1. Field of the Invention
The present invention relates generally to liquid aeration systems, and more particularly to an anchored aerator having a sunken base and a plurality of rigid guide columns extending upward therefrom, so that a float is slidably captured between the guide columns and an air diffuser depends from the float to maintain a constant depth below the surface.
2. Description of the Related Art
The contamination of various bodies of water by various means is an increasingly serious problem worldwide. The most widespread contaminants may be organic materials that enter the water system due to pollution from human habitation, either directly or indirectly, e.g., pollution from farms and the like. Such pollution can affect inland fresh water supplies (lakes and rivers), and can also be carried to the sea by inland rivers and waterways or by direct discharge of sewage and/or other pollutants into the sea. Organic material in the sewage of treatment plants is another example of such pollution, although contained for processing. The biochemical processes that occur in water due to such organic pollution are known to decrease the oxygen content of the water, thereby reducing or even destroying fish and other aquatic life in the contaminated body of water. Even if some fish remain in the polluted water, they are almost certainly unfit for human consumption, if caught.
It is generally considered that the most effective means of eliminating such pollutants in contaminated water is by bacteriological processing, wherein bacteria process the contaminants to break them down into harmless organic materials. However, such bacteria are aerobic, i.e., they require oxygen for their metabolism. This is well known in the sewage treatment field, where water is commonly treated by aeration after solids are removed by settling or other means. Such aeration is generally accomplished by mechanical means, e.g., pumping the water up for dispensing into the air from spray booms and nozzles, or by forcing air through underwater pipes for the air to bubble up through the water. Such mechanical systems are relatively costly to operate and require relatively high energy and manpower costs. Even if such systems were less costly to operate, a huge drawback is that they cannot be readily transported to a pollution site for operation at that site. Rather, the water must be transported to the location of the aeration system, a process that is clearly unworkable on a very large scale and/or over very long distances.
Another consideration is the frequent need to position the air diffuser(s) at a constant depth below the surface of the water in which the aerator is installed in order to simplify pressure regulation of the airflow. This is not a significant problem in settling ponds and the like, but can be a significant problem in bodies of water wherein the level changes from time to time, as in reservoirs with controlled outlets and bodies of water influenced by tidal action.
Thus, an anchored aerator solving the aforementioned problems is desired.
The anchored aerator has a non-buoyant, sunken base that is permanently placed upon the floor of a body of water. A plurality of substantially vertical guide columns extends upward from the base, and a toroidal float is installed and captured between the guide columns. The float is free to float up and down along the guide columns as the water level changes. A down tube or pipe depends through the center of the toroidal float, and moves up and down between the guide columns as the float moves up and down. An aerator assembly comprising a plurality of radial diffuser pipes extends from the lower end of the down tube.
All of the aerators receive their air supply from a remotely disposed air source. The air source may be based on shore, or may be based upon a ship or other floating vessel. A flexible air supply line or hose extends from the air supply to each of the buoyant aerators, the hose being supported by one or more rigid columns or poles anchored into the bottom of the body of water in which the aerators are placed. Since the float remains atop the water, the aeration tubes remain at a constant depth below the surface, so that the air supply remains at a constant pressure with no need for variance. A plurality of such buoyant aerators may be placed in a body of water, all of the aerators receiving their air supply from a single remotely located source.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The anchored aerator receives air from either a land-based or floating vessel-based source. The anchored aerator is secured in the body of water in which it is installed, being anchored to a fixed base set in the floor of the body of water.
The aerator 10 has a single central air delivery column 26 extending substantially vertically through the center hole or passage of the toroidal float 12. The upper end 28 of the column 26 is preferably immovably affixed to the float 12 by suitable conventional braces or the like (not shown) where it passes through the center of the float 12. An aeration outlet 34 is immovably affixed to the lower end 32 of the air delivery column 26, and thus to the remaining structure of the aerator 10. The aeration outlet 34 comprises a relatively flat or thin circular central plenum 36 having a plurality of radially disposed and perforated aeration tubes or nozzles 38 extending therefrom. A circular reinforcement brace 40 is installed concentrically about the plenum 36, tying the aeration tubes 38 together for greater strength.
In
Either of the above embodiments may support an array of buoyant aerators, as shown in
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2827268 | Staaf | Mar 1958 | A |
4216091 | Mineau | Aug 1980 | A |
4229302 | Molvar | Oct 1980 | A |
4350648 | Watkins et al. | Sep 1982 | A |
4581181 | Nicholls | Apr 1986 | A |
4906359 | Cox, Jr. | Mar 1990 | A |
5565096 | Phelan | Oct 1996 | A |
5851448 | Tyer | Dec 1998 | A |
5938983 | Sheaffer et al. | Aug 1999 | A |
6190544 | Edwards | Feb 2001 | B1 |
6264176 | Dickman et al. | Jul 2001 | B1 |
7520493 | Haldane | Apr 2009 | B1 |
20020063346 | Lee et al. | May 2002 | A1 |
20020113013 | Long et al. | Aug 2002 | A1 |
20050269262 | McBride | Dec 2005 | A1 |
20110089098 | Siebert et al. | Apr 2011 | A1 |
20110121472 | Magen | May 2011 | A1 |