The invention relates to an anchor comprising a fluke and a shank. The shank of the anchor at one end is attached to the fluke and at the opposite other end provided with means for attachment to an anchor line or the like. The shank here ensures the transfer of the tensile forces in the anchor line to the fluke, particularly during penetrating the anchor in the anchoring soil, but possibly also during anchoring of an object connected to the anchor, such as a semi-submersible.
An example of such an anchor that has proven to be able to function well under normal conditions is applicant's Stevpris® anchor, which among others is subject of European patent 0.049.455. The Stevpris anchor has a shank having plate-shaped legs converging away from the fluke.
In the penetrated situation of the anchors it may occur that they are loaded with a force that has a component transverse to the shank. Said transverse force will have to be accommodated by the shank. Furthermore—even very large—transverse forces can be exerted on the shanks when the anchor is hauled in and is hauled in then with the shank forward over the roll on the deck of an auxiliary or supply vessel. It often occurs then that—instead of with one of the shank's rear edges—the anchor comes to support on the roll with one shank leg, that means rotated a quarter of a turn. As a result considerable deformations may occur in the shank of the anchor, which may even lead to the anchor needing a new shank.
It is an object of the invention to provide a simply constructed anchor that improves on this. To that end the invention provides an anchor comprising a fluke and a shank, which at a first end is attached to the fluke and at a second end that is situated opposite to the first end, is provided with means for attachment of the anchor to a penetration line or anchor line, in which the shank comprises two shank legs, which at the second end are connected to each other using a first pin, in which the portion of the pin situated within the shank legs or their continuation also serves as connection means for an end link or end shackle of the penetration line or anchor line.
In the anchor according to the invention the pin not only has the function of direct or indirect connection means of the shank legs at their second end, but it can also cooperate in the fixing of the distance one to the other between the shank legs at that location, and of means for attaching the anchor line. By keeping the shank legs at a distance a broad support is realised and the moment of resistance W of the shank is increased and deformation under the occurring moments and transverse forces are better counteracted. The location of the end link of the anchor line between the shank legs renders the outside of the second end smooth, as a result of which movement of the second shank end over a roll is improved.
Preferably the end link is formed like a so-called bow-shackle, in which it is particularly advantageous when the pin is also part of the bow-shackle. In the latter case parts are further economized on. The bow of the bow-shackle falls between the shank legs and as a result in principle has a larger freedom of rotation.
Preferably the end link is connected in a rotatable manner to the pin, so that an optimal transfer of forces can always take place. The rotation will take place here within the shank legs, and as a result need not be impeded.
Preferably the first pin is fixedly attached to the shank legs, so that it is ruled out that the pin can become detached during said rotation.
Alternatively the pin can be axially secured in holes in the shank legs, but can still be rotatable, and the bow-shackle can be fittingly accommodated between the legs, in which case the bow-shackle impedes the movement towards each other of the shank legs, and the securing of the pin to the outside of the shank legs prevents a moving away from each other of the shank legs.
In a further development of the anchor according to the invention, the first pin is provided with means for connection to the end of an added pennant line. The first pin thus has an extra function, namely the transfer of tensile forces to the shank of the two lines, namely the anchor line and the pennant line. The pennant line connection is also somewhat shielded here.
The anchor may be provided with a second pin that is movably connected to the first pin and serves as connection means for an added pennant line. It is preferred here that the second pin is connected to the first pin by means of a rigid connection member. The distance between both pins then remains constant.
In case the rigid connection member can be rotated about the centre line of the first pin, the connection member can swing down along with the second pin during penetration of the shank in the anchoring soil, and swing upwards when the second pin is being used.
Preferably the rigid connection member has a width that is smaller than the distance between the shank legs at the second end of the shank. The connection member can thus fall within the profile of the shank, as a result of which damage of the anchor shank and the surroundings during anchor handling can be counteracted.
Preferably the second pin is also part of a bow-shackle, which is preferably connected in a rotatable manner to the connection member, so that when exerting tension on the pennant line the shackle and the connection member will come to lie in one line of force.
It is further preferred that the second pin has a length that is smaller than the distance between the shank legs at the second end of the shank. The second pin as well can thus fall within the profile of the shank, as a result of which damage of the anchor shank and surroundings during anchor handling is further counteracted.
Fitting within the shank after swinging is ensured when the connection member and the second pin have been secured with respect to the first pin against movement along its centre line.
In an alternative development of the anchor according to the invention, at the second end a second pin extends between the shank legs and is secured to it, rearward of the first pin, as connection means for an added pennant line, and preferably is part of a bow-shackle that also extends between the shank legs.
Preferably the shank legs are plate-shaped. It is further preferred that near the first end the shank legs are situated in parallel planes, so that the distance between the plates there is constant, and therefore equal at the first pin and the location or swing track of the second pin.
From a further aspect the invention provides an anchor comprising a fluke and a shank extending upwards and forward from the fluke, which shank at a first end is attached to the fluke and at a second end that is situated opposite to the first end, is provided with means for attachment of the anchor to a penetration line or anchor line, in which the shank is rigid and the fluke at the lower side is provided with lower surfaces for supporting the lower side of the fluke according to a support surface, in which the shank extends to the second end substantially parallel to the support surface. This is advantageous for the initial penetrating of the fluke in the anchoring soil, but also advantageous when storing the anchor on board of a supply vessel and when preparing the anchor, in particular the second end of the shank, at that location.
Preferably the shank comprises two cranked shank legs that converge to the second end.
It is preferred then that the fluke has an upper surface, which at the front considered in a vertical longitudinal sectional plane is at an angle of approximately 10-30°, preferably 20-30°, preferably approximately 25°, to the support surface. As a result the penetration characteristics of the fluke are improved.
From a further aspect the invention provides an anchor comprising a fluke and a shank extending upwards and forward from the fluke, which shank at a first end is attached to the fluke and at a second end that is situated opposite to the first end, is provided with means for attachment of the anchor to a penetration line or anchor line, in which the shank is rigid and comprises two shank legs, in which the fluke has an upper surface which at the location of the first end of the shank forms a substantially planar plane, that is perpendicular to a longitudinal plane of symmetry of the anchor and preferably is continuous from the front edge to the rear edge, in which the upper surface of the fluke outside of the shank legs forms planes that run oblique to the side and downwards. As a result the passage of soil by the shank is improved whereas the space underneath the fluke is shielded to the side, as a result of which parts situated there, such as in case of an adjustable shank its adjustment lip, get damaged less quickly. The planes of the fluke running obliquely to the side, moreover improve the passage of the anchor over the roll of a supply vessel. Furthermore the stability during penetration is improved.
Preferably the fluke forms a hollow body (box) having a lower surface which in the area underneath the said planar plane of the upper surface comprises two planes that incline sideward and downward and meet each other according to a top line that is situated in a longitudinal plane of symmetry of the anchor. As a result the cross-section in transverse direction of the fluke corresponds to the line of moments, in which a small height is present in the middle, where—considered in cross-section—the smallest moments as a result of the soil pressure are present, but a larger height at the location of the attachment of the shank legs. Nonetheless the passage of the soil over the shank, between the shank legs, is impeded as little as possible because at that location the upper surface is as straight and therefore as small as possible.
Preferably the lower surface of the fluke is continued to the side, up to the side edges in planes running obliquely downward, as a result of which the directional stability is further improved, and also the—hollow—fluke construction can remain simple.
Considered in a sectional plane perpendicular to the longitudinal plane of symmetry, the fluke preferably has an inverted V-shape.
From a next aspect the invention provides an anchor comprising a fluke and a rigid shank during use extending upwards and forward from the fluke, which shank at a first end is attached to the fluke and at a second end that is situated opposite to the first end, is provided with means for attachment of the anchor to a penetration line or anchor line, in which the fluke forms a hollow body of plates and has an upper surface and a lower surface, which from front to rear diverge with respect to each other, considered in a longitudinal sectional plane, to a rear side of the fluke, in which the anchor has a reference line running through the centre of gravity of the anchor and through the point of force application of the penetration line on the second end of the shank, in which the rear side of the fluke at the lower side is provided with transverse edges, that are situated rearward from the reference line. When the anchor comes down, pending with the reference line vertically, it will first come down on the transverse edges. Because of the rearward position of the transverse edges, the anchor will be inclined to tilt forward from an initially instable orientation, to a correct position for penetration.
Preferably the transverse edges are situated on both sides of the longitudinal plane of symmetry of the anchor and are in line with each other, so that a kind of rotation or tilting edge is obtained at the rear side of the fluke.
Preferably the transverse edges form the rear boundary of support surfaces that are part of the lower surface of the fluke, of which surfaces the opposite of the normal is at an angle to the reference line, which angle opens in rearward direction of the anchor. The rear side of the fluke forms support surfaces, of which the opposite of the normal is at an acute angle to the reference line, which opens in rearward direction of the anchor. In this way it is achieved that the anchor after coming down on the transverse edges does not sink too deeply into the bottom and otherwise impeding the tilting process.
Preferably the support surfaces are situated on both sides of the longitudinal plane of symmetry of the anchor, particularly at a distance from the longitudinal plane of symmetry, preferably contiguous to the side edges of the fluke, as a result of which the fluke when coming down on the anchoring bottom—considered in transverse direction—can first take up a stable position before tilting forward. The distance between the support surfaces moreover offers more possibilities for realising soil flow improving provisions on the fluke, such as for instance the V-shaped tunnel at the lower side of the fluke mentioned earlier.
From a further aspect according to the invention it is provided that the fluke forms a hollow body of plates and has an upper surface and a lower surface, which from front to rear diverge with respect to each other, considered in a longitudinal sectional plane, to a rear side of the fluke, in which the rear side of the fluke forms planes, which are oriented obliquely rearward and upward when the fluke is placed on a level base. In this way the soil flow over the rear side of the fluke is improved.
From a next aspect it is provided according to the invention that the fluke forms a hollow body of plates and has an upper surface and a lower surface, which from front to rear diverge with respect to each other, considered in a longitudinal sectional plane, to a rear side of the fluke, in which the shank is rigid and comprises two shank legs that are attached at the first end to two longitudinal girders in the fluke, which longitudinal girders each comprise two parallel strip-shaped plates, which between them define an accommodation space for an attachment lip at the first end of the shank legs, in which the strip-shaped plates extend from the front edge of the fluke to the rear edge. Said longitudinal girders are a part of the structure of the fluke. Because of its continuous double design the solidity is increased, and more mounting possibilities are also provided, such as for penetration points and for the front parts of the first end of the shank legs.
Preferably at least in a front portion the strip-shaped plates are connected to each other by means of a steel transverse strip. As a result both longitudinal strips are counteracted to deform towards each other. With the upper surface a kind of box girder can be formed as a result of which the strength is improved. The front ends of the box girders moreover form a suitable accommodation space for the penetration points.
From a further aspect the invention provides an anchor, in which the fluke forms a hollow body of plates and has an upper surface and a lower surface, which from front to rear diverge with respect to each other, considered in a longitudinal sectional plane, to a rear side of the fluke, in which in the outermost laterally situated areas of the fluke side planes have been formed having a normal that is substantially perpendicular to a longitudinal plane of symmetry of the anchor. As a result damage of the fluke or its surroundings during handling is counteracted.
It is preferred here that contiguous to the side planes stabiliser planes that are obliquely inwardly and downwardly oriented have been formed in the lower surface of the fluke. Said plates are reinforced by the side planes.
The invention will be elucidated on the basis of the exemplary embodiment shown in the attached drawings, in which:
FIGS. 7A-C show a top view, a bottom view and a cross-section according to arrow VIIIC, respectively, of the anchor of
The anchor 1 in the
The shank legs 6a,b are connected to each other along their length by means of transverse plates 11. At their upper end 12 the shank legs 6a, b are formed with end ears 14, to which—in this example—a (first) pin 15 is fixedly attached with its ends, for instance by welding of by means of threading. The pin 15 is a part of a bow-shackle 16, of which the U-bow 17 is freely rotatable—in the directions A—about the pin 15. The pin 15 keeps the ears 14 spaced apart, in which the resistance from the shank 6 against bending in the directions B is increased. The U-bow 17 falls within the ears 14 and within the line X and forms an attachment for a link of the chain 18 which leads to a vessel or to an object to be anchored.
At the upper end 12 a reinforcement plate 13 has been attached between the shank legs 6a, b.
The upper end of the shank 6 shown in
In
In
The anchor 101 in
The shank legs 106a, 106b converge in downward direction with respect to each other, up to buckle-lines T1 and T2, where they are continued in downward direction in parallel and vertical plates 170a, 170b. At the lower ends 107a, 107b, plates 172a, 172b have also been provided at the front, through which attachment pins 108a, 108b may extend for securing the shank 106 to the fluke 102. More to the rear at the lower end 107a; 107b of the shank 106, lips 171a, 171b provided with several holes have been provided, so that with the help of pins 109a, 109b the shank can be attached to the fluke at various angled positions. Here, the position is shown in which the angle between the shank and the fluke is the largest.
Between the lower ends 107a, 107b of the shank legs 106, the upper surface 105 of the fluke 102 has a planar plane, which extends rearward from the front edge 103, between the shank legs, and ends in a transverse line, in order to merge into a kind of gate or mirror surfaces 162a, 162b, that are in one plane with each other. The normal N1 to the planes 162a, 162b is upwardly inclined oriented to the rear with respect to the fluke 102. The lower boundary of the planes 162a, 162b is somewhat V-shaped, in order to be contiguous to tunnel Y, to be further discussed, at the lower surface of the fluke 102. Outside of it the lower boundaries of the planes 172a, 172b are parallel to the upper boundary and therefore transverse to the plane of symmetry S of the anchor 101.
Apart from the lower ends 107a, 107b of the shank legs 106 the upper surface of the fluke 105 has side plates 160a, 160b, that run downwardly inclined to the side edge of the fluke, at an angle β of 10-40°, preferably 30°. As can be seen in
The lower surface of the fluke 102 is built up from several plates, and, as can be seen in
At the side edges the surfaces 185a, b connect to stabiliser planes 182a, 182b which with their normals N3 are oriented towards each other, forward and downward. The arrangement with the stabiliser planes 182a, 182b and the side planes 190a, 190b as well as the portions of the support surfaces 181, 181b situated at the rear thereof, provide a solid structure at that location. Also see
The longitudinal girders 150a, 150b (also see
Of each longitudinal girder both front lower edge portions 154a, 154b are connected to each other by means of strips 158a, b, which also downwardly limit the accommodation spaces 155.
The angles between the plates 160a, 160b and 161 on the one hand and the plates 183a, b and 185a, b on the other hand, measured from the front edge 103 in a cross-sectional plane parallel to the plane of symmetry S, is always constant. Said angle can be determined depending on the soil type, and preferably is between 0° and 20°, preferably 10°.
The moment of coming down of the anchor 101 on an anchoring bottom 200 is shown in
In
Number | Date | Country | Kind |
---|---|---|---|
1015034 | Apr 2000 | NL | national |
This is a divisional of copending application Ser. No. 10/272,438 filed on Oct. 16, 2002 which is a continuation of International Application PCT/NL01/00325 filed on Apr. 27, 2001, which designated the U.S., claims the benefit thereof and incorporates the same by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10272438 | Oct 2002 | US |
Child | 11131801 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/NL01/00325 | Apr 2001 | US |
Child | 10272438 | Oct 2002 | US |