1. Field of the Invention
Embodiments of the present invention generally relate to an anchor for use with an expandable tubular.
2. Description of the Related Art
In the drilling of oil and gas wells, a wellbore is formed using a drill bit disposed at a lower end of a drill string that is urged downwardly into the earth. After drilling to a predetermined depth or when circumstances dictate, the drill string and bit are removed and the wellbore is lined with a string of casing. An annulus is thereby formed between the string of casing and the formation. A cementing operation is then conducted in order to fill the annular area with cement. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas or zones behind the casing including those containing hydrocarbons. The drilling operation is typically performed in stages and a number of casing or liner strings may be run into the wellbore until the wellbore is at the desired depth and location.
The casing may become damaged over time due to corrosion, perforating operations, splitting, collar leaks, thread damage, or other damage. The damage may be to the extent that the casing no longer isolates the zone on the outside of the damaged portion. The damaged portion may cause significant damage to production fluid in the zones or inside the casing as downhole operations are performed. To repair the damaged portion, an expandable tubular patch may be run into the wellbore with an expansion cone. An anchor temporarily secures the patch to the casing. The expansion cone is then pulled through the patch using a hydraulic jack at the top of the patch. The hydraulic jack pulls the expansion cone through the patch and into engagement with the damaged casing. Thus, the patch covers and seals the damaged portion of the casing.
The hydraulic jack is limited in the amount of force it can apply to the expansion cone. Typical hydraulic jacks are limited to 35,000 kilopascal (kPa) applied to the work string. This limits the amount of expansion force applied to the expansion cone and thereby the patch. Further, the hydraulic jack requires a high pressure pump to operate which adds to the cost of the operation. Moreover, the work string must be sealed so pump pressure can be applied to operate the hydraulic jack which makes it difficult to pump fluid down to the expansion cone in order to lubricate the cone during expansion. Still further, the hydraulic jack has a very small and limited stroke. Thus, in order to expand a long patch, the hydraulic jack may need to be reset a number of times to at least anchor the patch to the casing.
Therefore, there exists a need for a mechanical expansion system capable of expanding a tubular with an increased force for an increased distance.
Embodiments of the present invention generally relate to an anchor for use with an expandable tubular. In one embodiment, a method of lining a wellbore includes deploying a BHA into the wellbore using a conveyance. The BHA includes setting tool, an anchor, and an expandable tubular. The method further includes pressurizing a bore of the setting tool, thereby releasing the anchor from the setting tool. The method further includes pulling the conveyance, thereby: extending the anchor into engagement with a casing of the wellbore, pulling an expander of the setting tool through the expandable tubular, and expanding the tubular into engagement with an open and/or cased portion of the wellbore and retracting the anchor.
In another embodiment, an anchor for use in a wellbore includes: a tubular drag operable to engage a casing of the wellbore; a tubular slip retainer connected to the drag and having flanged portions; slips, each slip having a flanged portion for mating with a respective retainer flanged portion and an inclined portion having an inner surface and a profile; and a tubular slip body having pockets, each pocket having an inclined outer surface and a profile and for mating with a respective slip inclined portion. The flanged portions are each inclined. The flanged portions, pockets, and inclined portions are operable to radially extend the slips in response to relative longitudinal movement of the slip body toward the slip retainer. The flanged portions, pockets, and inclined portions are operable to radially retract the slips in response to relative longitudinal movement of the slip retainer away from the slip body.
So that the manner in which the above recited features described herein can be understood in detail, a more particular description of embodiments, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments described herein and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The BHA 100 may be deployed into the wellbore 101 using the conveyance 114 until it reaches a desired location, such as adjacent the damaged portion 106. The anchor 1 may then be operated in order to engage the casing 102. With the anchor 1 engaged to the casing 102, the conveyance 114 may be pulled up using a hoist 134 and thereby pull the expander 112 through the patch 110. The conveyance 114 may transfer torque, tensile forces and compression forces to the expander 112. Lubricant 160, such as drilling fluid or mineral oil, may be pumped down the conveyance 114 during the expansion in order to lubricate the expander 112. The conveyance 114 may pull the expander 112 through the patch 110 until the entire patch 110 is engaged with an inner surface of the casing 102. The setting tool 50 and anchor 1 may then be removed from the wellbore 101 leaving the damaged portion 106 of the casing 102 repaired.
The conveyance 114 may be used to convey and manipulate the BHA 100 in the wellbore 101. The conveyance 114 may be a string of drill pipe including several joints fastened together, such as by threaded connections. Alternatively, the conveyance may be coiled tubing or continuous sucker rod. The expander 112 may include a mandrel which may be threaded to a cone. A suitable expander may be discussed and illustrated in U.S. Patent App. Publication Number US2007/0187113 which is herein incorporated by reference in its entirety. The expander 112 may be longitudinally connected to the patch 110, such as by a threaded connection, in order to secure the patch 110 to the setting tool during deployment. The expander mandrel may include one or more lubricant ports located around the circumference thereof for discharging lubricant from the conveyance. The lubricant may flow between the patch 110 and the expander cone. The expander cone may include a flared portion capable of plastically and radially deforming the patch 110 into engagement with the casing 102. The expander cone may be pulled through the patch 110 by the hoist 134 pulling the conveyance 114 and the setting tool work string.
Alternatively, the expander 112 may be a compliant or collapsible cone. Alternatively, the expander 112 may be a rotary expander. Alternatively, the expander 112 may be an inflatable bladder. Should the expander become stuck in the tubular, the setting tool may further include a releasable latch 125 connecting the expander 112 to the setting tool 1 and the latch may be released, thereby freeing the anchor from the expander.
An upper end of the conveyance 114 may be supported from a drilling rig 130 by a gripping member 136 located on a rig floor 133 and/or by a hoist 134. Alternatively, a workover rig or a subbing unit may be used instead of the drilling rig 130. The gripping member 136 may include set of slips and a bowl; capable of supporting the weight of the conveyance 114 and the BHA 100 from the rig floor 133. The hoist 134 may be operable to lower and raise the conveyance 114 and thereby the BHA 100 into and out of the wellbore 101. Further, the hoist 134 may provide the pulling force required to move the expander 112 through the patch 110 during the expansion operation. The hoist 134 may include drawworks, a crown block, and a traveling block. Alternatively, the hoist may include an injector or a surface jack. A top drive 135 may connect the hoist 134 to the conveyance 114, may be operable to rotate the conveyance, and may conduct the lubricant 160 from a rig pump (not shown) into the conveyance 114 via a standpipe (not shown) and a hose. Alternatively, a Kelly, rotary table, and Kelly swivel may be used to rotate and deliver lubricant 160 to the conveyance 114 instead of the top drive 135.
The setting tool work string may include a tubular top sub 2 having a threaded (not shown) upper end for connection to the conveyance 114 and may be longitudinally and torsionally connected to a tubular port mandrel 7, such as by a threaded connection and fasteners, such as keys 31 and pins. One or more seals, such as an o-ring 32 may be disposed between the top sub 2 and the port mandrel 7. A piston stop 3 may be longitudinally and torsionally connected to the port mandrel 7, such as by a threaded connection and one or more fasteners, such as set screws 33. An upper tubular adapter 14 may be longitudinally and torsionally connected to the port mandrel 7, such as by a threaded connection and fasteners, such as keys 31 and pins. One or more seals, such as an o-ring 32 may be disposed between the port mandrel 7 and the upper adapter 14.
The setting tool work string may further include a spacer 40 longitudinally and torsionally connected to the upper adapter 14, such as by a threaded connection. A length of the spacer 40 may correspond to a length of the casing patch 110. The spacer 40 may include one or more tubular joints, such as drill pipe. Alternatively, the expandable tubular may be an expandable liner 210 (see
The anchor 1 may include a drag having a drag case 10 longitudinally and torsionally connected to the port mandrel 7 (during deployment), such as by a castellation joint and a latch, such as a collet 36. The collet 36 may be disposed around the drag case 10 and connected thereto, such as by a threaded connection and one or more fasteners, such as set screws 33. The collet 36 may include a (solid) base 36b and a plurality of split fingers 36f extending longitudinally from the base. The fingers 36f may have lugs formed at an end distal from the base. The lugs may be received by a latch profile, such as a groove, formed in an outer surface of the port mandrel 7.
The setting tool work string may further include a tubular piston 6 disposed around and along the port mandrel 7. The piston 6 may be longitudinally movable relative to the port mandrel 7 between a locked position (shown) and an unlocked position (
The anchor 1 may further include a latch case 5 longitudinally and torsionally connected with the drag case 10, such as by a threaded connection and one or more fasteners, such as set screws 33. The drag case 10 may house drag blocks 8. The drag blocks 8 may be operable to engage an inner surface of the casing 102 in order to provide a resistive force. Alternatively, leaf springs may be used instead of the drag blocks 8. Each drag block 8 may be radially movable relative to the drag case 10 and extend from a cavity formed in the drag case 10. Each drag block 8 may be radially biased away from the drag case 10 by a biasing member, such as one or more springs (i.e., coil) 30. Each drag block 8 may have upper and lower tabs formed at a top and bottom thereof. Each tab may engage a keeper 23 when each drag block 8 is extended, thereby stopping extension of the drag block. Each drag block 8 may be longitudinally connected to the drag case 10 by engagement of the tabs with a surface of the drag case. Each keeper 23 may be fastened to the drag case 10, such as by one or more cap screws 24.
The drag case 10 may be longitudinally and torsionally connected to a tubular slip retainer 12, such as by a threaded nut 11 and a castellation joint. The slip retainer 12 may be longitudinally and torsionally coupled to upper portions of each of two or more slips 19, such as by a flanged (i.e., T-flange 19f and T-slot 12f) connection 12f, 19f. Each flanged connection 12f, 19f may have inclined φ (
Longitudinal movement of the slip body 15 toward the slips 19 along the inclined surfaces 15s, 19s may wedge the lower portions of the slips toward the extended position and resultant longitudinal movement of the upper portions of the slips relative to the slip retainer 12 may wedge the upper portions of the slips toward the extended position. The lower portion of each slip 19 may also have a guide profile, such as tabs 19t, extending from sides thereof. Each slip pocket may also have a mating guide profile, such as grooves 15g, for retracting the slips 19 when the slip retainer 12 moves longitudinally relative to and away from the slips. Further, the tab-groove 19t, 15g connection may also longitudinally support the slip body 15 from the slips 19 due to abutment of inner surfaces of the slips 19 with an outer surface of the lower release mandrel 13. Each slip 19 may have teeth 19w formed along an outer surface thereof. The teeth 19w may be made from a hard material, such as tool steel, ceramic, or cermet for engaging and penetrating an inner surface of the casing 102, thereby anchoring the slips 19 to the casing 102.
A tubular retainer case 16 may be longitudinally and torsionally connected to the slip body 15 such as by a threaded connection and fasteners, such as keys 31 and pins. The retainer case 16 may have a threaded outer surface 16t extending therealong. A liner stop, such as a nut 18, may be disposed along the threaded outer surface 16t. A position of the liner stop 18 may be adjusted along the retainer case 16 by rotating the liner stop and then the liner stop 18 may be locked into place, such as by one or more set screws 33. The liner stop 18 may include a (solid) base 18b and a plurality of split fingers 18f extending longitudinally from the base. Both an inner surface of the base 18b and the fingers 18f may be threaded. The fingers 18f may have shoulders 18s formed at an end proximate to the base 18b. The shoulders 18s may be configured to abut a top of the patch 110 (
The anchor 1 may further include a fastener, such as a snap ring 17, disposed in a groove formed in an inner surface of the slip body 15 at a bottom of the slip body. The snap ring 17 may be radially biased into engagement with an outer surface of the lower release mandrel 13. The snap ring 17 may be longitudinally connected to the slip body 15 and the retainer case 16 by being captured therebetween. A groove 13g may be formed in an outer surface of the lower release mandrel 13 for receiving an inner portion of the snap ring 17. The groove 13g may have a length greater than a length of the snap ring 17 and less than a setting length of the slips 19 such that once engaged with the groove, the snap ring may engage an upper or lower end of the groove, thereby longitudinally connecting the lower release mandrel 13 and the slip body 15/retainer case 16 before resetting of the slips 19. The snap ring 17 and groove 13g may be a failsafe to resetting of the slips 19 during retrieval of the setting tool 50 and anchor 1 to the surface 105.
The anchor 1 may further include a tubular upper release mandrel 9 disposed radially between the port mandrel 7 and the drag case 10 (during deployment) and longitudinally between a shoulder 7s formed in an outer surface of the port mandrel 7 and a shoulder 12s formed in an inner surface of the slip retainer 12. A bottom of the upper release mandrel 9 may be engaged with the slip retainer shoulder 12s to longitudinally support the upper release mandrel from the slip retainer 12. The upper release mandrel 9 may have a shoulder 9s formed in an outer surface thereof and spaced longitudinally from a bottom of the drag case 10 by a distance sufficient to allow extension of the slips 19 (see
The setting tool work string may further include a lower adapter 28 longitudinally and torsionally connected to a lower end of the spacer 40, such as by a threaded connection. A bottom sub 20 may be longitudinally and torsionally connected to the lower adapter 28, such as by such as by a threaded connection and fasteners, such as keys 31 and pins. The bottom sub 20 may also have a threaded coupling for connecting to other components of the setting tool 50, such as the expander 112. A release trigger, such as a nut 29, may be longitudinally and torsionally connected to the bottom sub 20, such as by a threaded connection and one or more fasteners, such as set screws 33.
Enlargement of the subsequent pairs 12b-d of flanges 12f may stagger release of the slips 19 such that as a releasing force is exerted on the slips (by pulling of the slip retainer 12 longitudinally away from the slips), the releasing force may be exerted individually on each respective pair of the slips instead of being divided among all of the slips, thereby reducing the amount of force required to release the slips and reducing jarring of the anchor 1 when the slips release. The release force may initially be exerted on a first pair of slips 19 (corresponding to the first pair 12a of flanges 12f) and once the first pair of slips releases from the casing 102, the release force may then be exerted on the second pair of slips after the slip retainer 12 has traveled longitudinally upward the distance A and so on. The dimension 3A may be substantially less than an extension/retraction distance of the slips such that the first pair of slips may continue to retract during release of the subsequent pairs of slips. For brevity, this staggered release of the slips 19 will hereinafter be referred to as unzipping.
To assemble the slips 19 with the rest of the anchor 1 (not shown, see FIG. 7D of the '082 provisional), the slip retainer 12 and the slip body 15 may be moved into proximity with each other and the slips inserted radially into the respective pockets 15p and flanges 12f.
In operation, the BHA 100 may be deployed (
Pumping may then continue, thereby increasing pressure in the port mandrel bore and exerting an upward force on the piston 6 until the shear screws 34 fracture and then moving the piston into engagement with the piston stop 3 (
Pumping may continue until the ball 150 deforms and is pushed through the seat. The ball 150 may then be stowed in a ball catcher (not shown). Pressure in the port mandrel bore may be relieved by release of the ball 150 from the seat. The conveyance 114 may then be pulled using the hoist 134, thereby longitudinally pulling the expander 112 and the patch 110 upward against the liner stop 18 which may push the slip body 15 upward against the slips 19, thereby moving the slips upward and outward along the inclined surfaces 15s of the pockets 15p and the flanges 12f until the slips engage the casing 102 (
As the expander 112 approaches a top of the patch 110 (
Returning to
The expandable liner 210 may be solid or perforated (i.e., slotted). If perforated, the expandable liner 210 may be constructed from one or more layers, such as three. The three layers may include a slotted structural base pipe, a layer of filter media, and an outer shroud. Both the base pipe and the outer shroud may be configured to permit hydrocarbons to flow through perforations formed therein. The filter material may be held between the base pipe and the outer shroud and may serve to filter sand and other particulates from entering the liner 210.
Additionally, either BHA 100, 200 may be operable to expand a first liner into engagement with open hole and then run a second liner through the expanded first liner and to expand the second liner into engagement with open hole. The second liner may have the same size diameter as the first liner (both pre and post expansion). The second liner may also be drilled into place. Alternatively, the pre-expansion and/or post-expansion diameter of the second liner may be slightly less than the first liner.
Alternatively, the spacer 40 may have an outer diameter greater than an inner diameter of the release sleeve and the spacer 40 may be used to engage and operate the release sleeve instead of the release nut.
A retainer sleeve 326 may be longitudinally and torsionally connected to the retainer case 316 (during deployment) by one or more frangible fasteners, such as shear screws 334. The release sleeve 327 may be longitudinally and torsionally connected to the retainer sleeve 326, such as by a threaded connection. The retainer case 316 may be longitudinally connected to the lower release mandrel 313 (during deployment) by one or more fasteners, such as dogs 337. The dogs 337 may be held in place by the retainer sleeve 326. A release trigger, such as a nut 329, may be longitudinally and torsionally connected to the bottom sub 20, such as by a threaded connection and one or more fasteners, such as set screws 333.
As the expander 112 approaches a top of the patch 110, the release nut 329 may engage the release sleeve 327 and fracture the shear screws 334, thereby freeing the retainer sleeve 326 from the retainer case 316. The release nut 329 may then push the retainer sleeve 326 from engagement with the dogs 337 and along the retainer case 316 until the release nut 329 engages a bottom of the lower release mandrel 313. The release nut 329 may then push the lower release mandrel 313 and movement of the lower release mandrel 313 may cause the dogs 337 to be pushed radially outward into an annulus formed between the release sleeve 327 and the retainer case 316, thereby freeing the lower release mandrel from the retainer case.
Additionally, the setting tool may include a cup seal (not shown) engaged with an inner surface of the expandable tubular to act as a debris barrier, a blocking member catcher (not shown), a float collar or shoe (not shown), a centralizer (not shown). Additionally, cement may be pumped into an annulus formed between the tubular and the casing/open hole before the tubular is expanded and in the same trip as expanding the tubular. Additionally, a lower and/or upper portion of the expandable tubular may include an anchor for engaging the casing/open hole during expansion of the tubular. Additionally, an upper portion of the tubular may include one or more seals for engaging an inner surface of the casing during expansion of the tubular. Alternatively, the anchor may be used with the hydraulic jack, discussed above.
Alternatively, the patch 110 may instead be an expandable liner hanger for a conventional liner string. The expander 112 may then be connected to an upper portion of the conventional liner (at or near a bottom of the hanger) and deployed to expand only the hanger. A float collar or shoe may be assembled as part of a lower portion of the liner string and one or more wipers may be assembled at a lower portion of the setting tool. Cement may then be pumped through the liner and into the annulus before the hanger is expanded and the top cement plug may be used to operate the anchor instead of having to pump and catch an additional blocking member, thereby obviating need for a blocking member catcher. The top plug and wiper may then release after operating the anchor.
Alternatively, the slips may be set against an open hole section instead of a cased section of the wellbore.
Alternatively, the anchor and setting tool of the '082 provisional may be used instead of the anchor 1 and setting tool 50. Notable differences include a dual valve piston/setting piston system instead of the piston/latch system and a release latch instead of the shear ring.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Prov. Pat. App. No. 61/371,082, filed Aug. 5, 2010, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2191000 | Thomas | Feb 1940 | A |
2827966 | Reynolds | Mar 1958 | A |
3043372 | Davis | Jul 1962 | A |
3045757 | Conrad | Jul 1962 | A |
3054452 | Clark, Jr. et al. | Sep 1962 | A |
3162245 | Howard et al. | Dec 1964 | A |
3167122 | Lang | Jan 1965 | A |
3175618 | Lang et al. | Mar 1965 | A |
3179168 | Vincent | Apr 1965 | A |
3191677 | Kinley | Jun 1965 | A |
3191680 | Vincent | Jun 1965 | A |
3203451 | Vincent | Aug 1965 | A |
3203483 | Vincent | Aug 1965 | A |
3236309 | Conrad | Feb 1966 | A |
3358760 | Blagg | Dec 1967 | A |
3399729 | McGill | Sep 1968 | A |
3424244 | Kinley | Jan 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3669190 | Sizer et al. | Jun 1972 | A |
3691624 | Kinley | Sep 1972 | A |
3780562 | Kinley | Dec 1973 | A |
3785193 | Kinley et al. | Jan 1974 | A |
4060131 | Kenneday et al. | Nov 1977 | A |
4530398 | Greenlee et al. | Jul 1985 | A |
4662453 | Brisco | May 1987 | A |
4715445 | Smith, Jr. | Dec 1987 | A |
4811785 | Weber | Mar 1989 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5366012 | Lohbeck | Nov 1994 | A |
5785120 | Smalley et al. | Jul 1998 | A |
6021850 | Wood et al. | Feb 2000 | A |
6062309 | Gosse | May 2000 | A |
6386292 | Bland | May 2002 | B1 |
6408945 | Telfer | Jun 2002 | B1 |
6408946 | Marshall et al. | Jun 2002 | B1 |
6557640 | Cook et al. | May 2003 | B1 |
6622678 | Shimizu et al. | Sep 2003 | B2 |
6622789 | Braddick | Sep 2003 | B1 |
6691777 | Murray et al. | Feb 2004 | B2 |
6732806 | Mauldin et al. | May 2004 | B2 |
6820690 | Vercaemer et al. | Nov 2004 | B2 |
6877567 | Hirth | Apr 2005 | B2 |
6997266 | Jackson et al. | Feb 2006 | B2 |
7011162 | Maguire | Mar 2006 | B2 |
7028770 | Smith, Jr. et al. | Apr 2006 | B2 |
7073583 | Anderton et al. | Jul 2006 | B2 |
7093656 | Maguire | Aug 2006 | B2 |
7114573 | Hirth et al. | Oct 2006 | B2 |
7128162 | Quinn | Oct 2006 | B2 |
7185701 | Mackenzie | Mar 2007 | B2 |
7225870 | Pedersen et al. | Jun 2007 | B2 |
7383889 | Ring et al. | Jun 2008 | B2 |
7503396 | Hester | Mar 2009 | B2 |
7533731 | Corre et al. | May 2009 | B2 |
7699113 | Ring | Apr 2010 | B2 |
7992644 | Giroux | Aug 2011 | B2 |
8069916 | Giroux et al. | Dec 2011 | B2 |
8522885 | Giroux et al. | Sep 2013 | B2 |
20030192705 | Cook et al. | Oct 2003 | A1 |
20050045342 | Luke et al. | Mar 2005 | A1 |
20050081358 | Cook et al. | Apr 2005 | A1 |
20050161226 | Duggan et al. | Jul 2005 | A1 |
20050217866 | Watson et al. | Oct 2005 | A1 |
20050236162 | Badrak et al. | Oct 2005 | A1 |
20060124295 | Maguire | Jun 2006 | A1 |
20060243444 | Brisco et al. | Nov 2006 | A1 |
20070144784 | Head et al. | Jun 2007 | A1 |
20070187113 | Hester | Aug 2007 | A1 |
20080099210 | Gazewood | May 2008 | A1 |
20080142213 | Costa et al. | Jun 2008 | A1 |
20080156499 | Giroux et al. | Jul 2008 | A1 |
20090014172 | Costa et al. | Jan 2009 | A1 |
20090151930 | Giroux | Jun 2009 | A1 |
20100243277 | Ring | Sep 2010 | A1 |
20100252252 | Harris et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
2298298 | Aug 2000 | CA |
2423321 | Aug 2006 | GB |
WO-9821444 | May 1998 | WO |
Entry |
---|
Canadian Office Action dated Jul. 16, 2013, Canadian Patent Application No. 2,748,153. |
Australian Patent Examination Report dated Jun. 5, 2013, for Australian Application No. 2011205189. |
Number | Date | Country | |
---|---|---|---|
20120037381 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61371082 | Aug 2010 | US |