This application is based on the applications No. 2010-143614 and No. 2011-117966 filed in Japan, the contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to an anchor to be attached to various types of skeletons such as concrete buildings and structures, and more specifically, relates to an anchor that is suited for attachment to ceiling structures.
2. Background Art
In order to attach hanging objects such as air conditioners, lighting fixtures, and various types of pipes to an existing ceiling structure of a building such as that made of concrete, anchors intended to support the hanging objects are fixed to the ceiling structure. Conventionally known anchors used for this purpose are disclosed for example in Japanese Patent Application Laid-Open No. 10-231583 (1998) (patent literature 1), and in Japanese Patent Application Laid-Open No. 10-110475 (1998) (patent literature 2).
Referring for example to the anchor disclosed in patent literature 1, it includes a spreading sleeve, and a cone nut in the form of a truncated cone. The spreading sleeve is swaged to be integrated with a tip portion of a steel bar, and in which multiple slits extending in the axial direction from the tip of the spreading sleeve are defined. The edge of a smaller diameter of the cone nut is press-fitted into a tip portion of the spreading sleeve. Regarding placement of this anchor, the anchor is inserted into a concrete hole with the cone nut placed nearest the hole. Then, with the tip of the cone nut in contact with a bottom portion of the hole, the steel bar is struck for example with a hammer to drive the anchor into the hole. The strike with a hammer presses the cone nut into the spreading sleeve, so that the tip portion of the spreading sleeve spreads outwardly in the radius direction while cutting into a concrete wall and the like along the tapered surface of the cone nut. As a result, the anchor is fixed to a skeleton.
Referring to the anchor disclosed in patent literature 2, it includes an anchor socket fixedly pressed-fitted into a concrete hole, and an anchor bolt threaded into the anchor socket through an opening at one end portion of the anchor socket. A slit is defined in an opposite end portion of the anchor socket. A head is integrally provided at a tip portion of the shank of a shaft part of the anchor bolt. The head is press-fitted into the inner circumference of the opposite end portion of the anchor socket to causes the opposite end portion to spread. Regarding placement of this anchor, the anchor socket is inserted in advance into a concrete hole with the opposite end portion placed nearest the hole. Then, the anchor bolt is threadedly inserted into the anchor socket through the opening at the one end portion of the anchor socket. In response to the threaded insertion of the anchor bolt, the head at the tip portion of the anchor bolt causes the opposite end portion of the anchor socket to spread, thereby fixing the anchor.
The anchor disclosed in patent literature 1 is not suited for fixation to a ceiling structure. The reason therefor is that, in the anchor of patent literature 1, the steel bar suspended from the ceiling structure, and the cone nut press-fitted into the tip portion of the spreading sleeve are structurally separated. So, if the ceiling structure is shaken strongly for example by an earthquake, the cone nut falls off the inside of the spreading sleeve, resulting in a fear of drop of the spreading sleeve integrated with the tip portion of the steel bar from the ceiling structure.
Meanwhile, the anchor of patent literature 2 includes the head provided integrally with the anchor bolt, and which causes the anchor socket to spread. Thus, there is no fear of drop of the anchor bolt, so that the anchor of patent literature 2 does not suffer from the problem generated in patent literature 1.
Placement of the anchor of patent literature 2 on a ceiling structure requires insertion of the anchor bolt into the anchor socket through the opening at the one end portion of the anchor socket, and rotation of the inserted anchor bolt. This process generates a problem as one cannot check to see visually if the head has caused the anchor socket to spread to its normal placement condition. In particular, for placement of this anchor on a ceiling structure, a worker may define a hole in the ceiling structure with an extension jig from a lower floor. In this case, the worker may insert the anchor into the hole with a different extension jig, and then rotate the inserted anchor. This placement process makes a distance between the eyes of the worker and the anchor greater, so visual check is made more difficult. So, according to a generally and conventionally employed way, determination as to whether the anchor of patent literature 2 is firmly fixed should be made based on whether the rotation torque of the anchor bolt has reached a fixed value. The rotation torque of the anchor bolt having reached the fixed value during the process means completion of the placement.
The worker relies heavily on his experience for management of the rotation torque. This easily causes unevenness of the placing quality of anchors, while making it difficult to find faulty placement even if it is generated.
The conventionally employed way may necessitate substantial labor as a field supervisor may check the placement condition of each anchor after multiple anchors are placed on a ceiling structure. To be specific, the field supervisor should check the placed anchors one by one with a torque wrench and the like to see if the rotation torques thereof are at the fixed value or more, resulting in an excessive processing burden. The field supervisory may have to climb up to the height of the ceiling structure to check the placement conditions of the anchors one by one. Meanwhile, in many cases, the height of the ceiling structure is five meters or more in the case of large-scale buildings such as school facilities, hospitals, and commercial buildings. So, this checking process is attended with danger.
The present invention has been made to solve the aforementioned problems. It is an object of the present invention to provide an anchor that makes check of the placement condition of the anchor easy to realize efficient and safe check after the placement of the anchor.
In order to solve the aforementioned problems, according to one structure of the anchor of the present invention, the anchor includes: an anchor bolt including a shaft part with a male screw thread; a cone part placed at a tip portion of the shaft part, the cone part having an outer diameter that gradually reduces in a direction toward a base portion of the shaft part; a spreading including spreading parts formed at a tip portion of a tubular body, the spreading parts being formed by a longitudinally cut in such a manner that the spreading parts spread outwardly, the spreading sleeve being attached to the shaft part while an edge of a smaller diameter of the cone part engages in tip portions of the spreading parts; a rotation control section provided at a base portion of the shaft part, the rotation control section having a diameter larger than the outer diameter of the shaft part; and an expansion member including wing-like expansion parts caused to expand by pressing force exerted in the axial direction of the shaft part, the expansion member permitting the shaft part to pass therethrough while being placed between the spreading sleeve attached to the shaft part and the rotation control section placed at the base portion of the shaft part. The rotation of the rotation control section causes the cone part to move toward the base portion of the shaft part, thereby causing the spreading parts of the spreading sleeve to spread outwardly. The rotation of the rotation control section also causes the rotation control section to move toward the tip portion of the shaft part to press the expansion member, thereby causing the expansion parts to expand.
In this structure, the rotation of the rotation control section causes the cone part placed at the tip portion of the shaft part of the anchor bolt to move toward the base portion of the shaft part, thereby causing the spreading parts of the spreading sleeve to spread outwardly. This prevents the cone part from falling off the inside of the spreading sleeve, so that the anchor bolt does not drop from a ceiling structure. Further, the rotation control section provided at the base portion of the shaft part of the anchor bolt moves toward the tip portion of the shaft part in response to the rotation of the rotation control section, thereby pressing the expansion member to cause the expansion parts to expand. So, it can be determined by seeing the expansion conditions of the wing-like expansion parts if the spreading parts of the spreading sleeve spread outwardly to make the anchor fixed.
According to another structure of the anchor of the present invention, the anchor includes: an anchor bolt including a shaft part with a male screw thread, and a rotation control section provided at a base portion of the shaft part, the rotation control section having a diameter larger than the outer diameter of the shaft part; a spreading sleeve including spreading parts formed at a tip portion of a tubular body that permits the shaft part to pass therethrough, the spreading parts being formed by a longitudinally cut slot in such a manner that the spreading parts spread outwardly; a cone nut the outer diameter of which gradually reduces in the axial direction of the shaft part, the cone nut including a screw through hole defined therein to threadedly engage the male screw thread of the shaft part, the cone nut being attached to the shaft part with an edge of a smaller diameter of the cone nut engaging in a tip portion of the spreading sleeve; and an expansion member including wing-like expansion parts caused to expand by pressing force exerted in the axial direction of the shaft part, the expansion member permitting the shaft part to pass therethrough while being placed between the rotation control section of the anchor bolt and the spreading sleeve. The anchor bolt causes the shaft part to rotate in response to the rotation of the rotation control part to drive the cone nut into the spreading sleeve, thereby causing the spreading parts to spread outwardly. The rotation control part presses the expansion member in response to threaded insertion of the shaft part to cause the wing-like expansion parts to expand.
In this structure, the anchor bolt causes the shaft part to rotate in response to the rotation of the rotation control section to drive the cone nut into the spreading sleeve. This causes the spreading parts of the spreading sleeve to spread outwardly to make the anchor fixed. Further, the cone nut threadedly engages the shaft part in this structure. So, the cone nut does not fall off the inside of the spreading sleeve, thereby preventing the anchor bolt from dropping from a ceiling structure.
The anchor bolt of this structure realizes threaded insertion of the shaft part in response to the rotation of the rotation control section. Then, a base portion of the anchor bolt presses the expansion member to cause the wing-like expansion parts to expand. So, it can be determined by seeing the expansion conditions of the wing-like expansion parts if the spreading parts of the spreading sleeve spread outwardly to make the anchor fixed. The placement condition of the anchor can be checked visually after the placement of the anchor. In particular, the expansion conditions of the wing-like expansion parts can be checked visually even at a position far from the anchor.
Preferably, a closed-end screw hole to receive therein a bolt is defined at an end surface of the rotation control section of the anchor bolt, and a through hole communicatively coupled to a bottom portion and its vicinity of the screw hole is defined in a side surface of the rotation control section of the anchor bolt. Still preferably, the bottom portion of the screw hole is provided with a deformable material that is deformed in response to attachment of the bolt in the screw hole. The deformable material may be caused to deform in response to attachment of the bolt in the screw hole, thereby allowing one part of the deformable material to project outside from the through hole.
In this structure, when the bolt is attached in the screw hole defined in the base portion of the anchor bolt, it is determined if the deformable material goes outside from the through hole defined in the side surface of the base portion of the anchor bolt. Thus, the attachment condition of the bolt in the screw hole can be checked visually.
The above-described deformable material may be a flexible material made of oil-based clay colored in a certain color. The deformable material is not necessary to be the flexible material. The deformable material may include an attachment part attached to the bottom portion of the screw hole and a flexible part bended in advance into substantial V-shape. With this structure, one end portion of the flexible part may be fixed to the attachment part while another end portion is placed at a position, facing the through hole. In this case, preferably, the flexible part is caused to expand the bended portion in response to the attachment of the bolt, thereby allowing another end portion placed facing the through hole to project outside from the through hole.
According to a still another structure of the anchor of the present invention, the anchor includes: an anchor bolt including a shaft part with a male screw thread, and a cone part placed at a tip portion of the shaft part, the cone part having an outer diameter that gradually reduces in a direction toward a base portion of the shaft part; a spreading sleeve including spreading parts formed at a tip portion of a tubular body, the spreading parts being formed by a longitudinally cut slot in such a manner that the spreading parts spread outwardly, the spreading sleeve being attached to the shaft part while an edge of a smaller diameter of the cone part engages in tip portions of the spreading parts; a nut member threadedly engaging the male screw thread of the shaft part at the base portion of the shaft part; and an expansion member including wing-like expansion parts caused to expand by pressing force exerted in the axial direction of the shaft part, the expansion member permitting the shaft part to pass therethrough while being placed between the spreading sleeve attached to the shaft part and the nut member placed at the base portion of the shaft part. The rotation of the nut member causes the cone part to move toward the base portion of the shaft part, thereby causing the spreading parts of the spreading sleeve to spread outwardly. The rotation of the nut member also causes the nut member to move toward the tip portion of the shaft part to press the expansion member, thereby causing the expansion parts to expand.
In this structure, the rotation of the nut member drives the cone part of the anchor bolt into the spreading sleeve to cause the spreading parts to spread outwardly, thereby fixing the anchor. The cone part is also part of the anchor bolt in this structure. So, the cone part does not fall off the inside of the spreading sleeve, thereby preventing the anchor bolt from dropping from a ceiling structure.
In this structure, the nut member moves toward the tip portion of the shaft part in response to the rotation of the nut member, thereby pressing the expansion member to cause the expansion parts to expand. So, it can be determined by seeing the expansion conditions of the wing-like expansion parts if the spreading parts of the spreading sleeve spread outwardly to make the anchor fixed. The placement condition of the anchor can be checked visually after the placement of the anchor. In particular, the expansion conditions of the wing-like expansion parts can be checked visually even at a position far from the anchor.
Preferably, in this structure, the expansion member further includes an identifying member provided to each of the wing-like expansion parts to expand. The identifying member is provided to allow check of the expansion condition of each of the expansion parts. The identifying member may be provided for example by applying a coating colored in a certain color such as red and yellow to each of the wing-like expansion parts. Still preferably, the colored coating to be applied has fluorescent characteristics or phosphorescent characteristics. The identifying member may alternatively be provided for example by attaching a reflector for forming light reflection to each of the wing-like expansion parts.
This structure makes check of the expansion conditions of the wing-like expansion parts relatively easy when the placement condition of the anchor is checked after its placement.
As described above, the anchor of the present invention does not suffer from drop of the anchor bolt as the cone nut threadedly engages the shaft part of the anchor bolt. Further, during placement of the anchor, the base portion of the anchor bolt presses the expansion member in response to threaded insertion of the shaft part to cause the wing-like expansion parts to expand. So, the placement condition of the anchor can be checked by visually checking the expansion conditions of the expansion parts after the placement. Thus, the present invention makes it possible to check the placement condition of the anchor easily to realize efficient and safe check after the placement.
Preferred embodiments of the present invention are described in detail below with reference to figures. In the description given below, those elements which are shared in common among the preferred embodiments are represented by the same reference numerals, and these elements are not discussed repeatedly for the same description.
The anchor 1 of the first preferred embodiment includes an anchor bolt 2, a V-shaped expansion member 3, a spreading sleeve 4, and a cone nut 5. The anchor 1 is to be attached to various types of skeletons such as concrete buildings and structures, and is suited for attachment especially to ceiling structures.
The anchor bolt 2 includes a shaft part 23 of a predetermined length that has a tip portion with a male screw thread. The anchor bolt 2 also includes a rotation control section 7 at its base portion for causing the shaft part 23 to rotate. The rotation control section 7 is constructed of a prismatic nut part 21 of a predetermined length, and a cylindrical pressing part 22. The shaft part 23, the nut part 21, and the pressing part 22 of the anchor bolt 2 are formed integrally, and which have the same axial center. The shaft part 23 is connected at its base portion to the pressing part 22. The pressing part 22 is connected at its base portion to the nut part 21. As an exemplary way to form the pressing part 22, edge corners of the nut part 21 may be rounded for example by cutting. The outer diameter of the rotation control section 7 of the anchor bolt 2 is set to be larger than that of the shaft part 23. This allows the rotation control section 7 to press the expansion member 3 as the shaft part 23 is threadedly driven into a hole H as described later.
As shown in
The expansion member 3 of the first preferred embodiment is formed by bending a plate body 31 that is a substantially strip-shaped flat metal plate, for example. The plate body 31 has an insertion hole 32 in the form of a long hole or an ellipse that is defined in advance, for example before the plate body 31 is bent. The plate body 31 in which the insertion hole 32 is defined is bent such that bending at a predetermined angle is formed at a position spaced substantially the same distance from the opposite edges of the plate body 31, thereby forming the expansion member 3 into a V-shape in side view. So, the expansion member 3 is constructed of a bent part 33 at its center, and wing-like expansion parts 34 defined at the opposite edges of the bent part 33.
The insertion hole 32 permits the shaft part 23 of the anchor bolt 2 to pass therethrough for example when the expansion member 3 is in the form of an inverted V-shape with the bent part 33 placed at the top and with the tip ends of the expansion parts 34 pointing downward as shown in
The identifying member 36 is a colored coating colored in red or yellow, for example. If used as the identifying member 36, the colored coating preferably has additional characteristics such as fluorescent characteristics and phosphorescent characteristics. Or, the identifying member 36 may be made of a material different from a colored coating. By way of example, a reflector for forming light reflection may be attached as the identifying member 36 to the lower surface of each of the expansion parts 34.
The spreading sleeve 4 is a tubular body 41 to receive the shaft part 23 of the anchor bolt 2 therein. The shape of the spreading sleeve 4 is such that multiple longitudinally cut slots 42 are provided at a tip portion of the tubular body 41, and that sections defined by the multiple longitudinally cut slots 42 form spreading parts 43 that spread outwardly. The spreading parts 43 of the first preferred embodiment have a smooth side surface, to which the present invention is not intended to be limited. The outer side surface of the spreading parts 43 may be given one or multiple ribs extending in the circumferential direction. The number of the spreading parts 43 provided at the tip portion of the spreading sleeve 4 is generally three or four. Or, five or more spreading parts may be provided. The spreading sleeve 4 of the aforementioned structure is attached to the shaft part 23 such that the tip portion of the spreading sleeve 4 at which the spreading parts 43 are formed is directed toward a tip portion of the shaft part 23 of the anchor bolt 2.
The cone nut 5 forms a cone part 6 to be placed at the tip portion of the shaft part 23. The outer shape of the cone nut 5 is a truncated cone the outer diameter of which gradually reduces in the axial direction, and the circumferential side surface of the cone nut 5 forms a smoothly tapered surface 51. A screw through hole 52 to threadedly engage the male screw thread formed at the shaft part 23 is defined in the inner central part of the cone nut 5. The cone nut 5 is attached to a tip end 23a of the shaft part 23 with the edge of a smaller diameter of the cone nut 5 engaging in the tip portion of the spreading sleeve 4. The larger diameter of the cone nut 5 is the same as, or slightly smaller than the outer diameter of the spreading sleeve 4.
In the first preferred embodiment, the expansion member 3 in the form of an inverted V-shape, the spreading sleeve 4, and the cone nut 5 are attached in this order to the shaft part 23 of the anchor bolt 2 from the tip portion of the shaft part 23, thereby forming the anchor 1 as shown in
Placement of the anchor 1 of the first preferred embodiment is described next.
Insertion of the tip portion of the anchor 1 into the hole H makes the circumferential side surface of the spreading sleeve 4 contact with the inner wall of the hole H to generate friction therebetween. So, the lower surface of the rotation control section 7 of the anchor bolt 2 is struck with a hammer and the like to drive the anchor 1 into the hole H. Then, the tip portion of the anchor 1 is inserted into the hole H such that the substantially entire part of the spreading sleeve 4 is placed inside the hole H as shown in
After the tip portion of the anchor 1 is inserted into the hole H as shown in
The rotation of the base portion of the anchor bolt 2 causes the shaft part 23 to be threadedly driven deeper into the hole H. At this time, the pressing part 22 as part of the rotation control section 7 presses the expansion parts 34 of the expansion member 3 from below, thereby causing the wing-like expansion parts 34 to expand in a direction indicated by an arrow F in
In the example shown in
In the aforementioned placement of the anchor 1, the shaft part 23 is not threadedly driven deeper into the bottom portion of the hole H at an initial stage of the rotation control of the rotation control section 7 of the anchor bolt 2. The rotation of the shaft part 23 at this stage drives the cone nut 5 into the spreading sleeve 4, by which the cone nut 5 causes the spreading parts 43 of the spreading sleeve 4 to spread. The cone nut 5 is not caused to move thereafter by the rotation of the shaft part 23. So, the rotation of the shaft part 23 at a subsequent stage causes the shaft part 23 to be threadedly driven deeper into the bottom portion of the hole H. This means that, in the placement of the anchor 1 of the first preferred embodiment, the anchor 1 has already been fixed at a time when the expansion parts 34 of the expansion member 3 start to expand in a direction in which the expansion parts 34 get farther from each other. The base portion of the anchor bolt 2 rotates further to cause the wing-like expansion parts 34 to expand to such a degree that an angle defined therebetween becomes a predetermined angle or more. The expansion parts 34 in these expanded states indicate that the anchor 1 has been placed favorably.
Axial force exerted for expansion of the wing-like expansion parts 34 can be controlled by changing the thickness of the expansion member 3 of the anchor 1. As a specific example, in order for the expansion parts 34 to expand, strong axial force should be exerted for threaded insertion of the shaft part 23 if the expansion member 3 has a great thickness. In contrast, axial force required for expansion of the expansion parts 34 is smaller if the expansion member 3 has a small thickness. This means that different thicknesses of the expansion member 3 result in different rotation torques and axial forces exerted for expansion of the expansion parts 34. So, on condition that the expansion member 3 has a thickness suitably defined according to the diameter of the shaft part 23, for example, the expansion parts 34 in their expanded states indicate that the rotation torque and the axial force of the anchor bolt 2 are the same as or greater than their predetermined values. In other words, if the thickness of the expansion member 3 is suitably defined in advance, the tightening force of the anchor bolt 2 can be checked by seeing the degree of opening of the expansion parts 34. The thickness of the expansion member 3 is preferably within a range of from 0.1 to 0.5 times the diameter of the shaft part 23, for example.
As a result, after the anchor 1 of the first preferred embodiment is placed on the ceiling structure, a worker or a field supervisor checks the placement condition of the anchor 1 with significantly reduced labor. To be specific, the worker or the field supervisor is not required to be immediately near the anchor 1 to check to see if the expansion member 3 of the anchor 1 placed on the ceiling structure is in the expanded state. The worker or the field supervisory can visually see the expansion condition from a position far from the anchor 1 such as a floor. This makes check of the placement condition of the anchor 1 easy, thereby enhancing working efficiency. Also, this check does not require climbing up to the height of the ceiling structure, thereby providing safety in the check.
In the first preferred embodiment, the identifying member 36 is provided to each of the expansion parts 34 of the expansion member 3. This specific structure realizes visual recognition of the identifying member 36 from a floor even if the ceiling structure is at a relatively great height, so that it is easily determined if the expansion member 3 is in the expanded state. Thus, the check is conducted more efficiently and safely. Use of a colored coating with fluorescent characteristics or phosphorescent characteristics, or a reflector for forming light reflection as the identifying member 36 is especially advantageous in that it makes it possible to easily determine if the expansion member 3 is in the expanded state.
The pressing part 22 of the first preferred embodiment provided at a tip portion of the nut part 21 is in the form of a cylinder. This prevents the corners of the nut part 21 from contacting the expansion member 3 when the base portion of the anchor bolt 2 is caused to rotate. Thus, the nut part 21 is allowed to rotate smoothly when the base portion of the anchor bolt 2 is caused to rotate.
It is described next how a connecting bolt 60 that may be a hanger bolt or a bracing bolt is attached to the anchor 1 thereby fixed to the skeleton S.
As described above, in the first preferred embodiment, the bottom portion of the screw hole 24 is filled with the flexible material 9 that is deformed in response to the attachment of the connecting bolt 60. So, a tip portion of the connecting bolt 60 presses the flexible material 9 as the connecting bolt 60 is threadedly driven into the screw hole 24. The flexible material 9 is deformed in response to pressing force applied from the connecting bolt 60, and which then enters into the through hole 25 at the side surface of the nut part 21. As the connecting bolt 60 is driven deeper into the screw hole 24, the flexible material 9 is caused to pass through the through hole 25 to go outside through the side surface of the nut part 21 as shown in
So, when the anchor 1 of the first preferred embodiment is placed on the ceiling structure, and the connecting bolt 60 is attached to the anchor 1 in this state, the placement condition of the anchor 1 and the attachment condition of the connecting bolt 60 can be checked at the same time. To be specific, a worker or a field supervisor visually checks to see from a floor if the expansion member 3 of the anchor 1 placed on the ceiling structure is in the expanded state. At the same time, the worker or the field supervisor checks to see from the floor if the flexible material 9 goes outside through the side surface of the nut part 21. Thus, the placement condition of the anchor 1 and the attachment condition of the connecting bolt 60 can be checked at the same time, resulting in further enhanced working efficiency. A worker responsible for attachment of the connecting bolt 60 is also allowed to know the completion of the placement.
As described above, oil-based clay colored for example in red is used as the flexible material 9. This specific feature makes it possible to easily determine if the flexible material 9 goes outside through the side surface of the nut part 21. To be specific, if made of an argillaceous material, the flexible material 9 appearing on the side surface of the nut part 21 keeps sticking to the side surface of the nut part 21 without dropping to a floor, so that the attachment condition of the connecting bolt 60 can easily be checked individually. Also, if made of oil-based clay, the flexible material 9 functions as a rust inhibitor as described above, thereby suppressing deterioration of the connecting bolt 60.
As described above, the structure of the anchor 1 of the first preferred embodiment is such that the rotation of the rotation control section 7 provided at the base portion of the anchor bolt 2 causes the cone nut 5 placed at the tip portion of the anchor bolt 2 to move toward the base portion of the shaft part 23, thereby causing the spreading parts 43 of the spreading sleeve 4 to spread outwardly. In this structure, the cone nut 5 threadedly engages the shaft part 23, thereby preventing the cone nut 5 from falling off the inside of the spreading sleeve 4 despite the generation of vibration, for example. So, the anchor 1 can be fixed firmly to the ceiling structure.
The structure of the anchor 1 is also such that the rotation control section 7 moves toward the tip portion of the shaft part 23 in response to the rotation of the rotation control section 7, thereby pressing the expansion member 3 to cause the expansion parts 34 to expand. The structure of the anchor 1 of the first preferred embodiment is specifically such that the rotation of the rotation control section 7 of the anchor bolt 2 causes the shaft part 23 to rotate to drive the cone nut 5 into the spreading sleeve 4, thereby causing the spreading parts 43 to spread outwardly. At the same time, the rotation control section 7 of the anchor bolt 2 presses the expansion member 3 in response to threaded insertion of the shaft part 23, thereby causing the wing-like expansion parts 34 to expand. So, the wing-like expansion parts 34 are in their expanded states if the anchor 1 is favorably fixed to the skeleton S such as a ceiling structure. As a result, the placement condition of the anchor 1 can be checked easily, thereby realizing efficient and safe check after the placement.
The closed-end screw hole 24 to receive therein the connecting bolt 60 is defined at the end surface of the nut part 21 provided at the base portion of the anchor bolt 2. Further, the through hole 25 communicatively coupled to the bottom portion and its vicinity of the screw hole 24 is defined in the side surface of the nut part 21 of the anchor bolt 2. Further, the bottom portion of the screw hole 24 is filled with the flexible material 9 that is deformed in response to the attachment of the connecting bolt 60. So, the flexible material 9 appears on the side surface of the nut part 21 of the anchor bolt 2 if the connecting bolt 60 is favorably attached to the anchor 1 fixed to the skeleton S such as a ceiling structure. Thus, the attachment condition of the connecting bolt 60 attached to the anchor 1 can also be checked easily. This also realizes efficient and safe check after the placement.
A second preferred embodiment of the present invention is described next.
The anchor bolt 2 of the second preferred embodiment includes a shaft part 23 with a male screw thread, and a cone part 6 integrally placed to a tip portion of the shaft part 23. The outer shape of the cone part 6 is a truncated cone the outer diameter of which gradually reduces in a direction toward a base portion of the shaft part 23, and the circumferential side surface of the cone part 6 forms a smoothly tapered surface 51. The cone part 6 is coupled at its edge of a smaller diameter to the shaft part 23, so the anchor bolt 2 is constructed of the shaft part 23 and the cone part 6. While the male screw thread is shown to be defined at a lower portion of the shaft part 23 in
The rotation control section 7 of the second preferred embodiment is constructed of the nut member 27 with a screw hole 26 to threadedly engage the shaft part 23 of the anchor bolt 2. The nut member 27 is attached to the shaft part 23 at a base portion (lower portion) of the anchor bolt 2.
In the second preferred embodiment, the spreading sleeve 4, the expansion member 3 in the form of an inverted V-shape, and the nut member 27 are attached in this order to the shaft part 23 of the anchor bolt 2 from the base portion of the shaft part 23, thereby forming the anchor 1a as shown in
Placement of the anchor 1a of the second preferred embodiment is described next.
After the tip portion of the anchor 1a is inserted into the hole H as shown in
The nut member 27 is threadedly driven along the shaft part 23. So, an upper portion of the nut member 27 presses the expansion parts 34 of the expansion member 3 from below, thereby causing the wing-like expansion parts 34 to expand in a direction in which the expansion parts 34 get farther from each other. The wing-like expansion parts 34 thereafter expand to such a degree that an angle defined therebetween becomes a predetermined angle or more, so the identifying member 36 provided at the lower surface of each of the expansion parts 34 can be recognized visually from below as shown in
As described above, the structure of the anchor 1a of the second preferred embodiment is also such that the rotation of the rotation control section 7 (nut member 27) provided at the base portion of the anchor bolt 2 causes the cone part 6 placed at the tip portion of the anchor bolt 2 to move toward the base portion of the shaft part 23, thereby causing the spreading parts 43 of the spreading sleeve 4 to spread outwardly. This structure prevents the cone part 6 from falling off the inside of the spreading sleeve 4 despite the generation of vibration, for example. So, the anchor 1a can be fixed firmly to the ceiling structure.
The structure of the anchor 1a is also such that the rotation control section 7 (nut member 27) moves toward the tip portion of the shaft part 23 in response to the rotation of the rotation control section 7, thereby pressing the expansion member 3 to cause the expansion parts 34 to expand. The structure of the anchor 1a of the second preferred embodiment is specifically such that the rotation of the nut member 27 causes the cone part 6 to move toward the base portion of the shaft part 23, thereby causing the spreading parts 43 of the spreading sleeve 4 to spread outwardly. At the same time, the nut member 27 moves toward the tip portion of the shaft part 23 to press the expansion member 3, thereby causing the expansion parts 34 to expand. So, like in the first preferred embodiment, the wing-like expansion parts 34 are in their expanded states in the second preferred embodiment if the anchor 1a is favorably fixed to the skeleton S such as a ceiling structure. As a result, the placement condition of the anchor 1a can be checked easily, thereby realizing efficient and safe check after the placement.
A third preferred embodiment of the present invention is described next. The main structure of the anchor of the third preferred embodiment is substantially the same as that of the anchor 1 of the first preferred embodiment. The difference of the anchor 1 of the third preferred embodiment from one of the first preferred embodiment is a deformable material 9 provided at the bottom portion of the screw hole 24 defined in the anchor bolt 2.
The part 92 includes a disk-shaped attachment part 93 and a flexible part 94 supported by the attachment part 93 with being connected at a lower portion of an edge of the attachment part 93. The attachment part 93 formed to be the same as, or slightly smaller than the inner diameter of the screw hole 24 is inserted into the screw hole 24 with which placed nearest the hole, thereby being attached to the bottom portion of the screw hole 24. One end portion of the flexible part 94 is fixed to the attachment part 93, and has its shape bended at the central part into the substantial V-shape. A tip portion 94a of another end portion side of the flexible part 94 is formed in advance to project outwardly with respect to the edge of the attachment part 93.
In response to insertion for attachment into the screw hole 24 with the part 92 placed nearest the hole as shown in
In response to the fixation of the anchor 1 on the skeleton S, the connecting bolt 60 is inserted for attachment into the screw hole 24 defined at the end surface (lower surface) of the base portion of the anchor bolt 2 as illustrated in
As the connecting bolt 60 is driven deeper into the screw hole 24, the tip portion 94a of the flexible part 94 is caused to pass through the through hole 25 to go outside through the side surface of the nut part 21 as shown in
Therefore, the anchor 1 of the third preferred embodiment is placed on the ceiling structure, and the connecting bolt 60 is attached to the anchor 1 in this state, the placement condition of the anchor 1 and the attachment condition of the connecting bolt 60 can be checked at the same time, which is the same as the first preferred embodiment.
As described above, in the third preferred embodiment, the flexible part 94 of the part 92 projects outside through the side surface of the nut part 21 in response to the attachment of the connecting bolt 60 to the screw hole 24 of the anchor bolt 2. As being connected with the attachment part 93 attached to the bottom portion of the screw hole 24, the flexible part 94 of this kind does not involve the problem of falling off the side surface of the nut part 21 after the completion of the placement of the connecting bolt 60.
If the deformable material 9 is formed from the flexible material 91 such as that made of oil-based clay like in the above-described first preferred embodiment, the flexible material 91 is caused to go outside through the side surface of the nut part 21 in response to the completion of the placement of the connecting bolt 60. In such a case, some parts went outside may be picked away by the worker due to his or her carelessness. If such situation occurs, the specific feature of the first preferred embodiment does not make it possible to check the condition if the connecting bolt 60 is placed favorably.
In contrast, the flexible part 94 of the third preferred embodiment projects through the side surface of the nut part 21 does not fall off the side surface of the nut part 21 as described above. So, the specific feature of the third preferred embodiment makes it possible to check the condition if the connecting bolt 60 is placed favorably, and that is always accurate. Preferably, the part 92 as described above is colored in a certain color such as red, for example. The part 92 of this kind is not necessary to be made of resin.
The aforementioned anchors 1 and 1a are of the preferred embodiments of the anchor of the present invention. Modifications and variations of the specific structures of the anchors 1 and 1a described below can be devised where appropriate as long as they do not depart from the scope of the invention.
The aforementioned anchors 1 and 1a are suited for attachment especially to ceiling structures. However, the anchors 1 and 1a are not necessarily intended to be fixed to ceiling structures.
In the above-described preferred embodiments, the expansion member 3 permits the shaft part 23 to pass therethrough with the tip ends of the expansion parts 34 pointing downward. Alternatively, the expansion member 3 may permit the shaft part 23 to pass therethrough with the tip ends of the expansion parts 34 pointing upward, if this still causes the rotation control section 7 to press the expansion member 3 favorably to allow suitable expansion of the expansion parts 34. As an example, the tip ends of the expansion parts 34 will contact a ceiling structure around the hole H if they point upward. So, the skeleton S preferably has a smooth surface of certain strength. Meanwhile, if the tip ends of the expansion parts 34 point upward while the skeleton S has a rough or fragile surface, the expansion parts 34 may not expand normally, or the surface of the skeleton S around the hole H may be damaged. So, in order for the expansion parts 34 to expand suitably irrespective of the condition of the surface of the skeleton S, like in the above-described preferred embodiments, it is more preferable that the expansion member 3 permits the shaft part 23 to pass therethrough with the tip ends of the expansion parts 34 of the expansion member 3 pointing downward (namely, with the expansion member 3 in an inverted V-shape).
In the above-described preferred embodiments, the expansion member 3 is formed by bending the plate body 31 that is a substantially strip-shaped flat metal plate, to which the present invention is not intended to be limited. As shown in
The expansion member 3 shown in
While the expansion member 3 of the present invention is described as being formed by bending, this is not the only way of forming the expansion member 3. What is required for the expansion member 3 is to permit the shaft part 23 to pass therethrough while being placed between the base portion of the anchor bolt 2 and the spreading sleeve 4. What is also required for the expansion member 3 is to have the wing-like expansion parts 34 or 73 that are caused to expand by pressing force exerted in the axial direction of the shaft part 23.
While the identifying member 36 is described as being provided at part of the lower surface of each of the expansion parts 34 or 73, the identifying member 36 may also be provided throughout the lower surface of each of the expansion parts 34 or 73.
The rotation control section 7 of the first preferred embodiment provided at the base portion of the anchor bolt 2 includes the nut part 21 and the cylindrical pressing part 22. Meanwhile, provision of the cylindrical pressing part 22 at the base portion of the anchor bolt 2 is not an absolute necessity. So, only the nut part 21 may be provided at the base portion of the anchor bolt 2. In this case, the tip portion of the nut part 21 functions as a pressing part. Or, a washer functioning as a pressing part may be provided between the base portion of the anchor bolt 2 and the expansion member 3.
In the above-described first and third preferred embodiments, the nut part 21 is integrally provided at the shaft part 23 of the anchor bolt 2, though, the present invention is not intended to be limited to this.
The male screw thread part 23c formed at the lower portion of the shaft part 23 is attached to the screw hole 24 of the nut part 21 as shown in
As the shaft part 23 and the nut part 21 are fixed to each other as described above, a tip portion 23d of the male screw thread part 23c at the shaft part 23 is placed at a position determined in advance of the screw hole 24 defined in the nut part 21, thereby functioning as the bottom portion of the screw hole 24. The above-described connecting bolt 60 is attached to the anchor bolt 2 having the shaft part 23 and the nut part 21 formed integrally with the tip portion 23d of the male screw thread part 23c as its bottom portion. As already described in the first and the third preferred embodiments, in response to the insertion of the connecting bolt 60 into the screw hole 24, the deformable material 9 is deformed between the tip portion of the connecting bolt 60 and the bottom portion of the screw hole 24, thereby causing one part of the deformable material 9 to project outside of the nut part 21 from the through hole 25.
Number | Date | Country | Kind |
---|---|---|---|
2010-143614 | Jun 2010 | JP | national |
2011-117966 | May 2011 | JP | national |