1
20080228708 Kenedy et al. Sep 2008 A1
20080228722 Kenedy et al. Sep 2008 A1
20080228753 Kenedy et al. Sep 2008 A1
20080228756 Kenedy et al. Sep 2008 A1
20080228757 Kenedy et al. Sep 2008 A1
20080228765 Kenedy et al. Sep 2008 A1
20080228766 Kenedy et al. Sep 2008 A1
20080228767 Kenedy et al. Sep 2008 A1
20080228768 Kenedy et al. Sep 2008 A1
20080228797 Kenedy et al. Sep 2008 A1
20080243843 Kenedy et al. Oct 2008 A1
20080256023 Nair Oct 2008 A1
20080300958 Gluck Dec 2008 A1
20090012928 Lussier et al. Jan 2009 A1
20090043752 Kenedy et al. Feb 2009 A1
20090083654 Nickerson et al. Mar 2009 A1
20090099789 Stephan et al. Apr 2009 A1
20090112871 Hawthorne et al. Apr 2009 A1
20090118131 Avey et al. May 2009 A1
20090119083 Avey et al. May 2009 A1
20090222517 Kalofonos et al. Sep 2009 A1
20090271375 Hyde et al. Oct 2009 A1
20090319610 Nikolayev et al. Dec 2009 A1
20090326832 Heckerman et al. Dec 2009 A1
20100041958 Leuthardt et al. Feb 2010 A1
20100042438 Moore et al. Feb 2010 A1
20100063830 Kenedy et al. Mar 2010 A1
20100063835 Kenedy et al. Mar 2010 A1
20100063865 Kenedy et al. Mar 2010 A1
20100063930 Kenedy et al. Mar 2010 A1
20100070292 Kenedy et al. Mar 2010 A1
20100070455 Halperin et al. Mar 2010 A1
20100076950 Kenedy et al. Mar 2010 A1
20100076988 Kenedy et al. Mar 2010 A1
20100169262 Kenedy et al. Jul 2010 A1
20100169313 Kenedy et al. Jul 2010 A1
20100169338 Kenedy et al. Jul 2010 A1
20100223281 Hon et al. Sep 2010 A1
20110004628 Armstrong et al. Jan 2011 A1
20110078168 Kenedy et al. Mar 2011 A1
20110184656 Kenedy et al. Jul 2011 A1
20110196872 Sims et al. Aug 2011 A1
20120270190 Kenedy et al. Oct 2012 A1
20120270794 Eriksson et al. Oct 2012 A1
20130013217 Stephan et al. Jan 2013 A1
20130345988 Avey et al. Dec 2013 A1
20140006433 Hon et al. Jan 2014 A1
20140067355 Noto et al. Mar 2014 A1
20140098344 Gierhart et al. Apr 2014 A1
20150100243 Myres et al. Apr 2015 A1
20150227610 Chowdry et al. Aug 2015 A1
20150248473 Kenedy et al. Sep 2015 A1
20150288780 El Daher Oct 2015 A1
20150347566 Kenedy et al. Dec 2015 A1
20160026755 Byrnes et al. Jan 2016 A1
20160091499 Sterling et al. Mar 2016 A1
20160103950 Myres et al. Apr 2016 A1
20160171155 Do et al. Jun 2016 A1
20160277408 Hawthorne et al. Sep 2016 A1
20160350479 Han et al. Dec 2016 A1
20170011042 Kermany et al. Jan 2017 A1
20170017752 Noto et al. Jan 2017 A1
20170053089 Kenedy et al. Feb 2017 A1
20170185719 Kenedy et al. Jun 2017 A1
20170220738 Barber et al. Aug 2017 A1
20170228498 Hon et al. Aug 2017 A1
20170277827 Granka et al. Sep 2017 A1
20170277828 Avey et al. Sep 2017 A1
20170329866 Macpherson Nov 2017 A1
20170329891 Macpherson et al. Nov 2017 A1
20170329899 Bryc et al. Nov 2017 A1
20170329901 Chowdry et al. Nov 2017 A1
20170329902 Bryc et al. Nov 2017 A1
20170329904 Naughton et al. Nov 2017 A1
20170329915 Kittredge et al. Nov 2017 A1
20170329924 Macpherson et al. Nov 2017 A1
20170330358 Macpherson et al. Nov 2017 A1
20180181710 Avey et al. Jun 2018 A1
20180307778 Macpherson Oct 2018 A1
20190012431 Hon Jan 2019 A1
20190034163 Kenedy et al. Jan 2019 A1
20190114219 Do et al. Apr 2019 A1
20190139623 Bryc et al. May 2019 A1
20190206514 Avey Jul 2019 A1
20190267115 Avey et al. Aug 2019 A1
20190281061 Hawthorne et al. Sep 2019 A1
20190384777 Naughton et al. Dec 2019 A1
20200137063 Hawthorne et al. Apr 2020 A1
20200210143 Kenedy et al. Jul 2020 A1
20200372974 Chowdry et al. Nov 2020 A1
20210020266 Freyman et al. Jan 2021 A1
20210043278 Hon Feb 2021 A1
20210043279 Hon et al. Feb 2021 A1
20210043280 Hon Feb 2021 A1
20210043281 Macpherson et al. Feb 2021 A1
20210058398 Hawthorne et al. Feb 2021 A1
20210074385 Hon Mar 2021 A1
20210166452 Jewett et al. Jun 2021 A1
20210166823 Kenedy et al. Jun 2021 A1
20210193257 Freyman et al. Jun 2021 A1
20210209134 Kenedy et al. Jul 2021 A1
20210225458 Hon et al. Jul 2021 A1
20210233665 Kenedy et al. Jul 2021 A1
20210250357 Hawthorne et al. Aug 2021 A1
20210313013 Hon et al. Oct 2021 A1
20210375392 Polcari et al. Dec 2021 A1
20220044761 O'Connell et al. Feb 2022 A1
20220051751 Wilton et al. Feb 2022 A1
20220103560 Hawthorne et al. Mar 2022 A1
20220115139 Paradarami et al. Apr 2022 A1
20220139501 Hon et al. May 2022 A1
20220157405 Avey et al. May 2022 A1
20220198726 Jewett et al. Jun 2022 A1
Foreign Referenced Citations (23)
Number Date Country
0 967 291 Dec 1999 EP
WO-0210456 Feb 2002 WO
WO-0222165 Mar 2002 WO
WO-02080079 Oct 2002 WO
WO-03060652 Jul 2003 WO
WO-03076895 Sep 2003 WO
WO 2004029298 Apr 2004 WO
WO-2004031912 Apr 2004 WO
WO-2004048551 Jun 2004 WO
WO-2004051548 Jun 2004 WO
WO-2004075010 Sep 2004 WO
WO-2004097577 Nov 2004 WO
WO-2005086891 Sep 2005 WO
WO-2005109238 Nov 2005 WO
WO-2006052952 May 2006 WO
WO 2006089238 Aug 2006 WO
WO-2006084195 Aug 2006 WO
WO-2007061881 May 2007 WO
WO 2008042232 Apr 2008 WO
WO 2016073953 May 2016 WO
WO-2021243094 Dec 2021 WO
WO-2022036178 Feb 2022 WO
WO-2022076909 Apr 2022 WO
Non-Patent Literature Citations (330)
Entry
Meuwissen T.H.E. et al. Prediction of identity by descent probabilities from marker haplotypes. 2001 Genet Sel Evol. vol. 33, p. 605-634; cited in a parent application. (Year: 2001).
“parallel computing” Wikipedia.com downloaded Apr. 14, 2021 (Year: 2021).
“bit-level parallelism” definition Wikipedia.com downloaded Apr. 14, 2021 (Year: 2021).
“parallel processing definition” Techopedia.com downloaded Apr. 14, 2021 (Year: 2021).
Parallel processing definition Encyclopedia.com downloaded Apr. 14, 2021 (Year: 2021).
Garrett, Paul: The mathematics of coding: Information, compression, error correction and finite fields. University of Minnesota. Downloaded Apr. 13, 2021 (Year: 2021).
Keprt et al. Binary factor analysis with help of formal concepts. In Snasel et al (eds) CLA 2004, p. 90-101. ISBN 80-248-0597-9 (Year: 2004).
Office Action dated May 31, 2012 in U.S. Appl. No. 12/644,791.
Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/644,791.
Notice of Allowance dated Feb. 25, 2013 in U.S. Appl. No. 12/644,791.
Office Action dated Feb. 18, 2016 in U.S. Appl. No. 13/871,744.
Office Action dated Mar. 14, 2016 in U.S. Appl. No. 13/871,744.
Office Action dated May 18, 2018 in U.S. Appl. No. 15/264,493.
Office Action dated Mar. 3, 2020 in U.S. Appl. No. 15/664,619.
Notice of Allowance dated Aug. 19, 2020 in U.S. Appl. No. 15/664,619.
International Search Report and Written Opinion dated Mar. 3, 2010 in PCT/US2009/06706.
International Preliminary Report on Patentability dated Jul. 5, 2011 in PCT/US2009/06706.
International Preliminary Report on Patentability dated Apr. 7, 2009 in PCT Application No. PCT/US2007/020884.
Written Opinion dated Apr. 8, 2008 in PCT Application No. PCT/US2007/020884.
International Search Report dated Apr. 8, 2008 in PCT Application No. PCT/US2007/020884.
Extended European Search Report dated Oct. 25, 2016 in EP 09836517.4.
International Preliminary Report on Patentability dated Jul. 14, 2011 in PCT/US2009/006706.
Extended European Search Report dated Oct. 9, 2017 in Application No. 17172048.5.
Abecasis, et al., “Extent and distribution of linkage disequilibrium in three genomic regions” Am. J. Hum. Genet. 68, (2001) pp. 191-197.
Abecasis, et al., “GOLD—Graphical overview of linkage disequilibrium” Bioinformatics, vol. 16, No. 2, (2000) pp. 182-183.
Abecasis, et al., “GRR: graphical representation of relationship errors” Bioinformatics 17, (2001) pp. 742-743.
Abecasis, et al., “Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers” Am. J. Hum. Genet. 77 (2005) pp. 754-767.
Abecasis, et al., “Linkage disequilibrium: ancient history drives the new genetics” Hum. Hered. 59, (2005) pp. 118-124.
Abecasis, et al., “MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes” Genetic Epidemiology 34 (2010) pp. 816-834.
Abecasis, et al., “Merlin-rapid analysis of dense genetic maps using sparse gene flow trees” Nat. Genet. 2002, 30 (2002) pp. 97-101.
Abney, et al., “Quantitative-Trait Homozygosity and Association Mapping and Empirical Genomewide Significance in Large, Complex Pedigrees: Fasting Serum-Insulin Level in the Hutterites” Am. J. Hum. Genet. 70, (2002) pp. 920-934.
Albers, et al., “Multipoint Approximations of Identity-by-descent probabilities for accurate linkage analysis of distantly related individuals,” The American Journal of Human Genetics 82, Mar. 2008, pp. 607-622.
Alexander, et al., “Fast model-based estimation of ancestry in unrelated individuals” Genome Research 19, (2009) pp. 1655-1664.
Almasy, et al. “Multipoint quantitative-trait linkage analysis in general pedigrees” Am. J. Hum. Genet. 62: (1998) pp. 1198-1211.
Almudevar, A., “A Bootstrap Assessment of Variability in Pedigree Reconstruction Based on DNA Markers” Biometrics, vol. 57, Sep. 2001, pp. 757-763.
Almudevar, A., “A simulated annealing algorithm for maximum likelihood pedigree reconstruction” Theoretical Population Biology, vol. 63, (2003) pp. 63-75.
Almudevar, et al., “Estimation of single-generation sibling relationship based on DNA markers” Journal Agricultural Biological, and Environmental Statistics, vol. 4, No. 2, (1999) pp. 136-165.
Almudevar, et al., “Most powerful permutation invariant tests for relatedness hypotheses based on genotypic data” Biometrics 57, Dec. 2001, pp. 1080-1088.
Altschul, et al. “Basic Local Alignment Search Tool” J. Mol. Biol. (1990) 215, pp. 403-410.
Amorim, et al., “Pros and cons in the use of SNP's in forensic kinship investigation: a comparative analysis with STRs” Forensic Sci. Int. 150, (2005) pp. 17-21.
Amos and Elston, “Robust Methods for the Detection of Genetic Linkage for Quantitative Data From Pedigree” Genetic Epidemiology 6, (1989) pp. 349-360.
Amos, et al., “The Probabilistic Determination of Identity-by-Descent Sharing for Pairs of Relatives from Pedigrees” Am. J. Hum. Genet. 47 (1990) pp. 842-853.
Ayers, et al. “Reconstructing Ancestral Haplotypes with a Dictionary Model” Department of Statistics Papers, Department of Statistics, UCLA, UC Los Angeles, Mar. 28, 2005, pp. 1-41.
Bacolod, et al., “The Signatures of Autozygosity among Patients with Colorectal Cancer” Cancer Res. vol. 68, No. 8, Apr. 15, 2008, pp. 2610-2621.
Balding, et al., “A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity” Genetica, 96 (1995) pp. 3-12.
Ballantyne, J., “Mass disaster genetics” Nature Genet. 15, (1997) pp. 329-331.
Belkhir, et al., “IDENTIX, a software to test for relatedness in a population using permutation methods” Molecular Ecology, 2, (2002) pp. 611-614.
Bieber, et al., “Finding criminals through DNA of their relatives” Science 312, (2006) pp. 1315-1316.
Blackwell et al., “Identity by Descent Genome Segmentation Based on Single Nucleotide Polymorphism Distributions,” American Association for Artificial Intelligence, 1999, pp. 54-59.
Blouin, M.S. et al., “Use of microsatellite loci to classify individuals by relatedness” Molecular Ecology, vol. 5, (1996) pp. 393-401.
Blouin, M.S., “DNA-based methods for pedigree reconstruction and kinship analysis in natural populations” Trends in Ecology and Evolution, vol. 18, No. 10, Oct. 2003, pp. 503-511.
Boehnke, et al., “Accurate Inference of Relationships in Sib-Pair Linkage Studies” Am. J. Hum. Genet. 61, (1997) pp. 423-429.
Boehnke, M., “Allele frequency estimation from data on relatives” Am. J. Hum. Genet. 48, (1991) pp. 22-25.
Brenner, C.H. “Kinship Analysis by DNA When There Are Many Possibilities” Progress in Forensic Genetics, vol. 8, (2000) pp. 94-96, Elsevier Science.
Brenner, C.H., “Issues and strategies in the DNA identification of World Trade Center victims” Theor. Popul. Biol. 63, (2003) pp. 173-178.
Brenner, C.H., “Symbolic kinship program” Genetics, 145, (1997) pp. 535-542.
Brief For Defendants—Appellees Ancestry.com DNA, LLC, Ancestry.com Operations Inc., And Ancestry.com LLC, Case No. 2019-1222, Document: 24, Filed on Mar. 18, 2019, in The US Court of Appeals For The Federal Circuit, pp. 1-76.
Brief of Appellant 23AndMe, Inc., Case No. 2019-1222, Document 19, Filed on Feb. 4, 2019, in The US Court of Appeals for the Federal Circuit, pp. 1-140.
Broman, et al., “Estimation of pairwise relationships in the presence of genotyping errors” Am. J. Hum. Genet. 63, (1998) pp. 1563-1564.
Broman, et al., “Long Homozygous Chromosomal Segments in Reference Families from the Centre d'E´tude du Polymorphisme Humain” Am. J. Hum. Genet. 65, (1999) pp. 1493-1500.
Browning, et al., “A unified approach to Genotype imputation and Haplotype-Phase inference for large data sets of Trios and unrelated individuals” Am. J. Hum. Genet. 84, (2009) pp. 210-223.
Browning, et al., “Efficient Multilocus Association Testing for Whole Genome Association Studies Using Localized Haplotype Clustering” Genetic Epidemiology, vol. 31, 2007 pp. 365-375.
Browning, et al., “On reducing the statespace of hidden markov models for the identity by descent process” Theor. Popul. Biol. 62, (2002) pp. 1-8.
Browning, et al., “Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering,” The American Journal of Human Genetics, vol. 81, Nov. 2007, pp. 1084-1097.
Browning, et al., “Identity by Descent Between Distant Relatives: Detection and Applications.” Annual Review of Genetics, vol. 46, Dec. 2012, pp. 617-633.
Browning, S. et al., “Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes,” Genetics, vol. 178, No. 4, Apr. 22, 2008, pp. 2123-2132. <doi: 10.1534/genetics.107.084624>.
Cannings, C., “The identity by descent process along the chromosome” Human Heredity, 56 (2003) pp. 126-130.
Carlson, et al., “Mapping complex disease loci in whole-genome association studies” Nature 429 (2004) pp. 446-452.
Cavalli-Sforza, L., “The Human Genome Diversity Project: past, present and future,” Nature Reviews, Genetics, vol. 6, Apr. 2005, pp. 333-340.
Chapman, et al., “The effect of population history on the lengths of ancestral chromosome segments” Genetics, 162, Sep. 2002, pp. 449-458.
Chen et al., “Family-Based Association Test for Genomewide Association Scans,” The American Journal of Human Genetics, vol. 81, Nov. 2007, pp. 913-926.
Chen, et al., “Robust relationship inference in genome-wide association studies” Bioinformatics 26 No. 22, 2010, pp. 2867-2873.
Cheung, et al., “Linkage-disequilibrium mapping without genotyping” Nature Genetics 18, (1998) pp. 225-230.
Choi, et al., “Case-control association testing in the presence of unknown relationships” Genet. Epidem. 33, (2009) pp. 668-678.
Cockerman, C., “Higher order probability functions of identity of alleles by descent” Genetics 69, (1971) pp. 235-246.
Complaint filed In the United States District Court in and for the Northern District of California, captioned 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com LLC, filed on May 11, 2018, assigned Case No. 18-cv-02791-JCS, for “Complaint for Patent Infringement, Violations of the Lanham Act, Cal. Bus. & Prof. Code §§ 17200 And 17500, and Declaratory Relief of No Trademark Infringement and Trademark Invalidity.”
Cordell, et al., “Two-locus maximum Lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in Type 1 diabetes” Am. J. Hum. Genet. 57, (1995) pp. 920-934.
Cowell, R.G., “FINEX: A probabilistic expert system for forensic identification” Forensic Science International, 134, (2003) pp. 196-206.
Crawford, et al., “Evidence for substantial fine-scale variation in recombination rates across the human genome,” Nature Genetics, vol. 36, No. 7, Jul. 2004, pp. 700-706.
Cudworth, et al., “Evidence for HL-A-linked genes in “juvenile” diabetes mellitus” Br. Med. J. 3, (1975) pp. 133-135.
Curtis, et al., “Using risk calculation to implement an extended relative pair analysis” Ann. Hum. Genet. 58 (1994) pp. 151-162.
Defendants' Notice of Motion And Motion To Dismiss Plaintiff's Complaint, filed in the United States District Court in and for the Northern District of California LLC on Jun. 29, 2018, Case No. 18-cv-02791-JCS, Re 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Delaneau, et al., “A Linear complexity phasing method for thousands of genomes,” Nature Methods, vol. 9, No. 2, Feb. 2012, pp. 179-184.
Denniston, C., “Probability and genetic relationship” Ann. Hum. Genet., Lond. (1975), 39, pp. 89-103.
Di Rienzo, et al., “An evolutionary framework for common diseases: the ancestral-susceptibility model” Trends Genet. 21 (2005) pp. 596-601.
Dodds, et al. “Using genetic markers in unpedigreed populations to detect a heritable trait” J. Zhejiang Univ. Sci. 2007 8(11):782-786.
Donnelly, K.P., “The probability that related individuals share some section of genome identical by descent” Theor. Popul. Biol. 23 (1983) pp. 34-63.
Douglas, et al., “A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data” Am. J. Hum. Genet. 66 (2000) pp. 1287-1297.
Duffy, et al. “An integrated genetic map for linkage analysis” Behav. Genet. 36, 2006, pp. 4-6.
Dupuis, et al., “Statistical methods for linkage analysis of complex traits from high resolution maps of identity by descent” Genetics 140 (1995) pp. 843-856.
Eding, et al., “Marker-based estimates of between and within population kinships for the conservation of genetic diversity” J. Anim. Breed. Genet. 118 (2001), pp. 141-159.
Ehm, et al., “A test statistic to detect errors in sib-pair relationships” Am. J. Hum. Genet. 62 (1998) pp. 181-188.
Elston, et al., “A general model for the genetic analysis of pedigree data” Hum. Hered. 21, (1971) pp. 523-542.
Epstein, et al., “Improved inference of relationship for pairs of individuals” Am. J. Hum. Genet., vol. 67, (2000) pp. 1219-1231.
Falush, et al., “Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies” Genetics 164, (2003) pp. 1567-1587.
Feingold, E. “Markov processes for modeling and analyzing a new genetic mapping method” J. Appl. Prob. 30 (1993) pp. 766-779.
Feingold, et al., “Gaussian Models for Genetic Linkage Analysis Using Complete High-Resolution Maps of Identity by Descent,” Am. J. Hum. Genet. 53 (1993) pp. 234-251.
Fisher, RA “A Fuller Theory of ‘Junctions’ in Inbreeding” Heredity, 8 (1954) pp. 187-197.
Fisher, RA “The theory of inbreeding” Department of Genetics, Cambridge University, Eng. Edinburgh, London, Oliver & Boyd, Ltd., (1949) pp. 97-100.
Frazer, et al., “A second generation human haplotype map of over 3.1 million SNPs” vol. 449, Oct. 18, 2007, pp. 851-861. <doi:10.1038/nature06258>.
Fuchsberger, et al., “Minimac2: faster genotype imputation,” Bioinformatics, vol. 31, No. 5, Oct. 22, 2014, pp. 782-784. <doi:10.1093/bioinformatics/btu704>.
Gaytmenn, et al., “Determination of the sensitivity and specificity of sibhip calculations using AmpF/STR Profiler Plus” Int. J. Legal Med. 116, (2002) pp. 161-164.
George, et al., “Discovering disease genes: Multipoint linkage analyses via a new Markov Chain Monte Carlo approach” Statistical Science, vol. 18, No. 4, (2003) pp. 515-535.
Gillanders, et al., “The Value of Molecular Haplotypes in a Family-Based Linkage Study” Am. J. Hum. Genet. 79 (2006) pp. 458-468.
Glaubitz, et al., “Prospects for inferring pairwise relationships with single nucleotide polymorphisms” Molecular Ecology, 12 (2003) pp. 1039-1047.
Goodnight, et al., “Computer software for performing likelihood tests of pedigree relationship using genetic markers” Molecular Ecology, vol. 8, (1999) pp. 1231-1234.
Grafen, A., “A geometric view of relatedness” Oxford Surveys in Evolutionary Biology, 2 (1985) pp. 39-89.
Grant, et al., “Significance testing for direct identity-by-descent mapping” Ann. Hum. Genet. 63, (1999) pp. 441-454.
Greenspan, et al., “Model-based inference of haplotype block variation” J. Comput. Biol. 11, (2004) pp. 493-504.
Griffiths, et al., “Ancestral inference of samples of DNA sequences with recombination” Journal of Computational Biology, vol. 3, No. 4 (1996) pp. 479-502.
Gudbjartsson, et al., “Allegro, a new computer program for multipoint linkage analysis” Nat. Genet. 25, (2000) pp. 12-13.
Guo, S., “Proportion of Genome Shared Identical by Descent by Relatives: Concept, Computation, and Applications” Am. J. Hum. Genet. 56 (1995) pp. 1468-1476.
Gusev, et al., “Whole population, genome-wide mapping of hidden relatedness,” Genome Research, vol. 19, 2009, pp. 318-326.
Hajnal, J., “Concepts of random mating and the frequency of consanguineous marriages,” Proceedings of the Royal Society of London. Series B. Biological Sciences 159, No. 974 (1963) pp. 125-177.
Hardy, O.J., “Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers” Molecular Ecology, 12 (2003) pp. 1577-1588.
Harris, D.L., “Genotypic covariances between inbred relatives” Genetics 50, (1964) pp. 1319-1348.
Hayward, et al., “Fibrillin-1 mutations in Marfan syndrome and other type-1 fibrillinopathies” Hum. Mutat. 10 (1997) pp. 415-423.
Heath, et al., “A novel approach to search for identity by descent in small samples of patients and controls from the same Mendelian breeding unit: a pilot study in myopia” Human Heredity, vol. 52, Feb. 2001, pp. 183-190.
Henn, B.M., et al. “Cryptic Distant Relatives Are Common in Both Isolated and Cosmopolitan Genetic Samples,” PLosOne, vol. 7, No. 4, Apr. 3, 2012, pp. 1-3. <doi:10.1371/journal.pone.0034267>.
Hepler, A.B., “Improving forensic identification using Bayesian Networks and Relatedness Estimation” Ph.D Thesis, NCSU, Raleigh (2005) pp. 1-131.
Hernández-Sánchez, et al., “On the prediction of simultaneous inbreeding coefficients at multiple loci” Genet. Res. 83 (2004) pp. 113-120.
Hernández-Sánchez, et al., “Prediction of IBD based on population history for fine gene mapping” Genet. Sel. Evol. 38 (2006) pp. 231-252.
Heyer, et al., “Variability of the genetic contribution of Quebec population founders associated to some deleterious genes” Am. J. Hum. Genet. 56 (1995) pp. 970-978.
Hill, et al. “Prediction of multilocus identity-by-descent” Genetics 176, Aug. 2007, pp. 2307-2315.
Hill, et al., “Linkage disequilibrium in finite populations” Theor. Appl. Genet. 38, (1968) pp. 226-231.
Hill, et al., “Prediction of multi-locus inbreeding coefficients and relation to linkage disequilibrium in random mating populations” Theor Popul Biol. Sep. 2007, 72(2), pp. 179-185. <doi:10.1016/j.tpb.2006.05.006>.
Hill, et al., “Variances and covariances of squared linkage disequilibria in finite populations” Theor. Pop. Biol., 33 (1988) pp. 54-78, [PubMed: 3376052].
Hill, W.G., “Disequilibrium among several linked neutral genes in finite population. II Variances and covariances of disequilibria” Theor. Pop. Biol., vol. 6, 1974, pp. 184-198.
Hinrichs, et al., “Multipoint identity-by-descent computations for single-point polymorphism and microsatellite maps,” BMC Genet. 6, Dec. 30, 2005, S34. <doi:10.1186/1471-2156-6-S1-S34>.
Houwen, et al., “Genomic screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis” Nature Genetics vol. 8, Dec. 1994, pp. 380-386.
Howie, et al., “A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies,” PLoS Genetics, vol. 5, No. 6, Jun. 2009, pp. 1-15.
Howie, et al., “Fast and accurate genotype imputation in genome-wide association studies through pre-phasing,” Nature Genetics, vol. 44, No. 8, Aug. 2012, pp. 955-960.
Hu, X.S., “Estimating the correlation of pairwise relatedness along chromosomes” Heredity 94, (2004) pp. 338-346, [PubMed: 15354191].
Huang, et al. “Whole genome DNA copy number changes identified by high density oligonucleotide arrays,” Hum. Genomics vol. 1, No. 4, May 2004, pp. 287-299.
Huang, et al., “Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis” Am. J. Hum. Genet. 75, (2004) pp. 1106-1112.
Idury, et al., “A faster and more general hidden Markov model algorithm for multipoint likelihood calculations” Hum. Hered. 47(1997) pp. 197-202.
Jacquard, A., “Genetic information given by a relative” Biometrics, 28, (1972) pp. 1101-1114.
Jones, et al., “Methods of parentage analysis in natural populations” Molecular Ecology 12 (2003) pp. 2511-2523.
Karigl, G., “A recursive algorithm for the calculation of identity coefficients” Ann. Hum. Genet. 45, (1981) pp. 299-305.
Keith, J.M., et al., “Calculation of IBD Probabilities with Dense SNP or Sequence Data” Genetic Epidemiology 32 (2008) pp. 513-519.
Kent, J.W. “BLAT—The BLAST-Like Alignment Tool” Genome Res. 2002, vol. 12, pp. 656-664.
Kimmel, et al., “A block-free hidden Markov model for genotypes and its application to disease association” J. Comput. Biol. 12, (2005a) pp. 1243-1260.
Kimmel, et al., “GERBIL: genotype resolution and block identification using likelihood” Proc. Natl. Acad. Sci. USA 102, (2005b) pp. 158-162.
Kong, A. et al., “Detection of sharing by descent, long-range phasing and haplotype imputation,” Nature Genetics, vol. 40, No. 9, Sep. 2008, pp. 1068-1075.
Kong, et al., “A combined linkage-physical map of the human genome,” Am. J. Hum. Genet., vol. 75, 2004, pp. 1143-1148.
Kong, et al., “A high-resolution recombination map of the human genome” Nature Genetics, vol. 31, Jul. 2002, pp. 241-247.
Kong, et al., “Allele-sharing models—LOD scores and accurate linkage tests” Am. J. Hum. Genet. 61, (1997) pp. 1179-1188.
Kruglyak, et al., “Complete Multipoint Sib-Pair Analysis of Qualitative and Quantitative Traits” Am. J. Hum. Genet. 57, (1995) pp. 439-454.
Kruglyak, et al., “Faster multipoint linkage analysis using Fourier transforms” J. Comput. Biol. 5, (1998) pp. 1-7.
Kruglyak, et al., “Linkage thresholds for two-stage genome scans” Am. J. Hum. Genet. 62, (1998) pp. 994-997.
Kruglyak, et al., “Parametric and Nonparametric Linkage Analysis: A Unified Multipoint Approach” Am. J. Hum. Genet. 58, (1996) pp. 1347-1363.
Kruglyak, et al., “Rapid Multipoint Linkage Analysis of Recessive Traits in Nuclear Families, Including Homozygosity Mapping” Am. J. Hum. Genet. 56 (1995) pp. 519-527.
Kruglyak, L., “The use of a genetic map of biallelic markers in linkage studies” Nat. Genet. 17, (1997) pp. 21-24.
Kumar, et al., “Recurrent 16p11.2 microdeletions in autism” Human Molecular Genetics, 2008, vol. 17, No. 4, pp. 628-638.
Laberge, et al., “Population history and its impact on medical genetics in Quebec” Clin. Genet. 68 (2005) pp. 287-301.
Lafrate, et al., “Detection of large-scale variation in the human genome,” Nature Genetics, vol. 36, No. 9, Sep. 2004, pp. 949-951.
Lander, et al., “Construction of multilocus genetic linkage maps in humans” Genetics, vol. 84, Apr. 1987, pp. 2363-2367.
Lander, et al., “Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results” Nat. Genet. 11, (1995) pp. 241-247.
Lander, et al., “Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children” Science 236, (1987) pp. 1567-1570.
Lange, et al., “Extensions to pedigree analysis I. Likelihood calculations for simple and complex pedigrees” Hum. Hered. 25 (1975) pp. 95-105.
Leclair, et al., “Enhanced kinship analysis and STR-based DNA typing for human identification in mass fatality incidents: The Swissair Flight 111 disaster” Journal of Forensic Sciences, 49(5) (2004) pp. 939-953.
Leibon, et al., “A simple computational method for the identification of disease-associated loci in complex, incomplete pedigrees” arXiv:0710:5625v1 [q-bio.GN] Oct. 30, 2007, pp. 1-20.
Leibon, et al.,“A SNP Streak Model for the Identification of Genetic Regions Identical-by-descent” Statistical Applications in Genetics and Molecular Biology, vol. No. 1, Article 16 (2008) pp. 1-17.
Leutenegger, et al., “Estimation of the Inbreeding Coefficient through Use of Genomic Data,” Am. J. Hum. Genet. 73, Jul. 29, 2003, pp. 516-523.
Leutenegger, et al., “Using genomic inbreeding coefficient estimates for homozygosity mapping of rare recessive traits: Application to Taybi-Linder syndrome” Am. J. Hum. Genet., vol. 79, Jul. 2006, pp. 62-66.
Li, et al., “Fast and accurate long-read alignment with Burrows-Wheeler transform” Bioinformatics vol. 26, No. 5, 2010, pp. 589-595.
Li, et al., “Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal” Am. J. Hum. Genet. 76 (2005) pp. 934-949.
Li, et al., “Mapping short DNA sequencing reads and calling variants using mapping quality scores,” Genome Research, Aug. 19, 2008, pp. 1851-1858. <doi: 10.1101/gr.078212.108>.
Li, et al., “Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data” Genetics 165, (2003) pp. 2213-2233.
Li, et al., “Similarity of DNA fingerprints due to chance and relatedness” Hum. Hered. 43, 1993 pp. 45-52.
Li, et al., “The sequence alignment/map format and SAMtools” Bioinformatics vol. 25, No. 16 (2009) pp. 2078-2079.
Lien, et al. “Evidence for heterogeneity in recombination in the human pseudoautosomal region: High resolution analysis by sperm typing and radiation-hybrid mapping” Am. J. Hum. Genet. 66, 2000, pp. 557-566.
Lin, et al. “Haplotype inference in random population samples” Am. J. Hum. Genet. 71, 2002, pp. 1129-1137.
Liu, et al., “Affected sib-pair test in inbred populations” Ann. Hum. Genet. 68, (2004) pp. 606-619.
Long, et al., “An E-M Algorithm and Testing Strategy for Multiple-Locus Haplotypes” Am. J. Hum. Genet. 56 (1995) pp. 799-810.
Lowe, et al., “Genome-Wide Association Studies in an Isolated Founder Population from the Pacific Island of Kosrae,” PLoS Genet 5(2), 2009, e1000365, pp. 1-17. <doi:10.1371/journal.pgen.1000365>.
Lynch, et al., “Analysis of population genetic structure with RAPD markers” Molecular Ecology, 3, (1994) pp. 91-99.
Lynch, et al., “Estimation of pairwise relatedness with molecular markers” Genetics, vol. 152, (1999) pp. 1753-1766.
Lynch, M., “Estimation of relatedness by DNA fingerprinting” Molecular and Biological Evolution, 5, (1988) pp. 584-599.
Ma, et al., “PatternHunter: faster and more sensitive homology search” Bioinformatics, vol. 18, No. 3 (2002) pp. 440-445.
Mao, et al., “A Monte Carlo algorithm for computing the IBD matrices using incomplete marker information” Heredity (2005) 94, pp. 305-315.
Marchini, et al., “A comparison of phasing algorithms for trios and unrelated individuals,” Am. J. Hum. Genet. 78, 2006, pp. 437-450.
Matsuzaki, et al., “Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays” Nat. Methods, vol. 1, No. 2, Nov. 2004, pp. 109-111.
Matsuzaki, et al., “Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array” Genome Res., vol. 14, No. 3, Mar. 2004, pp. 414-425.
McPeek, et al., “Statistical test for detection of misspecified relationships by use of genome-screen data” Am. J. Hum. Genet. 66, (2000) pp. 1076-1094.
Meuwissen, et al., “Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping,” Genetics 161 (2002) pp. 373-379.
Meuwissen, et al., “Multipoint Identity-by-Descent Prediction Using Dense Markers to Map Quantitative Trait Loci and Estimate Effective Population Size,” Genetics 176, Aug. 2007, pp. 2551-2560.
Meuwissen, et al., “Prediction of identity by descent probabilities from marker-haplotypes,” Genetics Selelction Evolution, vol. 33, Nov. 15, 2001, pp. 605-634. <doi: 10.1186/1297-9686-33-6-605>.
Miano, et al., “Pitfalls in homozygosity mapping” Am. J. Hum. Genet. 67, (2000) pp. 1348-1351.
Milligan, B.G., “Maximum-Likelihood Estimation of Relatedness” Genetics 163, (2003) pp. 1153-1167.
Miyazawa et al., “Homozygosity Haplotype Allows a Genomewide Search for the Autosomal Segments Shared among Patients,” Am. J. Hum. Genet. Vol. 80, Jun. 2007, pp. 1090-1102.
Morris, et al., “The avuncular index and the incest index” Advances in Forensic Haemogenetics 2, (1988) pp. 607-611.
Morton, N.E., “Sequential test for the detection of linkage” Am. J. Hum. Genet. 7 (1955) pp. 277-318.
Motro, et al., “The affected sib method. I. Statistical features of the affected sib-pair method” Genetics 110, (1985) pp. 525-538.
Nelson, et al., “Genomic mismatch scanning: A new approach to genetic linkage mapping” Nature Genetics, vol. 4, May 1993, pp. 11-18.
Newton, et al., “Inferring the location and effect of tumor suppressor genes by instability-selection modeling of allelic-loss data” Biometrics 56, (2000) pp. 1088-1097.
Newton, et al., “On the statistical analysis of allelic-loss data” Statistics in Medicine 17, (1998) pp. 1425-1445.
Ning et al., “SSAHA: A Fast Search Method for Large DNA Databases,” Genome Research, Oct. 2001, vol. 11, No. 10, pp. 1725-1729.
Nyholt, Dale R., “Genehunter: Your ‘One-Stop Shop’ for Statistical Genetic Analysis?” Hum. Hered. 53 (2002) pp. 2-7.
O'Connell, J.R., “Rapid multipoint linkage analysis via inheritance vectors in the Elston-Stewart algorithm” Hum. Hered. 51, (2001) pp. 226-240.
O'Connell, J.R., “The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance” Nature. Genet. 11, (1995) pp. 402-408.
Oliehoek, et al., “Estimating relatedness between individuals in general populations with a focus on their use in conservation programs” Genetics 173 (2006) pp. 483-496.
Olson, et al., “Relationship estimation by Markov-process models in sib-pair linkage study” Am. J. Hum. Genet. 64, (1999) pp. 1464-1472.
Opposition to Defendants' Motion to Dismiss Plaintiff's Complaint, filed in the United States District Court in and for the Northern District of California LLC on Jul. 13, 2018, Case No. 18-cv-02791-JCS, Re 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Order Granting In Part and Denying In Part Defendants' Motion to Dismiss, dated Aug. 23, 2018, Case No. 18-cv-02791-JCS, from the United States District Court in and for the Northern District of California LLC, Re 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Patterson, et al., “Population Structure and Eigenanalysis,” PLoS Genetics, vol. 2, No. 12, e190, Dec. 2006, pp. 2074-2093.
Paynter, et al., “Accuracy of Multiplexed Illumina Platform-Based Single-Nucleotide Polymorphism Genotyping Compared between Genomic and Whole Genome Amplified DNA Collected from Multiple Sources,” Cancer Epidemiol Biomarkers Prev. 15, Dec. 2006, pp. 2533-2536.
Pemberton et al., “Inference of unexpected Genetic relatedness among individuals in HapMap phase III” Am. J. Hum. Genet. 87, (2010) pp. 457-464.
Perry, et al., “The fine-scale and complex architecture of human copy-number variation,” Am. J. Hum. Genet. 82, Mar. 2008, pp. 685-695.
Pinto, et al., “Copy-number variation in control population cohorts,” Human Molecular Genetics, 2007, vol. 16, review issue No. 2, pp. R168-R173. <doi:10.1093/hmg/ddm241>.
Porras-Hurtado, et al., “An overview of Structure: applications, parameter settings, and supporting software,” Frontiers in Genetics, vol. 4, No. 96, May 29, 2013, pp. 1-13.
Pritchard, et al., “Association Mapping in Structured Populations,” Am. J. Hum. Genet., vol. 67, 2000, pp. 170-181.
Pritchard, et al., “Inference of population structure using multilocus genotype data” Genetics 155, (2000) pp. 945-959.
Purcell, et al., “PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analysis,” The American Journal of Human Genetics, vol. 81, Sep. 2007, pp. 559-575.
Queller, et al., “Estimating relatedness using genetic markers” Evolution, vol. 43, No. 2, (1989) pp. 258-275.
Rabiner, L., “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, No. 2, Feb. 1989, pp. 257-286.
Rannala, et al., “Detecting immigration by using multilocus genotypes” Proc. Natl. Acad. Sci. USA 94, (1997) pp. 9197-9201.
Rastas, et al., “A hidden Markov technique for haplotype reconstruction” Lect. Notes Comput. Sci. 3692, (2005) pp. 140-151.
Redon, et al., “Global variation in copy number in the human genome,” Nature vol. 444, Nov. 23, 2006, pp. 444-454. <doi:10.1038/nature05329>.
Reid, et al., “Specificity of sibship determination using the ABI identifier multiplex system” J. Forensic Sci. 49, (2004) pp. 1262-1264.
Reply Brief of Appellant 23AndMe, Inc., Case No. 2019-1222, Document: 25, Filed on Apr. 8, 2019, In The US Court of Appeals for Federal Circuit, pp. 1-38.
Riquet, J. et al., “Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle,” Proceedings of the National Academy of Sciences, vol. 96, No. 16, Aug. 3, 1999, pp. 9252-9257. <doi: 10,1073/pnas.96.16.9252>.
Risch, et al., “Linkage strategies for genetically complex traits. II. The power of affected relative pairs” Am. J. Hum. Genet. 46 (1990) pp. 229-241.
Risch, N., “Linkage Strategies for Genetically Complex Traits. II. The Power of Affected Relative Pairs” Am. J. Hum. Genet. 46, (1990 a,b) pp. 222-241.
Ritland, et al., “Inferences about quantitative inheritance based on natural population structure in the yellow monkeyflower, Mimulus Guttatus” Evolution 50, (1996) pp. 1074-1082.
Ritland, K., “A marker-based method for inferences about quantitative inheritance in natural populations” Evolution 50, (1996b) pp. 1062-1073.
Ritland, K., “Estimators for pairwise relatedness and individual inbreeding coefficients” Genet. Res. 67 (1996a) pp. 175-185.
Ritland, K., “Marker-inferred relatedness as a tool for detecting heritability in nature” Mol. Ecol. 9, (2000) pp. 1195-1204.
Sanda, et al., “Genomic analysis I: inheritance units and genetic selection in the rapid discovery of locus linked DNA makers” Nucleic Acids Research, vol. 14, No. 18 (1986) pp. 7265-7283.
Schaid, et al., “Caution on pedigree haplotype inference with software that assumes linkage equilibrium” Am. J. Hum. Genet. 71, (2002) pp. 992-995.
Scheet, et al., “A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase,” The American Journal of Human Genetics, vol. 78, Apr. 2006, pp. 629-644.
Schork, N.J., “Extended Multipoint Identity-by-Descent Analysis of Human Quantitative Traits: Efficiency, Power, and Modeling Considerations” Am. J. Hum. Genet. 53 (1993) pp. 1306-1319.
Shmulewitz, et al., “Linkage analysis of quantitative traits for obesity, diabetes, hypertension, and dyslipidemia on the island of Kosrae, Federated States of Micronesia,” Proc. Natl. Acad. Sci. vol. 103, No. 10, Mar. 7, 2006, pp. 3502-3509.
Shore, et al., “A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva” Nat. Genet. 38 (2006) pp. 525-527.
Siegmund, et al., “Statistical Analysis of Direct Identity-by-descent Mapping,” Annals of Human Genetics (2003) 67,464-470.
Slager, et al., “Evaluation of candidate genes in case-control studies: a statistical method to account for related subjects” Am. J. Hum. Genet. 68, (2001) pp. 1457-1462.
Smouse, et al., “A genetic mixture analysis for use with incomplete source population data” Can J Fisheries Aquatic Sci. 47 (1990) pp. 620-634.
Sobel, et al., “Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics” Am. J. Hum. Genet. 58, (1996) pp. 1323-1337.
Stam, P., “The distribution of the fraction of the genome identical by descent in finite random mating populations” Genet. Res. Camb. 35, (1980) pp. 131-155.
Stephens, et al., “A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data,” Am. J. Hum. Genet., vol. 73, 2003, pp. 1162-1169.
Stephens, et al., “A New Statistical Method for Haplotype Reconstruction from Population Data,” Am. J. Hum. Genet., vol. 68, 2001, pp. 978-989.
Stephens, et al., “Accounting for Decay of Linkage Disequilibrium in Haplotype Inference and Missing-Data Imputation,” Am. J. Hum. Genet., vol. 76, 2005, pp. 449-462.
Stone, et al., “DELRIOUS: a computer program designed to analyze molecular marker data and calculate delta and relatedness estimates with confidence” Molecular Ecology Notes, vol. 1, (2001) pp. 209-212.
Tang, et al., “Estimation of individual admixture: Analytical and study design considerations” Genet. Epidem. 28, (2005) pp. 289-301.
Te Meerman, et al., “Genomic Sharing Surrounding Alleles Identical by Descent: Effects of Genetic Drift and Population Growth” Genetic Epidemiology vol. 14 (1997) pp. 1125-1130.
Teo, et al., “Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations” Genome Res. 19, (2009) pp. 2154-2162.
The International HapMap Consortium, “A haplotype map of the human genome” vol. 437, Oct. 27, 2005, pp. 1300-1320. <doi:10.1038/nature04226>.
The International HapMap Consortium, “A haplotype map of the human genome,” Nature, vol. 437, Oct. 27, 2005, pp. 1299-1320. <doi:10.1038/nature04226>.
The International HapMap Consortium, “A second generation human haplotype map of over 3.1 million SNPs,” Nature, vol. 449, Oct. 18, 2007, pp. 851-860. <doi: 10.1038/nature06258>.
Thomas, et al., “Genomic mismatch scanning in pedigrees” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 11, (1994) pp. 1-16.
Thomas, et al., “Multilocus linkage analysis by blocked Gibbs sampling” Statistics and Computing, vol. 10, (2000), pp. 259-269.
Thomas, et al., “Shared genomic segment analysis. Mapping disease predisposition genes in extended pedigrees using SNP genotype assays,” Ann. Hum. Genet. 72, Mar. 2008, pp. 279-287.
Thompson, E.A., “Estimation of relationships from genetic data” In Handbook of Statistics, vol. 8, (1991) pp. 255-269.
Thompson, E.A., “Inference of genealogical structure” Soc. Sci. Inform. 15, (1976) pp. 477-526.
Thompson, E.A., “The estimation of pairwise relationships” Ann. Hum. Genet., Lond. 39,(1975) pp. 173-188.
Thompson, et al., “The IBD process along four chromosomes,” Theor. Popul. Biol. May 73(3) May 2008, pp. 369-373.
Tishkoff, et al., “The Genetic Structure and History of Africans and African Americans,” Science, vol. 324(5930), May 22, 2009, pp. 1035-1044. <doi:10.1126/science.1172257>.
Todorov, et al., “Probabilities of identity-by-descent patterns in sibships when the parents are not genotyped” Genet. Epidemiol, 14 (1997) pp. 909-913.
Transcript of Proceedings dated Aug. 16, 2018, Case No. 18-cv-02791-JCS, Re Defendant's Motion to Dismiss, heard in the United States District Court in and for the Northern District of California LLC, in the matter of 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Tu, et al., “The maximum of a function of a Markov chain and application to linkage analysis” Adv. Appl. Probab. 31, (1999) pp. 510-531.
Tzeng, et al., “Determination of sibship by PCR-amplified short tandem repeat analysis in Taiwan” Transfusion 40, (2000) pp. 840-845.
Van De Casteele, et al., “A comparison of microsatellite-based pairwise relatedness estimators” Molecular Ecology 10, (2001) pp. 1539-1549.
Wang, et al., “An estimator of pairwise relatedness using molecular markers” Genetics, vol. 160 (2002) pp. 1203-1215.
Wang, et al., “An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data,” Genome Res. 17, 2007, pp. 665-1674.
Weir, et al., “A maximum-likelihood method for the estimation of pairwise relatedness in structured populations” Genetics 176, (2007) pp. 421-440.
Weir, et al., “Allelic association patterns for a dense SNP map” Genetic Epidemiology 24, (2004) pp. 442-450.
Weir, et al., “Behavior of pairs of loci in finite monoecious populations” Theor. Popul. Biol. 6 (1974) pp. 323-354.
Weir, et al., “Estimating F-statistics” Annual Review of Genetics, 36, (2002) pp. 721-750.
Weir, et al., “Genetic relatedness analysis: modem data and new challenges” Nature Genetics 7, (2006) pp. 771-780.
Weir, et al., “Group inbreeding with two linked loci” Genetics 63 (1969) pp. 711-742.
Weir, et al., “Measures of human population structure show heterogeneity among genomic regions” Genome Res. 15 (2005) pp. 1468-1476. [PubMed: 16251456].
Weiss, et al., “Association between microdeletion and microduplication at 16p11.2 and autism” New England Journal of Medicine, vol. 358, No. 7, Feb. 14, 2008, pp. 667-675.
Whittemore, et al., “A Class of Tests for Linkage Using Affected Pedigree Members” Biometrics 50, (1994) pp. 118-127.
Wijsman, et al., “Multipoint linkage analysis with many multiallelic or dense diallelic markers: Markov chain-Monte Carlo provides practical approaches for genome scans on general pedigrees” Am. J. Hum. Genet. 79, (2006) pp. 846-858.
Wright, S. “Systems of Mating. I. The Biometric Relations Between Parent and Offspring,” Genetics, 6:111.
Yu, et al., “A unified mixed-model method for association mapping accounting for multiple levels of relatedness” Nature Genet. 38, (2006) pp. 203-208.
Zhang, et al., “A comparison of several methods for haplotype frequency estimation and haplotype reconstruction for tightly linked markers from general pedigrees” Genet. Epidemiol. 30 (2006) pp. 423-437.
Zhao et al., “On Relationship Inference Using Gamete Identity by Descent Data”, Journal of Computational Biology, vol. 8, No. 2, Nov. 2, 2001, pp. 191-200.
U.S. Appl. No. 12/774,546, filed May 5, 2010, Macpherson et al.
Office Action dated Jan. 3, 2014 in U.S. Appl. No. 12/774,546.
Final Office Action dated Jan. 8, 2015 in U.S. Appl. No. 12/774,546.
Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/774,546.
Final Office Action dated Feb. 2, 2016 in U.S. Appl. No. 12/774,546.
Office Action dated Feb. 1, 2017 in U.S. Appl. No. 12/774,546.
Notice of Allowance dated Jan. 21, 2021 in U.S. Appl. No. 17/073,095.
Notice of Allowance dated Jan. 7, 2021 in U.S. Appl. No. 17/073,110.
Office Action dated Dec. 24, 2020 in U.S. Appl. No. 17/073,122.
Office Action dated Feb. 3, 2021 in U.S. Appl. No. 17/073,128.
European Examination Report dated Apr. 21, 2020 in Application No. EP 17172048.5.
Hon, et al., “Discovering Distant Relatives within a Diverse Set of Populations Using DNA Segments Identical by Descent” Advancing Human Genetics & Genomics Annual Meeting Poster Session, Oct. 20, 2009, 23andMe, Inc., pp. 1-2.
23Andme, Inc., v. ancestry.com DNA, LLC, ancestry.com Operations Inc., ancestry.com LLC, No. 2019-1222, United States Court of Appeals for the Federal Circuit, Petition For Rehearing En Banc, filed Nov. 4, 2019, Case No. 18-cv-02791-EMC, pp. 1-28.
23Andme, Inc., v. ancestry.com DNA, LLC, ancestry.com Operations Inc., ancestry.com LLC, No. 2019-1222, United States Court of Appeals for the Federal Circuit, Defendant's-Appellees' Response to Appellant 23ANDME, Inc.'S Petition for Rehearing En Banc, filed Dec. 19, 2019, Case No. 18-cv-02791-EMC, pp. 1-25.
23Andme, Inc., v. ancestry.com DNA, LLC, ancestry.com Operations Inc., ancestry.com LLC, No. 2019-1222, United States Court of Appeals for the Federal Circuit, On Petition For Rehearing En Banc; Order, denied; filed Jan. 9, 2020, Case No. 18-cv-02791-EMC, pp. 1-2.
Jiang, et al., “An efficient parallel implementation of the hidden Markov methods for genomic sequence-search on a massively parallel system.” IEEE Transactions on Parallel and Distributed Systems 19.1 (2008) pp. 15-23.
Lavenier, Dominique, and J-L. Pacherie. “Parallel processing for scanning genomic data-bases.” Advances in Parallel Computing, vol. 12, North-Holland, 1998, pp. 81-88.
Final Office Action dated Jun. 14, 2021 in U.S. Appl. No. 17/073,122.
Final Office Action dated Jun. 30, 2021 in U.S. Appl. No. 17/073,128.
Office Action dated Jun. 8, 2021 in U.S. Appl. No. 17/301,129.
U.S. Appl. No. 17/351,052, filed Jun. 17, 2021, Hon et al.
Office Action dated Apr. 23, 2021 in U.S. Appl. No. 16/129,645.
Notice of Allowance dated Apr. 29, 2021 in U.S. Appl. No. 17/073,110.
Borsting et al. “Performance of the SNPfor1D 52 SNP-plex assay in paternity testing,” (Forensic Science International, vol. 2 (2008) pp. 292-300.
Nuanmeesri, et al., “Genealogical Information Searching System” 2008 4th IEEE International Conference on Management of Innovation and Technology. IEEE, 2008, pp. 1255-1259.
Abe, H. et al., “Implementing an Integrated Time-Series Data Mining Environment Based on Temporal Pattern Extraction Methods: A Case Study of an Interferon Therapy Risk Mining for Chronic Hepatitis”, New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, vol. 4012, Jun. 2005, pp. 425-435.
Anonymous , “Frequency” (Web Definition ) , Feb. 24, 2011, Wikipedia, Harvard School of Public Health | Harvard Center for Cancer Prevention , “Your Disease Risk” website for calculating disease risk , 34 exemplary pages submitted including heart disease risk estimation and listings of risk factors , last accessed via the world wide web on Apr. 30, 2007, at the URL address:http://www.yourdiseaserisk.harvard.edu/english/index.htm).
Batzoglou, S. et al., “Human And Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction”, Genome Research, Cold Spring Harbor Laboratory Press, vol. 10, No. 7, Jul. 2000, pp. 952-958.
Carson, R.C. et al . , Abnormal Psychology and Modern Life , 8th edition, Scott Foresman and Company, Glenview , IL , 1988, pp. 56-57.
Cespivova, H., “Roles of Medical Ontology in Association Mining CRISP-DM Cycle”, Proceedings of the ECML/PKDD04 Workshop on Knowledge Discovery and Ontologies, PISA, 2004, pp. 12.
Cooper, D.N. et al., “The Mutational Spectrum Of Single Base-Pair Substitutions Causing Human Genetic Disease: Patterns And Predictions”, Human Genetics, vol. 85, No. 1, Jun. 1990, pp. 55-74.
Das, S., “Filters, Wrappers And a Boosting-Based Hybrid For Feature Selection”, In Proceedings Of The Eighteenth International Conference On Machine Learning, Jun. 28, 2001, pp. 74-81.
Duan, K.B. et al., “Multiple SVM-RFE For Gene Selection In Cancer Classification With Expression Data”, IEEE Transactions On Nanobioscience, vol. 4, No. 3, Aug. 29, 2005, pp. 228-234.
EP Office action dated Oct. 27, 2021, in EP Application No. EP17172048.5.
Hitsch, G.J. et al., “What Makes You Click ?—Mate Preference and Matching Outcomes in Online Dating”, MIT Sloan Research, Apr. 2006, pp. 603-606.
Klein, T.E. et al., “Integrating Genotype And Phenotype Information: An Overview Of The PharmGKB Project”, The Pharmacogenetics Journal, vol. 1, No. 3, 2001, pp. 167-170.
Mani, S. et al., “Causal Discovery From Medical Textual Data”, 2000, pp. 542-546.
Miyamoto, K et al., “Diagnostic and Therapeutic Applications of Epigenetics”, Japanese Journal of Clinical Oncology, Keigakul Publishing Company, vol. 35, No. 6, Jun. 1, 2005, pp. 293-301.
Nadkarni, P.M. et al., “Data Extraction And Ad Hoc Query Of An Entity-Attribute-Value Database”, Journal of the American Medical Informatics Association, vol. 5, No. 6, Nov.-Dec. 1998, pp. 511-527.
Nielsen, O.T. et al., “Molecular Characterization Of Soft Tissue Tumours: A Gene Expression Study”, The Lancet, vol. 359, Apr. 13, 2002, pp. 1301-1307.
Peedicayil, J., “Epigenetic Therapy—a New Development in Pharmacology”, Indian Journal of Medical Research, vol. 123, No. 1, Jan. 2006, pp. 17-24.
Prather, J.C. et al., “Medical Data Mining: Knowledge Discovery In A Clinical Data Warehouse”, Proceedings Of The AMIA Annual Fall Symposium, 1997, pp. 101-105.
Roddick, J.F. et al., “Exploratory Medical Knowledge Discovery: Experiences And Issues”, vol. 5, No. 1, Jul. 1, 2003, ACM, pp. 94.99.
Smith., “SNPs and Human Disease”, Nature, vol. 435, Jun. 2005, pp. 993.
Stadler, E.L, et al., “Personality Traits and Platelet Monoamine Oxidase Activity in a Swedish Male Criminal Population”, Neuropsychobiology, vol. 46, No. 4, 2002, pp. 202-208.
U.S. Non-Final Office Action dated Dec. 9, 2021, in U.S. Appl. No. 17/351,052.
U.S Notice of Allowance dated Mar. 4, 2022, in U.S. Appl. No. 17/351,052.
U.S. Appl. No. 17/576,738, inventors Hon et al., filed Jan. 14, 2022.
Vrbsky, S.V. et al., Approximate—a Query Processor That Produces Monotonically Improving Approximate Answers, IEEE Transactions on Knowledge and Data Engineering, vol. 5, No. 6, Dec. 1993, pp. 1056-1068.
Wagner, S.F., “Introduction To Statistics, Harper Collins Publishers”, 1992, pp. 23-30.
U.S. Non-Final office Action dated Apr. 14, 2022 in U.S. Appl. No. 17/576,738.
U.S. Notice of Allowance dated Jul. 26, 2022, in U.S. Appl. No. 17/576,738.
Related Publications (1)
Number Date Country
20210043281 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
61204195 Dec 2008 US
Continuations (2)
Number Date Country
Parent 15664619 Jul 2017 US
Child 17077930 US
Parent 12774546 May 2010 US
Child 15664619 US
Continuation in Parts (1)
Number Date Country
Parent 12644791 Dec 2009 US
Child 12774546 US