The present invention is directed generally to anchors for watercraft, and more particularly to an anchor having a releasable shank.
As can be appreciated, marine anchors should set quickly once dropped in the water, but should be able to be retrieved without undue difficulty. Unfortunately, it is common for anchors to become lodged in or under various obstructions, such as submerged trees, rocky ledges, submerged wreckage, and the like. When this happens, the anchor may become trapped such that pulling on the anchor line, even from above or behind the anchor, cannot free the anchor. Such situations may require that someone dive down to free the anchor, or that the anchor line be cut to free the watercraft, neither of which is desirable.
In order to overcome this problem, several anchor designs have been proposed that, rather than having only one fixed geometric relationship between the shank and the fluke, allow for some form of relative movement (typically rotation) between the shank and the fluke. Examples of such anchors are shown in U.S. Pat. Nos. 5,054,416 and 4,655,158. For example, when an anchor according to the '416 patent becomes trapped as described above, the user actuates a special locking mechanism release that releases the anchor's shank to rotate relative to its fluke. When released, the shank may be rotated to a position extending rearward of the fluke, thereby allowing the anchor to be retrieved by pulling backward on the anchor.
While such anchors address the problem of a stuck anchor, these designs have not proven entirely satisfactory for various reasons. As such, there remains a need for alternative anchor designs.
The present invention is directed to an anchor that in one embodiment comprises a fluke structure having a pivot mount; a shank pivotally connected to the fluke structure via the pivot mount for rotation between a locked configuration and a release configuration; the shank having a locking surface distal from the pivot mount, the locking surface engaging the fluke structure to resist rotation of the shank relative to the fluke structure in the locked configuration; an elastically deformable member coupling the shank to the pivot mount; and wherein rotation of the shank from the locked configuration to the release configuration requires the deformable member to be elastically deformed and the locking surface to be displaced toward the pivot mount. The fluke structure may further comprise an incompressible locking member spaced from the pivot mount, and wherein the locking surface directly engages the locking member in the locked configuration. In some embodiments, the deformable member may urge the locking surface away from the pivot mount in the locked configuration. The deformable member may surround the pivot mount. The shank may further comprise a locking leg and wherein the locking leg forms the locking surface. A float may be attached to the shank at a position spaced away from the fluke structure. Rotation of the shank from the locked configuration to the release configuration may further require a circumferential pulling force about the pivot mount be applied to the shank above a first force level and counteracting force be applied to the fluke structure. A pulling force component applied to the shank in a direction from the pivot mount toward the locking surface may provide greater resistance to rotation of the shank from the locked configuration to the release configuration. An angle between the fluke structure and the shank may have a first value and the locking surface may engage the fluke structure to resist rotation of the shank relative to the fluke structure in the locked configuration, while the angle may have a second larger value and the locking surface may be disengaged from the locking member in the release configuration. The locking surface may be curved away from the pivot mount and the locking member may have a curved engaging portion so that the curved locking surface mates with the curved engaging portion when the shank is in the locked configuration to resist rotation of the shank relative to the fluke structure while the curved locking surface is disposed distal from the locking member in the release configuration.
In an alternate embodiment, the anchor may comprise a fluke structure having a pivot mount and an incompressible locking member disposed in spaced relation to the pivot mount; a shank pivotally connected to the fluke structure via the pivot mount for rotation with respect thereto generally about the pivot mount; the shank having a locking surface distal from the pivot mount; an elastically deformable member coupling the shank to the pivot mount; with the anchor rotationally moveable between a locked configuration wherein an angle between the fluke structure and the shank has a first value and the locking surface engages the fluke structure to resist relative rotation of the shank relative to the fluke structure and a release configuration wherein the angle has a second larger value and the locking surface is disengaged from the locking member. Rotation of the shank from the locked configuration to the release configuration may require the deformable member to be elastically deformed and the locking surface to be displaced toward the pivot mount. In some embodiments, the deformable member may urge the locking surface away from the pivot mount in the locked configuration. The deformable member may surround the pivot mount. The shank may further comprise a locking leg and wherein the locking leg forms the locking surface. A float may be attached to the shank at a position spaced away from the fluke structure. Rotation of the shank from the locked configuration to the release configuration may further require a circumferential pulling force about the pivot mount be applied to the shank above a first force level and counteracting force be applied to the fluke structure. A pulling force component applied to the shank in a direction from the pivot mount toward the locking surface may provide greater resistance to rotation of the shank from the locked configuration to the release configuration. The locking surface may be curved away from the pivot mount and the locking member may have a curved engaging portion so that the curved locking surface mates with the curved engaging portion when the shank is in the locked configuration to resist rotation of the shank relative to the fluke structure while the curved locking surface is disposed distal from the locking member in the release configuration.
In still another embodiment, the anchor may comprise a fluke structure having a pivot mount and an incompressible locking member disposed in spaced relation to the pivot mount having a curved engaging portion; a shank pivotally connected to the fluke structure via the pivot mount for rotation with respect thereto generally about the pivot mount between a locked configuration and a release configuration; the shank having a forward leg distal from the pivot mount having a curved locking surface corresponding in shape to the curved engaging portion and curved away from the pivot mount; an elastically deformable member coupling the shank to the pivot mount; the curved locking surface mating with the curved engaging portion when the shank is in the locked configuration to resist rotation of the shank relative to the fluke structure; and the curved locking surface disposed distal from the locking member in the release configuration. Rotation of the shank from the locked configuration to the release configuration may require the deformable member to be elastically deformed and the locking surface to be displaced toward the pivot mount. In some embodiments, the deformable member may urge the locking surface away from the pivot mount in the locked configuration. The deformable member may surround the pivot mount. The shank may further comprise a locking leg and wherein the locking leg forms the locking surface. A float may be attached to the shank at a position spaced away from the fluke structure. Rotation of the shank from the locked configuration to the release configuration may further require a circumferential pulling force about the pivot mount be applied to the shank above a first force level and counteracting force be applied to the fluke structure. A pulling force component applied to the shank in a direction from the pivot mount toward the locking surface may provide greater resistance to rotation of the shank from the locked configuration to the release configuration. An angle between the fluke structure and the shank may have a first value and the locking surface may engage the fluke structure to resist rotation of the shank relative to the fluke structure in the locked configuration, while the angle may have a second larger value and the locking surface may be disengaged from the locking member in the release configuration.
An anchor according to one embodiment of the present invention, generally designated 10, includes a fluke 20 and a shank 50. The fluke 20 in
The fluke 20 further includes a pair of downwardly extending flanges 34 extending from the underside of the bridging surface 30, one on each side of the slots 32. The flanges 34 include a pair of aligned holes 36 for an aft-positioned pivot mount 40, a pair of holes 37 for a forward-positioned locking pin 42, and optionally a plurality of intervening cutouts 38. The later mentioned cutouts 38 help to reduce weight and allow easy cleaning of the underside of the anchor 10. The pivot mount 40 runs laterally between the flanges 34 and is oriented generally perpendicular to the longitudinal axis 26. The pivot mount 40 may take any suitable form that forms functional pivot axis 40a for the shank 50 as discussed below. For example, the pivot mount 40 may be a hard stainless steel pin (e.g., a portion of a shackle, hasp, bolt, or the like) either pressed into holes 36 on the flanges 34 or attached by threads, nuts, spring clips, etc. Alternatively, the pivot mount 40 may be a pair of stub pins, one extending from each flange 34, etc. Likewise, the locking pin 42 runs laterally between the flanges 34, generally parallel to but spaced from the pivot mount 40. The locking pin 42 is advantageously an incompressible single or multiple part body, able to withstand substantial loads without significant deformation or deflection. For example, the locking pin 42 may be a hard stainless steel pin either pressed into holes 37 on the flanges 34 or attached by threads, nuts, etc. Alternatively, the locking pin 42 may include a bolt or other fastener supporting a collar 42r between the flanges 34. This collar 42r may advantageously take the form of a hard roller. The locking pin 42 advantageously includes a curved outer surface, at least on the portion facing the pivot mount 40.
The main body of the fluke 20 is preferably made from a single piece of metallic material, such as sheet steel, galvanized steel, stainless steel, aluminum, or other material suitable for aquatic environments. Alternatively, the main body of the fluke 20 may be formed from distinct pieces that are fastened or otherwise secured together, such as by welding.
The shank 50 shown in
The shank 50 of the anchor 10 shown in
It should be noted that while it is believed advantageous, the elastic member 80 need not completely surround the pivot mount 40. For example, the elastic member 80 may be disposed just on one side of the pivot mount 40. Alternatively, the elastic member 80 may be formed by a plurality of coil springs connecting the shank 50 to the pivot mount 40. Other connecting structures that connect the shank 50 to the pivot mount 40 while allowing for rotational and longitudinal displacement of the shank 50 relative to the pivot mount 40 may also be employed.
The anchor 10 of the present invention may be used as a conventional anchor when in the locked configuration shown in
However, if the anchor 10 becomes lodged under some obstruction, with the fluke 20 under the obstruction and the shank 50 above the obstruction, then the anchor 10 of the present invention becomes particularly advantageous. Under such circumstances, a pull on the anchor line from above/behind the anchor 10 will result in a torque being applied to the shank 50 that can be modeled as a moment arm on the shank 50 about the pivot mount 40 caused by a circumferential force being applied to the head section 70 of the shank 50. This force will tend to cause the shank 50 to rotate about the pivot axis 40a running through the pivot mount 40. However, this rotation is resisted by the interaction of the locking surface 62 and the locking pin 42. When enough force is applied, the interaction of the curved locking surface 62 with the locking pin 42 will cause the shank 50 to be displaced rearward with respect to the fluke 20 approximately along line Y. In order to move rearward, the elastic member 80 is deformed. When the shank 50 has moved rearward far enough, the front leg 60 will be able to clear the locking pin 42, and the shank 50 will “pop” free, allowing the shank 50 to rotate (counter-clockwise in
As can be appreciated, the rotational movement of the shank 50 relative to the fluke 20 from the locked configuration (
The force component required to move the shank 50 from the locked configuration to the released configuration, or vice versa, will depend on the size of the anchor 10, the length of the shank 50, the resistance of the elastic member 80, and the amount of longitudinal displacement Z required to have the locking surface 62 clear the locking pin 42. The required force component should be large enough to prevent unintended opening of the anchor 10, such as being fifty pounds or more.
To assemble a preferred embodiment of the anchor 10, the elastic member 80 is added to the shank 50 and the pivot mount 40 is inserted through the elastic member 80 and mated to the flanges 34 on the fluke 20 in some suitable fashion. The locking pin 42 is also mated to the flanges 34 in some suitable fashion, and the shank 50 is then rotated forward until the locking surface 62 engages the locking pin 42. Of course, the sequence of assembly described above is but one of a variety of methods of making an anchor 10 according to the present invention. The sequence and inclusion of certain steps is for illustrative purposes only and is specifically not intended to be limiting as to the method of manufacture or the ultimate structure achieved.
To use the anchor 10, a suitable anchor line or chain may be attached to the anchor 10 via the slot 72 on the end of the shank 50. Thereafter, the anchor 10 is dropped, tossed, hurled, or otherwise released into the water. Once in the water, the anchor 10 will begin to sink through the water until it reaches the bottom. The anchor 10 is then set in a conventional fashion. To remove the anchor 10, the user pulls the anchor 10 line as described above. Thereafter, the anchor 10 may simply be hauled aboard the watercraft in the customary fashion. Also, it should be noted that the anchor 10 may be placed in the released configuration for storage if desired.
The shank 50 may further optionally include a mounting hole 53 in the base section 52 disposed above the legs 54,60 for mounting a float 90 if desired. The optional float 90 may take a wide variety of shapes, but the float 90 is preferably generally cylindrical in shape with closed hemispherical ends, such as that disclosed in U.S. Pat. No. 6,041,731 and/or U.S. Pat. No. 6,390,010, the disclosures of both of which are incorporated herein by reference. The float version of the anchor 10 is believed to quickly assume a generally upright orientation, i.e., shank 50 up and fluke 20 down, upon entry into the water. This action is believed to be due to the location of the float 90 relative to the center of gravity of the anchor 10 and the tip 22 of the fluke 20. This upright orientation is believed to aid in quickly setting the anchor 10 by allowing the tip 22 of the fluke 20 to be oriented to penetrate the bottom without dragging the anchor 10 along the bottom. The optional float 90 may be added to the shank 50 before or after the shank 50 is coupled to the fluke 20.
It may be desirable in some situations to disable the shank 50 release feature. Thus, some embodiments of the anchor 10 have a front leg 60 that extends substantially below the flanges 34 so as to expose a through hole 78 therein disposed below the locking surface 62. A locking retainer (not shown), such as a spring latch, shackle pin, or the like, may be inserted through the hole 78 in the front leg 60 and thereby prevent the front leg 60 from moving upward beyond the flanges 34. This locking retainer may be removed when it is desired to re-enable the shank release feature.
The anchor 10 of
The present invention may, of course, be carried out in other specific ways than those herein set forth without departing from the essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
2161906 | Filby | Jun 1939 | A |
2948249 | Gesner et al. | Aug 1960 | A |
3180304 | Brady | Apr 1965 | A |
3463112 | Jacevicius et al. | Aug 1969 | A |
4111147 | Morissette | Sep 1978 | A |
4532880 | Dyer et al. | Aug 1985 | A |
4655158 | Holder | Apr 1987 | A |
5054416 | Zetah | Oct 1991 | A |
6119618 | Giles | Sep 2000 | A |
6155194 | Hoareau | Dec 2000 | A |