1. Field of the Invention
The present invention is directed to an anchor for use in a friable material, particularly to a self-drilling anchor for use in drywall.
2. Description of the Related Art
Because drywall is a friable material, mounting articles thereto can be difficult. In the past, self-drilling anchors have been used. However, self-drilling anchors have been known to achieve pullout strength of only about 50 to 70 pounds.
1 For heavier loads, toggle bolts have been used. Toggle bolts have been known to be expensive, unreliable, and difficult to install because they typically are not self-drilling.
What is needed is an anchor for a friable material that is easy to install and provides high pullout strength for heavy loads.
A self-drilling anchor is provided for use in a friable material, the anchor including a body having an axis, a flanged rear end, a drilling front end and a generally cylindrical portion therebetween having an outer surface with a thread disposed thereon, wherein the body forks, beginning at a predetermined distance from the flanged rear end, into a first leg and a second leg, the first leg extending forwardly into a drilling tip and having a generally rearward facing shoulder angled obtusely outwardly with respect to the axis, wherein the body has an axial bore for receiving an elongate fastener, the axial bore extending substantially through the flanged end and the generally cylindrical portion and leading to the generally rearward facing shoulder, wherein the anchor has a drilling mode wherein the second leg nests behind the generally rearward facing shoulder of the first leg, and an anchoring mode wherein the legs are pivoted apart from one another.
The self-drilling anchor may include other aspects, such as the first leg and the second leg being demarcated from one another by a pair of slits beginning at the fork and extending substantially through the outer surface and the thread of the generally cylindrical portion, wherein the slits are on generally opposite sides of the outer surface. The slits may have a zig-zag shape defining crocodile-like interfacing teeth on the legs.
In one embodiment, a self-drilling anchor includes a body having an axis, a flanged rear end, a drilling front end and a generally cylindrical portion therebetween having an outer surface with a thread disposed thereon, said drilling front end comprising a generally flat blade including a first portion having a first angled cutting edge and a first side cutting edge, and a second portion having a second angled cutting edge and a second side cutting edge, wherein said first and second angled cutting edges form a point, said portions being formed on a common line and offset relative to each other along a plane passing through a diameter of said cylindrical portion, wherein said body forks along a pair of zig-zag shaped slits beginning at a predetermined distance from said flanged rear end, into a first leg and a second leg, wherein said zig-zag shaped slits define crocodile-like interfacing teeth on said legs, said first leg extending forwardly into said generally flat blade and having a generally rearward facing shoulder angled obtusely outwardly with respect to said axis, wherein a forwardmost portion of each of said slits follows a perimeter of said generally rearward facing shoulder substantially to a forwardmost and outermost end of said generally rearward facing shoulder, a coaxial central bore in said body for receiving an elongate fastener, said central bore extending substantially through said flanged rear end and said generally cylindrical portion and leading to said generally rearward facing shoulder, wherein said anchor has a drilling mode wherein said second leg nests behind said generally rearward facing shoulder of said first leg, and an anchoring mode wherein said legs are pivoted apart from one another.
These and other features and advantages are evident from the following description of the present invention, with reference to the accompanying drawings.
Referring to
Anchor 10 is for use in a friable material, such as drywall 1, for mounting an article 3 to drywall 1. Anchor 10 may be formed and is initially positioned in the drilling mode, as shown in
The friable material may be one of several friable materials used in the construction industry wherein it is desired to mount an article 3 to the friable material in order to increase the amount of load that can be mounted to the friable material. An example of a friable material is gypsum based drywall 1, such as the gypsum drywall sold under the trademark SHEETROCK by United States Gypsum. Drywall 1 typically has a thickness T of ½ inch or ⅝ inch, but it can be obtained in other thicknesses, such as ⅜ inch.
Turning to
Fastener 2 may have different lengths to accommodate different thicknesses AT of article 3. Preferably, fastener 2 is long enough to extend through article 3 and bore 32 so that fastener 2 engages shoulder 30 and pivots legs 24, 26 outwardly to wedge into drywall 1. Fastener 2 may also pivot second leg 26 outwardly to wedge into drywall 1. For example, for an anchor 10 having a length of about 1.67 inches, fastener 2 may have a length of between about 1 inch and about 2 inches, preferably between about 1¼ inches and about 1¾ inches, still more preferably about 1½ inches, for a relatively thin article 3.
Anchor
Turning to
Anchor 10 has an axial length L that is a combination of the length N of neck 60, length TL of thread 22 and length DL of drilling tip 28 (described below). A shorter anchor 10 is preferred, so long as N, TL, and DL are each long enough, as described below, because it is less expensive to manufacture, easier to handle and to keep stable during installation, and it has a shorter drive time so that a user can install a plurality of anchors 10 in a relatively short period of time with a minimum amount of effort. In one embodiment, anchor 10 has a length L of between about 1.5 inches and about 2 inches, preferably between about 1.6 inches and about 1.7 inches, still more preferably about 1.67 inches.
Bore 32 is sized to accommodate fastener 2. Preferably, bore 32 has a diameter that is large enough to receive a #8 screw, or fasteners having a smaller diameter. Bore 32 extends through flanged end 14 and central portion 18 up to shoulder 30. In one embodiment, shown in
Wall 34 may include a set of at least 3, and preferably 4 splines 36 protruding radially inwardly into bore 32, wherein splines 36 are adapted to engage fastener 2. Fastener threads 9 tap mating threads in splines 36 so that fastener 2 is threadingly engaged with splines 36. Splines 36 extend substantially through the entire length of bore 32.
The effective inner diameter of bore 32 with splines 36 should be smaller than the outside diameter, or crest diameter of fastener 2, but not as small as the root diameter of fastener 2, so that splines 36 are tapped by fastener 2 to form mating threads. Preferably, the height of splines 36 from the interior of wall 34 is selected so that the effective inner diameter of bore 32 is small enough so that the threading of a #6 fastener 2, with an outer diameter of about 0.136 inch, can tap splines 36, and so that the inner diameter of wall 34 is large enough so that the threading of a # 8 fastener 2, having an outer diameter of about 0.164 inch, only taps splines 36 and does not tap wall 34. In a preferred embodiment, bore 32 has an inner diameter at wall 34 of between about 0.17 inch and about 0.21 inch, preferably between about 0.18 inch and about 0.2 inch, still more preferably about 0.19 inch, and splines 36 have a height of between about 0.015 inch and about 0.045 inch, preferably between about 0.025 inch and about 0.035 inch, still more preferably about 0.03 inch, so that the effective inner diameter of bore 32 at splines 36 is between about 0.11 inch and about 0.16 inch, preferably between about 0.12 inch and about 0.145 inch, still more preferably about 0.13 inch.
Preferably, splines 36 are in a configuration that accommodates mounting fasteners of various thread diameters, as with the splines in the commonly assigned U.S. Pat. No. 5,558,479 to McElderry, the disclosure of which is incorporated herein by reference.
Flanged end 14 of anchor body 12 includes a flange 38 having torque transmitting surfaces therein for being driven by a driver (not shown), such as surfaces 42 in a Phillips-type recess 40, which may be a Phillips Square Drive to minimize cam-out. Anchor 10 is preferably manually drivable by a hand-powered screwdriver, which may be driven by a Phillips screwdriver or the like, or by a power driver.
Continuing with
It has been found that engagement with paper 56 on the rear surface 54 of drywall 1 provides a substantial portion of the grip between anchor 10 and drywall 1, therefore it is preferably that the axial length TL (
Turning to
Turning back to
Drilling tip 28 may be one of many configurations, such as a generally cylindrical drilling blade having one or more helical flutes for drilling out drywall 1, but preferably drilling tip 28 is a generally flat drilling blade 62 because it more effectively reams out a hole in drywall 1 and clears dust. Drilling blade 62 may have a pair of portions 64, wherein each portion 64 has an angled cutting edge 66 and a side cutting edge 68. Preferably side cutting edges 68 are preferably generally parallel to anchor axis 13, and angled cutting edges 66 are angled forwardly and laterally inwardly together to form a pointed tip 70. Pointed tip 70 is relatively sharp to prevent walking along front drywall surface 50 during installation of anchor 10. Side cutting edges 68 and angled cutting edges 66 are relatively sharp in order to cut and remove drywall during installation.
Portions 64 are formed on, and are offset relative to each other along a plane passing through a diameter of anchor body 12, wherein the plane is generally parallel to drilling blade 62. The offset orientation of portions 64 form flutes 72 disposed on the underside of each portion 64, wherein each flute 72 extends along the length of the corresponding side cutting edge 68 and angled cutting edge 66. Flutes 72 also help to quickly remove material, such as gypsum dust, from the hole being drilled in drywall 1. An example of a preferred drill blade is described in the commonly assigned U.S. Pat. No. 6,382,892 to Hempfling, the disclosure of which is incorporated herein by reference.
Preferably, the axial length DL of drilling tip 28 is at least as large as the thickness T of drywall 1, so that drilling tip 28 will complete its drilling before thread 22 begins to engage drywall 1. This is preferred because drilling into a material tends to advance axially through the material substantially slower than driving through the material with threading. It is preferred that the drilling of drywall 1 be complete before thread 22 engages drywall 1 so that thread 22 does not ream out a hole in drywall 1. In one embodiment, drilling tip 28 has a length DL of between about 0.6 inches and about 1 inch, preferably between about 0.7 inches and about 0.8 inch, still more preferably about ¾ inch.
Turning back to
In one embodiment, first leg 24 is demarcated from second leg 26 by a pair of slits 80 extending substantially through outer surface 20 of anchor wall 34 and through thread 22, wherein one slit 80 is on generally the opposite side of outer surface 20 from the other slit 80. In one embodiment, slits 80 are about 180° from each other on outer wall 34. In one embodiment, slits 80 split anchor wall 34 and thread 22, so that a portion 100a, 100b of thread 22 is on each leg 24, 26 (see
Slits 80 extend generally axially along body 12 from a first end 82 spaced by the predetermined distance SD from flanged end 14 toward a second end 84 proximate drilling end 16. A forwardmost portion 86 of each slit 80 extends generally laterally to follow a perimeter of shoulder 30 substantially to a forwardmost and outermost end 96 of shoulder 30 at outer wall 34. Body 12 forks along slits 80 into first leg 24 and second leg 26. Slits 80 may extend to a position proximate outer surface 20 so that there is a connection or land between first leg 24 and second leg 26 at second end 84 of slit 80, but preferably slits 80 extend completely through wall 34 to outer surface 20 at second end 84, as shown in
In one embodiment, each slit 80 generally has a zig-zag shape that defines a plurality of crocodile-like interfacing teeth 90 on legs 24, 26. Each slit 80 includes a plurality of generally linear portions, wherein each portion is angled acutely with respect to its adjacent portions. In the embodiment shown in
Continuing with
Teeth 90 also aid in the pullout strength of anchor 10 because teeth 90 can fit between adjacent threads 9 of fastener 2, as shown with tooth 90a in
Turning to
The axial length between flanged end 14 and shoulder 30 is selected to optimize the pivoting of legs 24, 26 to produce the highest pullout strength. The axial length between flanged end 14 and shoulder 20 may be between about ¾ inch and about 1 inch, preferably between about 0.8 inches and about 0.9 inches, still more preferably about 0.83 inches.
In one embodiment, shoulder 30 is a surface that is generally angled obtusely outwardly with respect to anchor axis 13 so that shoulder 30 extends forwardly and laterally outwardly. In one embodiment, shoulder 30 extends from one lateral side of axis 13 substantially across bore 32 to the other side of axis 13 so that as fastener 2 is driven, tip 8 contacts an angled portion of shoulder 30 to ensure that tip 8 slides along shoulder 30 to deflect and pivot first leg 24 laterally outwardly. In one embodiment, shoulder 30 is generally planar and forms an angle θ with respect to axis 13 when anchor is in the drilling mode (
Continuing with
As legs 24, 26 are pivoted away from one another by fastener 2, they engage and are wedged into drywall 1, as shown in
Surprisingly, it has been found that anchor 10, with legs 24, 26 that are deflected outwardly by fastener 2 doubles, and in some cases triples, the pullout strength anchor 10 can achieve in drywall 1. An anchor having similar dimensions, but without shoulder 30 that is engaged by fastener 2 so that legs 24, 26 are pivoted outwardly, have been known to achieve a maximum pullout strength of about 70 pounds, with most anchors typically being able to withstand about 50 pounds of pullout. It has been found through experimentation that anchor 10 can achieve pullout strengths as high as about 100 pounds, with an average pullout strength in experiments of about 90 pounds.
Turning again to
In one embodiment, first end 82 of each slit 80 is rounded to avoid the formation of stress concentrations at first end 82, which would tend to crack or split anchor body 12 between first end 82 and flanged end 14 as legs 24, 26 are pivoted outwardly. Anchor 10 may also include an eyelet 102 at first end 82. Eyelet 102 may be generally circular, as shown in
Method of Use
The method by which anchor 10 is used includes the steps of driving anchor 10 while in the drilling mode into drywall 1 so that drilling tip 28 drills through drywall 1, engaging external thread 22 with drywall 1, inserting elongated fastener 2 into anchor bore 32 so that a fastener tip 8 engages and slides along shoulder 30, continuing to drive fastener 2 through anchor 10 so that fastener 2 continues in a generally forward direction, deflecting shoulder 30 and pivoting first leg 24 outwardly, pivoting legs 24, 26 apart from one another until legs 24, 26 are forced into the pivoted positions of the anchoring mode, and wedging legs 24, 26 against drywall 1, which increases the pullout strength of anchor 10.
Driving anchor 10 into drywall 1 is typically accomplished by placing drilling tip 28 at a desired location on front drywall surface 50, engaging the driver of a rotary driving tool (not shown), such as a Phillips screwdriver, with torque transmitting surfaces 42, such as by inserting the driver into recess 40 in flange 38, and rotating anchor 10 so that drilling tip 28 drills into drywall 1. Eventually drilling tip 28 drills through drywall 1 and external thread 22 of anchor engages drywall 1 to tap mating threads 44 in drywall 1, which continues to drive anchor 10 forward until flange 38 encounters drywall 1, at which point flange 38 may be seated into drywall 1 so that anchor 10 is flush or countersunk with respect to front drywall surface 50.
Fastener 2 is inserted into bore 32 by placing fastener tip 8 into recess 40. Fastener 2 is rotated with a rotary driving tool, such as a screwdriver, so that fastener threads 9 engage splines 36 to form mating threads in splines 36, driving fastener 2 through anchor bore 32.
Eventually, as fastener 2 is driven through bore 32, fastener tip 9 will encounter shoulder 30 at the end of anchor bore 32. As fastener 2 is driven further in the forward direction, fastener tip 9 slides along shoulder 30, causing shoulder 30 to deflect laterally outwardly away from fastener 2 so that first leg 24 pivots away from fastener 2. A portion of fastener 2 also deflects second leg 26 outwardly. In one method, a portion of fastener 2 engages tapered portion 98 of bore 32 to pivot second leg 26 outwardly away from fastener 2. As legs 24, 26 are deflected outwardly, they are wedged against drywall 1, causing anchor thread 22 to further engage drywall 1, increasing the pullout strength of anchor 10. Preferably, thread 22 is positioned axially on anchor body 12 so that the wedging step includes wedging a portion 100a, 100b of thread 22 on at least one of legs 24, 26 into drywall 1, as shown in
Referring to
Referring to
Referring to
In one embodiment, a relatively wide flat cutting tip 170 wider than the thread root diameter 148, cuts the hole big enough to eliminate drywall blistering and works with the taper tab 121 and the skin 125 to provide a larger hole in the drywall screws reducing friction and stress, to stop the anchor from breaking when screwing it into the drywall without allowing the internal screw 2 installation torque to increase to an unacceptable amount.
Referring to
Referring again to
Referring to
As indicated by reference numeral 151, in some embodiments, the base thickness of the thread 146 is also minimized. A smaller volume of thread reduces the amount of distortion in the gypsum of the drywall thus helping to avoid piling up of the gypsum material around the head 114, which can cause the paper to blister.
In some embodiments, the width, angle, depth and diameter of the Phillips recess 140 are selected to accommodate numerous screwdrivers and bits. Moreover, these dimensions may be selected to minimize weakening of the body 112 around the recess 140. Also, in some embodiments, as shown for example in FIGS. in 13-14 and 16-20 decrease in the thread pitch, that is the axial distance between like parts of adjacent turns of thread, to about 0.20 in. increases the number of threads in the drywall when the anchor is fully installed, to increase the pullout resistance.
In order to further increase the strength of the legs during load conditions, as also shown in
In the embodiment shown in
In the embodiment shown in
With the tri-point drill tips, the initial drilling of the hole is done by placing the center point into the face of the drywall (to establish the initial position) and then the two outer tapered cutting blades have a “fly cutting” effect to actually penetrate and drill the drywall material. Regarding the wider cutting blade, the tri-point blade has the additional aspects of being tapered along its length, so it starts out drilling a smaller hole but then tapers larger to create the same size hole as the flat bladed anchor, described above. This tapered expansion of the hole is done with four “barbed” blades on the exterior of the drill tip. The barbs and taper create a “broaching” effect as the hole is “sized” to the desired diameter.
Referring to
In some embodiments, variations of the center point or drilling tip 170 are shown. For example,
Some prior “splitting” anchors of this general type required a high installation torque for the internal screw. If the drywall was excessively hard the anchor could break during the drywall installation. Also, some current anchors cause drywall to blister around the head, wobble during drilling, and/or offer a poor fit for Phillips drivers. In use, some current “splitting” anchors, the head does not seat flush or below the drywall surface, and may experience cracking in the area around the Phillips recess. Moreover, most current “splitting” anchor products do not have a thread that, in use, wedges the anchor to the back face of the dry wall, and do not grip an optimal amount of the drywall material.
Advantages of the invention include greater pull out than current products, and greater shear strength in comparison to size. The invention is cost competitive due to this size/strength advantage and its one-piece construction. Other advantages include the self-drilling feature, low installation torque for mounting a screw, no blistering under the drywall paper around the head, more stability during drilling, excellent fit with all types of screwdriver Phillips size, head seats flush with the drywall, does not break during installation in drywall, and a robust Phillips recess that does not crack around the outer diameter.
The anchor of the invention also has an excellent “anti-back-out” feature.
The self-drilling anchor of the present invention provides an apparatus that is easy to install so that it requires no additional steps over a traditional self-drilling anchor, while providing increased pullout strength comparable to toggle bolts or other more complicated apparatus. This provides a significant advantage to the user, in that the method of installing is essentially identical to self-drilling anchor, but still provides high pullout strength associated with harder-to-install toggle bolts, without adding difficulty to the installation.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific exemplary embodiment and method herein. The invention should therefore not be limited by the above described embodiment and method, but by all embodiments and methods within the scope and spirit of the invention as claimed.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/772,677 filed on Feb. 5, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 10772677 | Feb 2004 | US |
Child | 11290212 | Nov 2005 | US |