Anchoring device for replacing or repairing a native heart valve annulus

Information

  • Patent Grant
  • 11452602
  • Patent Number
    11,452,602
  • Date Filed
    Wednesday, November 25, 2020
    3 years ago
  • Date Issued
    Tuesday, September 27, 2022
    2 years ago
Abstract
A method and device for anchoring a prosthetic heart valve or annuloplasty ring to a valve annulus in a heart and a method of implanting same is disclosed. The device can include a prosthetic valve or annuloplasty ring with one or more anchors configured to be threaded or otherwise passed underneath a native leaflet and/or subvalvular tissue to secure the device at the native annulus.
Description
FIELD OF THE INVENTION

The current invention generally relates to heart valve repair and replacement devices and methods. More specifically, the current invention is directed to anchoring devices and methods for prosthetic heart valves and annuloplasty rings configured for rapid implantation and methods for implanting same.


BACKGROUND OF THE INVENTION

The heart is a hollow muscular organ of a somewhat conical form; it lies between the lungs in the middle mediastinum and is enclosed in the pericardium. The heart rests obliquely in the chest behind the body of the sternum and adjoining parts of the rib cartilages, and typically projects farther into the left than into the right half of the thoracic cavity so that about one-third is situated on the right and two-thirds on the left of the median plane. The heart is subdivided by septa into right and left halves, and a constriction subdivides each half of the organ into two cavities, the upper cavity being called the atrium, the lower the ventricle. The heart therefore consists of four chambers; the right and left atria, and right and left ventricles, with one-way flow valves between respective atria and ventricles and at the outlet from the ventricles.


The atrioventricular heart valves (i.e., the tricuspid and mitral valves) are located in the center of the heart between the atria and the ventricles of the heart, and play important roles in maintaining forward flow of blood. Atrioventricular valve dysfunction is also commonly known as “regurgitation” and affects well over one million people globally. The mitral and tricuspid valves are defined by fibrous rings of collagen, each called an annulus, which forms a part of the fibrous skeleton of the heart. The annulus provides peripheral attachments for the two cusps or leaflets of the mitral valve (called the anterior and posterior cusps) and the three cusps or leaflets of the tricuspid valve. The free edges of the leaflets connect to chordae tendinea from more than one papillary muscle. In a healthy heart, these muscles and their tendinous chords support the mitral and tricuspid valves, allowing the leaflets to resist the high pressure developed during contractions (pumping) of the left and right ventricles.


Although valve regurgitation often occurs due to the dilatation of the valve annulus, mitral and tricuspid valve function and competency frequently depend on the fine geometric and functional integrity of the valve's supporting structures, such as, for example, the associated subvalvular apparatus. The subvalvular apparatus of these heart valves include, among other things, the associated chordae tendinea and papillary muscles.


As seen in FIGS. 1 and 2, the mitral valve (MV) is a two-leaflet (or bicuspid) structure of connective tissue separating the left atrium (LA) from the left ventricle (LV). The mitral valve functions to maintain blood flow in one direction, i.e., from the left atrium toward the left ventricle during ventricular relaxation or diastole, while preventing back flow in the opposite direction during ventricular contraction or systole. The anterior leaflet (AL) and posterior leaflet (PL) are separated by the anterior commissure (AC) and posterior commissure (PC). The bases of the two valve leaflets are attached to a circular fibrous structure of the heart called the mitral annulus (AN), and the leaflet free edges are attached to chordae tendinea arising from the papillary muscles of the left ventricle. An anterior leaflet (AL) is relatively large and attaches to the anterior segment of the annulus, while a posterior leaflet (PL) is smaller but extends further circumferentially and attaches to the posterior segment of the annulus. The posterior leaflet presents three scallops identified as P1, P2, P3, while the corresponding non-scalloped parts of the anterior leaflet are identified as A1, A2, and A3, according to Carpentier's segmentation.


The tricuspid valve also has subvalvular structures, but is a tricuspid (i.e., three cusp or leaflet) structure as opposed to the bicuspid structure of the mitral valve. Some mitral and tricuspid valve replacement procedures involve the removal of these subvalvular structures. However, the subvalvular structures may play a role in maintaining the proper shape of the ventricles, and thus their preservation may be desirable, depending on the particular circumstances.


When the left ventricle contracts after filling with blood from the left atrium, the walls of the ventricle move inward and release some of the tension from the papillary muscle and chords. The blood pushed up against the under-surface of the mitral leaflets causes them to rise toward the annulus plane of the mitral valve. As they progress toward the annulus, the leading edges of the anterior and posterior leaflet come together forming a seal and closing the valve. In the healthy heart, leaflet coaptation occurs near the plane of the mitral annulus. The blood continues to be pressurized in the left ventricle until it is ejected into the aorta. Contraction of the papillary muscles is simultaneous with the contraction of the ventricle and serves to keep healthy valve leaflets tightly shut at peak contraction pressures exerted by the ventricle.


The native heart valves (such as the aortic, pulmonary, tricuspid, and mitral valves) serve critical functions in assuring the forward flow of an adequate supply of blood through the cardiovascular system. These heart valves can be rendered less effective by congenital, inflammatory, infectious conditions, or other disease. Such damage to the valves can result in serious cardiovascular compromise. Heart valve disease is a widespread condition in which one or more of the valves of the heart fails to function properly. Diseased heart valves may be categorized as either stenotic, wherein the valve does not open sufficiently to allow adequate forward flow of blood through the valve, and/or incompetent, wherein the valve does not close completely, causing excessive backward flow of blood or regurgitation through the valve when the leaflets are supposed to coapt together to prevent regurgitation. Valve disease can be severely debilitating and even fatal if left untreated. For many years the definitive treatment for such disorders was the surgical repair or replacement of the valve during, for example, open heart surgery.


Various surgical techniques may be used to repair a diseased or damaged valve, which is typically used on minimally calcified valves. Surgical repair of the native valve is commonly conducted using so-called annuloplasty rings. Examples of annuloplasty rings, including methods of use for repairing native valves, are disclosed in U.S. Pat. No. 4,055,861, filed Apr. 9, 1976 and entitled “Support for a Natural Heart Valve”; U.S. Pat. No. 5,041,130, filed Nov. 30, 1989 and entitled “Flexible Annuloplasty Ring and Holder”; U.S. Pat. No. 6,558,416, filed Mar. 6, 2001 and entitled “Annuloplasty Ring Delivery Method”; and in co-pending U.S. patent application Ser. No. 13/019,506, filed Feb. 2, 2011 and entitled “Devices and Methods for Treating a Heart,” the entire contents of each of which are incorporated herein by reference.


Sometimes actual replacement of the heart valve is the preferred option. Heart valve replacement may be indicated when there is a narrowing of a native heart valve, commonly referred to as stenosis, or when the native valve leaks or regurgitates, such as when the leaflets are calcified. Due to aortic stenosis and other heart valve diseases, thousands of patients undergo surgery each year wherein the defective native heart valve is replaced by a prosthetic valve, either bioprosthetic or mechanical. Prosthetic cardiac valves have been used for many years to treat cardiac valvular disorders.


When the valve is replaced, surgical implantation of the prosthetic valve typically requires an open-chest surgery during which the heart is stopped and patient placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, about 30 to 50% of the subjects suffering from aortic stenosis who are older than 80 years cannot be operated on for aortic valve replacement.


Because of the drawbacks associated with conventional open-heart surgery, percutaneous and minimally-invasive surgical approaches are garnering intense attention. In one technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. No. 5,411,552 to Andersen et al. describes a collapsible valve percutaneously introduced in a compressed state through a catheter and expanded in the desired position by balloon inflation. Although these remote implantation techniques have shown great promise for treating certain patients, replacing a valve via surgical intervention is still the preferred treatment procedure. One hurdle to the acceptance of remote implantation is resistance from doctors who are understandably anxious about converting from an effective, if imperfect, regimen to a novel approach that promises great outcomes but is relatively foreign. In conjunction with the understandable caution exercised by surgeons in switching to new techniques of heart valve replacement, regulatory bodies around the world are moving slowly as well. Numerous successful clinical trials and follow-up studies are in process, but much more experience with these new technologies will be required before they are completely accepted.


In some situations, replacement of the native heart valve with a prosthetic heart valve may be the desired treatment. There are approximately 60,000 mitral valve replacements (MVR) each year and it is estimated that another 60,000 patients should receive a MVR due to increased risk of operation and age. The large majority of these replacements are accomplished through open-heart surgery, where a prosthetic heart valve is surgically implanted with the patient on pulmonary bypass. Such surgically implanted prosthetic valves have a long and proven record, with high success rates and clinical improvements noted after such valve replacement. However, it can be desirable to keep the time that the patient spends on pulmonary bypass to a minimum.


Surgeons relate that one of the most difficult tasks when attempting valve repair or replacement, either in open heart surgeries or minimally invasive heart valve implantations (e.g., through small incisions) is tying the suture knots that hold the valve or repair ring in position. A typical prosthetic mitral valve implant utilizes 12-24 sutures (commonly about 15) distributed evenly around and manually tied on one side of the sewing ring. The implantation process can be very time consuming and difficult to perform, particularly through minimal size incisions due to the numerous pairs of sutures that need to be precisely placed in the annulus and the knots that are typically used to secure the sutures when the valve is parachuted into place. Similarly, in a valve repair procedure numerous pairs of sutures must be precisely placed around the native annulus to attach the repair device. Minimizing or even eliminating the need to use suture (and/or to tie suture knots) for attachment of prosthetic valves or repair devices would greatly decrease the time of the procedure and/or facilitate the use of smaller incisions, thus reducing infection risk, reducing the need for blood transfusions, reducing the time spent on bypass, and allowing more rapid recovery.


Accordingly, there is a need for an improved device and associated method of use wherein a prosthetic valve or valve repair device can be implanted in a more efficient procedure that reduces the time required on extracorporeal circulation and/or catheterization. It is desirable that such a device and method be capable of helping patients with defective valves that are deemed inoperable because their condition is too frail to withstand a lengthy conventional surgical procedure. The present invention addresses these needs and others.


SUMMARY OF THE INVENTION

A valve repair or replacement device for implantation at a native valve annulus and method of implanting the same is disclosed. The device may be a prosthetic valve, annuloplasty ring, or other device for implantation at the native valve annulus. The device has a central portion with one or more anchors extending therefrom from fixed ends secured to the central portion, with the anchors terminating at free ends. The anchors run substantially parallel to the circumference of the central portion in a curved fashion, forming leaflet-receiving slots between the anchors and central portion. The device is configured to be positioned at the native valve annulus, and then rotated (twisted) to place the anchors underneath the resident valve leaflets, with the resident valve leaflets sliding into the leaflet-receiving slots until the device is fully seated. The leaflets are then held within the slots, which may include inward pressure from the anchor arms that press the leaflets between the anchor arms and the central portion of the device.


The anchors may extend from the central portion, and may include a cross-section configured to have a different stiffness in-plane than the stiffness out-of-plane. There may be one, two, three, four, or more anchors extending from the central portion. The anchors may extend from the central portion at different positions around the circumference thereof, and may be generally equidistantly positioned around the circumference. The anchors may be formed of metal or polymer or other suitable material, and the device may include a cloth covering. The device may include radiopaque markers and other structures to enhance visibility during implantation. For example, an anchor member may have one or more radiopaque markers positioned thereon, such as at the tip of the free end and/or at the fixed end.


The assembly may form a prosthetic valve formed by support frame and valve leaflets, with the support frame having a central portion and one or more curved anchors extending therefrom to form at least one slot between the anchor(s) and central portion, with the at least one slot sized to slidingly receive a proximal portion of a heart valve leaflet therein. The anchors and slots may be preferably sized and configured to engage resident leaflets. For example, at least one slot may have a width of similar size to the thickness of a native valve leaflet.


A device for treating a heart according to an embodiment of the invention comprises a prosthetic valve having a support frame and a valve portion. The valve portion may include a plurality of leaflets secured to the support frame and configured to coapt to permit blood flow in a first direction through the valve portion and to prevent blood flow in a second direction through the valve portion, wherein the first direction is opposite to the second direction, wherein the support frame comprises one or more attachment structures configured to be attached, and/or to otherwise facilitate attachment of the device, to tissue at or adjacent an annulus of a native heart valve.


The prosthetic valve may be configured for surgical implantation, either via traditional open-heart or minimally invasive techniques, and/or via catheterization. The support frame may have supplemental attachment structures (i.e., in addition to the anchors) for securing the prosthetic valve at a desired location at a native heart valve annulus. For example, the support frame may comprise a sewing ring configured to be sutured to tissue of the annulus of the native heart valve, and/or may include other attachment structures configured to secure the support frame at the valve annulus using no (or minimal) suture, such as an expandable stent structure, clamps, skirts, or other elements configured to engage tissue of, or adjacent to, the native annulus in order to secure the prosthetic valve at the desired position. Examples of sutureless securement devices and methods for use with the current invention are disclosed in U.S. patent application Ser. No. 12/821,628, filed Jun. 23, 2010 and entitled “Unitary Quick-Connect Prosthetic Heart Valve and Deployment System and Methods,” and also in U.S. patent application Ser. No. 13/167,639, filed Jun. 23, 2011 and entitled “Systems and Methods for Rapidly Deploying Surgical Heart Valves,” the entire contents of each of which are expressly incorporated herein by reference.


An embodiment of the invention is a prosthetic heart valve assembly for replacing a resident heart valve, comprising a prosthetic valve and anchors extending therefrom. The prosthetic valve may have a support frame and a valve portion. The valve portion is a one-way valve, which may have a plurality of leaflets secured to the support frame about a central axis of the prosthetic valve to an internal flow lumen and configured to coapt to permit blood flow in a first direction through the internal flow lumen and to prevent blood flow in a second direction through the internal flow lumen. The prosthetic valve has an exterior surface, which may be configured to engage tissue of a heart. At least one anchor member extends from the support frame, the anchor member comprising a proximal fixed end secured to the support frame and a distal free end. The anchor member extends at least partially around the circumference of the prosthetic valve (radially about the central axis thereof) and substantially parallel to the prosthetic valve exterior to define a leaflet-receiving slot configured to slidingly receive a leaflet of a heart valve. The leaflet-receiving slot extends in continuous, unbroken fashion from the proximal fixed end of the anchor member to the distal free end of the anchor member. The slot is sized and configured to slidingly receive and hold a desired valve leaflet of a resident valve, where a resident valve is a native heart valve or a previously-implanted prosthetic valve. Depending on the particular application, the slot may have a length of 0.25 to 3.5 inches and a width of 0.005 to 0.25 inches.


The prosthetic valve may be substantially tubular, with the exterior surface forming a substantially continuously curved surface about the circumference thereof, with the anchor member forming a curve which parallels the curved surface of the exterior surface of the valve.


A valve assembly according to the invention may form a prosthetic mitral valve assembly with first and second anchor members defining first and second leaflet-receiving slots and having first and second fixed ends and first and second free ends, respectively. Each slot extends in continuous, unbroken fashion from the anchor fixed end to the anchor free end. The anchors can be sized and positioned to engage the anterior and posterior leaflets of a native mitral valve, so that the slots are sized to receive these leaflets. The first and second anchors may have fixed ends which are spaced at least 90 degrees apart, and more specifically about 100 to 140 degrees apart, and more specifically 120 degrees apart, about the circumference of the device, with the anchor extending in the same rotational direction (e.g., clockwise) about the circumference of the device. The first anchor member may pass around the circumference of the prosthetic valve through an angle of at least 90 degrees, with the second anchor passing around the circumference of the prosthetic valve through an angle of at least 120 degrees.


An assembly according to the invention may form an annuloplasty ring having a support ring having a circumference and comprising a central opening defining a flow axis through which fluid may flow, a covering around the support ring, the covering comprising an outer surface, and a first anchor member extending from the support frame. The first anchor may have a first proximal fixed end secured to the support ring and a first distal free end, wherein the first anchor member extends around at least partially around a circumference of the support ring and substantially parallel to outer surface of the covering to define a first leaflet-receiving slot configured to receive a leaflet of a heart valve. The first leaflet-receiving slot may preferably extend in continuous, unbroken fashion from the first proximal fixed end to the first distal free end. The first anchor member may extend around the circumference of the prosthetic valve through an angle of at least 90 degrees.


An annuloplasty ring may further include additional anchor members. For example, it may include a second anchor member having a second proximal fixed end secured to the support ring and a second distal free end, wherein the second anchor member extends at least partially around the circumference of the annuloplasty ring and substantially parallel to the exterior thereof to define a second leaflet-receiving slot configured to receive a second leaflet of a heart valve. The second leaflet-receiving slot may extend in continuous, unbroken fashion from the second proximal fixed end to the second distal free end. The second proximal fixed end may be circumferentially displaced from the first anchor proximal fixed end by an angle of at least 90 degrees, by an angle of between 100 and 140 degrees, or by an angle of about 120 degrees. The first anchor may extends around the circumference of the annuloplasty ring through an angle of between 90 and 120 degrees, and the second anchor may extend around the circumference of the annuloplasty ring through an angle of between 150 and 240 degrees. The support ring may be substantially circular, substantially D-shaped, and/or substantially saddle-shaped.


Methods of implanting a device (e.g., annuloplasty ring, prosthetic valve, etc.) at a native valve annulus can include providing a device comprising a central portion, a first curved anchor extending from a first fixed end secured to the central portion and passing generally parallel to an outer surface thereof to a first free end of the first curved anchor to form a first leaflet-receiving slot, a second curved anchor extending from a second fixed end secured to the central portion and passing generally parallel to an outer surface thereof to a second free end to form a second leaflet-receiving slot, wherein the central portion defines a flow orifice with a flow axis therethrough. The method may include positioning the device with the first curved anchor and second curved anchor adjacent the native valve annulus, with the fluid flow axis of the device generally parallel to a fluid flow path through the native valve annulus, and with the first free end positioned adjacent a first commissure of a resident valve at the native valve annulus; placing the first free end underneath a first resident valve leaflet; rotating the device substantially about the fluid flow axis thereof to advance the first free end underneath the first resident valve leaflet and thereby slidingly advancing the first resident valve leaflet into the first leaflet-receiving slot; monitoring the position of the second free end with respect to a second commissure of the resident valve; and stopping rotation of the device about the fluid flow axis once the second free end is adjacent the second commissure of the resident valve. Once the second free end is adjacent the second commissure, the surgeon or other user can place the second free end underneath a second resident valve leaflet; recommencing rotating the device substantially about the fluid flow axis thereof to advance the second free end underneath the second resident valve leaflet and thereby slidingly advancing the second resident valve leaflet into the second leaflet-receiving slot while also further advancing the first free end underneath the first resident valve leaflet and further slidingly advancing the first resident valve leaflet into the first leaflet-receiving slot; and stop rotation of the device when the first resident valve leaflet is slidingly advanced into the first leaflet-receiving slot at a position adjacent the first fixed end, whereby deployment of the device is completed.


The native valve annulus may be a mitral valve annulus or a tricuspid valve annulus. If the native annulus is a tricuspid annulus, the device may include three anchors spaced around the perimeter of the device, with each anchor configured to slidingly receive one of the three valve leaflets of the resident tricuspid valve. Where the native valve annulus is a mitral valve annulus with intact native mitral valve leaflets, the first commissure may be a PC commissure of a native mitral valve, the first leaflet may be an anterior leaflet of the native mitral valve, the second commissure may be an AC commissure of the native mitral valve, and the second leaflet may be a posterior leaflet of the native mitral valve.


Methods of implanting the device include open heart surgery, including surgery where prior to positioning the device adjacent the native valve annulus, the surgeon or other user temporarily ceases heart function of the heart and places the patient on cardiopulmonary bypass. After completing deployment of the device, the heart function of the heart may be resumed and the patient then removed from cardiopulmonary bypass.


Methods of the invention include providing a valve repair or replacement device. The device may comprise an annuloplasty ring with one or more anchors extending therefrom, or may comprise a prosthetic valve with a support frame and leaflets with the leaflets secured to the support frame to form a one-way valve structure and with one or more anchors extending from the support frame. Each anchor has a proximal end secured to the support frame and a free distal end, with a slot defined between the support frame and the anchor. The anchor is positioned adjacent a commissure point of the native valve, and the free end is positioned underneath a native leaflet of the valve (and below the native heart valve annulus). The device (e.g., annuloplasty ring or prosthetic heart valve) is rotated about its central axis to advance the anchor underneath the native leaflet, so that the native leaflet is slidingly advanced into the slot. Advancement and securement can be performed in an open-heart or minimally-invasive procedure. The central portion (e.g., ring portion or support frame) may comprise a sewing ring, and securing the support frame to the tissue of the native heart valve annulus may include suturing the sewing ring to tissue of the native heart valve annulus. The device may comprise a stent, with the stent being expanded into contact with native tissue before, during, or after the anchor(s) are rotated underneath the resident leaflets). The native valve annulus may be of any heart valve, with particular application to mitral and tricuspid valves.


After the central portion is secured to the native valve annulus, the surgeon or other user may add one or more stitches or other securing device/methods to secure the device to the local tissue in order to prevent the device from rotating back out of its deployed position. In such a deployment, the anchors hold the device to prevent movement up, down, sideways, etc., while the sutures or other tissue connectors serve to prevent the device from rotating such that the leaflets rotatingly slide out of the slots to be released from the anchors.


The method may include temporarily ceasing heart function of the heart and placing the patient on cardiopulmonary bypass, performing various steps (such as advancement and securing of the prosthetic valve to the native annulus), and then resuming heart function of the heart and removing the patient from cardiopulmonary bypass. Deployment of the device may occur with the patient on bypass, or may occur with the patient's heart beating (e.g., after the patient is removed from bypass, with heart function restarted) and with the surgeon or other user monitoring the heart function and/or ventricular shape as the length adjustments are made.


Methods of the invention may include, prior to securing the support frame to the tissue of the native heart valve annulus, removing some native valve leaflets and/or subvalvular structure (e.g., chordae tendinea) from the heart.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of the left side of the human heart showing the left atrium separated from the left ventricle by the mitral valve;



FIG. 2 is a surgeon's or plan view of a mitral valve in the closed position illustrating the anterior leaflet (AL) and the posterior leaflet (PL) attached to the annulus (AN), and indicating identifiable leaflet segments;



FIG. 3 is a bottom view of an embodiment of a device according to an embodiment of the invention;



FIGS. 4 and 5 are perspective (in partial cross-section) and top views of an embodiment of a device deployed in a heart according to an embodiment of the invention;



FIGS. 6A-6C are top views of a device being deployed in a mitral valve annulus according to the invention;



FIGS. 7A-7D are side, bottom, perspective, and top views, respectively of a prosthetic heart valve according to an embodiment of the invention;



FIGS. 8A and 8B are side views of a device according to an embodiment of the invention;



FIGS. 9A and 9B are perspective and close-up cross-sectional views of a device according to an embodiment of the invention;



FIG. 10 is a perspective view of a device according to an embodiment of the invention;



FIG. 11 is a top view of a device according to an embodiment of the invention;



FIG. 12 is a top view of a device according to an embodiment of the invention;



FIG. 13 is a perspective view of a device according to an embodiment of the invention;



FIGS. 14A-14B are perspective views of devices according to embodiments of the invention; and



FIG. 15 is a top view of a device according to an embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is an anchoring device, including prosthetic heart valves and annuloplasty rings and other devices using that anchoring device, for securement within a patient, such as in a native heart valve annulus in a human heart. The device has particular applicability to devices to be secured at the annulus of a valve (such as the mitral and tricuspid valves) which has subvalvular structures such as chordae tendinea. A mitral valve and its subvalvular structure are depicted in FIGS. 1 and 2.



FIG. 3 depicts a device 10 for anchoring a prosthetic heart valve or repair ring to the mitral annulus of a heart. The device 10 may be made of a metal such as stainless steel, although other materials (metal or non-metal) may be suitable. The device 10 is composed of a central ring 12 having two semi-circular anchors, namely an anterior anchor 14a and a posterior anchor 14p, attached to and extending from the central ring 12 at positions spaced apart around the circumference of the ring by an angle 16 of approximately 120 degrees. This angle and spacing divides the device 10 into approximately ⅓ and ⅔ sections, thus approximating the proportions of the anterior leaflet and posterior leaflet of a native mitral valve. The anchors 14a, 14p are spaced slightly away from and run substantially parallel to the outer circumference of the central ring 12, and define an anterior leaflet receiving slot 18a and posterior leaflet receiving slot 18p, respectively. The leaflet receiving slots 18a, 18p have a width 20a, 20p which is generally on the order of the thickness of the anterior and posterior leaflets of a mitral valve, i.e., the slots 18a, 18p have a width of about 0.005 to 0.25 inches. These slot widths 20a, 20p are sufficient to permit the anterior and posterior leaflets of a mitral valve to slidingly enter the slots 18a, 18p. The slots 18a, 18p have lengths 22a, 22p sufficient to receive a substantial portion of the respective mitral valve leaflets. The length 22a of the anterior leaflet receiving slot 18a may be between about 0.25 to 3.5 inches, while the length 22p of the posterior leaflet receiving slot 18p may be between about 0.25 and 3.5 inches. The central ring 12 defines an inner opening 24 having an inner diameter 26. If the device 10 is part of a prosthetic heart valve (e.g., part of a support stent of a prosthetic heart valve), the inner diameter 20 may be between 0.75 to 1.5 inches. If the device 10 is part of a valve repair device such as an annuloplasty ring, the inner diameter may be between 0.75 to 1.5 inches.



FIGS. 4 and 5 depict the device 10 anchored in a mitral valve annulus AN. The anterior leaflet AL is positioned within the anterior leaflet slot 18a such that the slot 18a holds a proximal portion of the anterior leaflet AL (with the proximal portion of the leaflet being adjacent the annulus AN, as opposed to a distal portion which is adjacent the leaflet edge). Similarly, the posterior leaflet PL is positioned within the posterior leaflet slot 18p such that the slot 18p receives a proximal portion of the posterior leaflet PL (with the proximal portion of the leaflet being adjacent the annulus AN, as opposed to a distal portion which is adjacent the leaflet edge). The anterior and posterior anchors 14a,14p are thus positioned between their respective leaflets AL, PL and the ventricle wall, while the central ring 12 is positioned within the mitral valve annulus AN. The anchors 14a, 14p and slots 18a, 18p thus prevent migration of the device, e.g., into the atrium during systole or into the ventricle during diastole. The leaflet slots 18a, 18p serve to grip the leaflets AL, PL to anchor the device 10 in the desired position in the annulus AN.



FIGS. 6A-6C depict schematically the installation of the device 10, as viewed from the left atrium (i.e., looking through the mitral valve into the left ventricle). In FIG. 6A, the device 10 is positioned with the central ring 12 generally centrally positioned in the mitral valve annulus AN, and with the posterior anchor free end 28p adjacent the AC commissure. The posterior anchor free end 28p is inserted (e.g., by manipulating the device 10 as a whole and/or by bending the posterior anchor free end 28p away/downward from its normal position adjacent the central ring 12) between the anterior and posterior leaflets so it is positioned underneath the posterior leaflet PL, and the device 10 is then rotated counter-clockwise, with the posterior leaflet PL sliding into the posterior anchor slot 18p, to the point where the anterior anchor free end 28a is adjacent the PC commissure, as depicted in FIG. 6B. The anterior anchor free end 28a is then inserted (e.g., by manipulating the device 10 as a whole and/or by bending the anterior anchor free end 28a away/downward from its normal position adjacent the central ring 12) between the anterior and posterior leaflets so it is positioned underneath the anterior leaflet AL, and the device 10 is further rotated clockwise with the anterior leaflet AL sliding into the anterior anchor slot 18a (and the posterior leaflet PL further sliding into the posterior anchor slot 18b) until the device is fully seated. When fully seated, as depicted in FIG. 6C, both anchors 14a, 14p are beneath their respective leaflets AL, PL, the attachment bar 30a of the anterior leaflet anchor 14a is positioned at the PC commissure, and the attachment bar 30p of the posterior leaflet anchor 14p is positioned at the AC commissure.



FIGS. 7A-7D depict a prosthetic mitral valve assembly 40 utilizing an anchoring assembly of the invention. The valve assembly 40 has a tri-leaflet valve portion 42 secured to a support structure 44. The support structure 44 includes an anchoring device 46, which itself has a central ring 48 with posterior and anterior anchors 50a, 50p defining posterior and anterior slots 52a, 52p configured to slidingly receive posterior and anterior leaflets of a mitral valve. The assembly 40 further includes an upstream stent structure 54 which is configured to be expanded into engagement with surrounding tissue, such as with the atrium wall. The stent could be either self-expanding or balloon expandable. The stent 54 would preferably be crimped (in the case of balloon expandable) or restrained (in the case of self-expandable), to a relatively small delivery diameter, as depicted in FIG. 8A, for delivery. Once the anchor portion was fully engaged with the native valve leaflets (i.e., rotated into engagement), the stent could be deployed to its expanded condition, as depicted in FIG. 8B. If the stent portion 54 were self-expanding, the delivery catheter would need a sheath to restrain the stent in its compressed delivery configuration. If the stent were balloon expandable, the delivery catheter would need a balloon or similar radially expansion device to radially expand the stent.


The configurations of various elements could vary at different positions on the assembly. For example, the cross-sectional shape of the anchors and/or central ring could be other than rectangular, and/or could vary along their lengths. For example, as depicted in FIGS. 9A and 9B, an anchor assembly 60 could have a central ring 62, with anchor portions 64a, 64p having a “C”-shaped channel cross section. The cross section shape could be designed such that the in-plane stiffness of the anchors was substantially less than their out-of-plane stiffness, or vice-versa. Such differential stiffness could help the anchors conform to the native annulus during insertion while still providing high retention forces in the axial direction.



FIG. 10 depicts a further embodiment of the device, wherein an anchor assembly 70 has a posterior anchor 72p and an anterior anchor 72a, but the anchors 72a, 72p are secured to separate assembly ring portions 74a, 74p. These separate ring portions 74a, 74p can rotate with respect to each other, thereby permitting separate (independent) rotation of the anchors 72a, 72p with respect to each other. Such independent rotation of the anchors 72a, 72p could make installation of the device easier for the surgeon or other user.


Various modifications could be made to promote ease of use. For example, an anchor device 80 portion could have a central ring 82 and anchors 84a, 84p having rounded or otherwise blunted ends, such as the spherical-tipped ends 86a, 86p depicted in FIG. 11, to reduce the potential for the tips to snag on or traumatize the tissue of the leaflets, ventricle wall, chordae, etc., as the leaflets are slid into the slots 88a, 88p. Such structures could make it easier for the anchors 84a, 84p to be threaded behind the valve leaflets. The rounded structures could be formed as a unitary portion (i.e., at the same time, of the same material, etc.) with the anchors, or could be separate pieces attached to the anchors during manufacture. For example, the rounded portions could be formed from PTFE which is press-fit and/or glued to the anchors.


An anchoring device according to the invention could use various materials, and could include coverings, etc. For example, the structure of the anchoring device (formed of, e.g., metal) could include a cloth covering. Such coverings could serve multiple purposes. For example, covering the device with a biocompatible covering which encourages tissue ingrowth, such as PTFE cloth, would encourage the patient's native tissue to attach to the device over time, possibly reducing tissue irritation and potential damage from metal-on-tissue contact. The tissue ingrowth could also assist to improve the anchoring of the device, by providing mechanical stability and thereby reduce the chance of migration and embolization. The covering, especially a cloth covering, could also provide the ability for a surgeon or other user to use sutures to further secure the device in place. A flexible/resilient covering, such as cloth, could also provide a surface which would “give way” (e.g., be compressed) to permit the leaflets to be slid into the slots, but would also push back (i.e., rebound) into the slots to engage the leaflets once in place and assist in holding the device in place. A covering could also be used to hold a lubricious coating, such as glycerol, which could facilitate the threading of the anchors between the leaflets and the ventricle.


Coverings, if present, could be configured to bioresorb or otherwise degrade over time, or could be formed from material(s) that will not biodegrade/bioresorb over time. Examples of such materials for potential use with the invention include PTFEs, polyesters, nylons, and others.


The structural support portions of devices according to the invention could be formed from metals or non-metals, including stainless steel, nitinol, titanium, CoCr, alloys, polymeric materials, and other biocompatible materials. The structural support portions (i.e., the central ring and anchors) may preferably be formed from materials which are substantially rigid with minimal elasticity, and which are not easily plastically deformed. Devices according to the invention may include radiopaque markers and other structures to enhance visibility during implantation. For example, an anchor member may have one or more radiopaque markers positioned thereon, such as at the tip of the free end and/or at the fixed end. Such radiopaque markers may be formed from highly-radiopaque materials (e.g., gold, platinum) mounted on, embedded in, formed with, or otherwise secured to the structural support and/or other portions of the device.



FIG. 12 depicts a further embodiment of an anchor assembly 90, where a central ring 92 has three anchors 94a, 94b, 94c positioned around the perimeter of the device. In the specific embodiment depicted, the anchors 94a, 94b, 94c are spaced at about 120 degrees to each other, although other spacings are within the scope of the invention. The three-anchor design could be applicable for deployment at non-mitral valve locations, such as at the tricuspid valve position (i.e., the valve and annulus between the right ventricle and right atrium). Alternatively, such an assembly could be used for anchoring at the mitral valve, where one of the arms (e.g., arm 94a) was used to be secured to the anterior leaflet, and the other two arms (e.g., arms 94a, 94c) were used to be secured to the posterior leaflet. In order to properly thread the device into place, the surgeon or other user might need to form an incision in the posterior leaflet, such as at the position midway between the commissure points AC and PC near the leaflet/annulus junction, in order to advance the “extra” arm (i.e., arm 94c) underneath the posterior leaflet. The posterior leaflet would then have two anchors—one starting at the AC commissure and one starting at the middle of the posterior leaflet (i.e., in the so-called “P2” section). Such a configuration may provide improved deployment and anchoring capabilities.


A further embodiment of the invention is depicted in FIG. 13, wherein an anchor assembly 100 has a central portion 102 with anchors 104a,104p positioned below (e.g., downstream of) the central portion 102. This configuration provides the potential for having a larger central opening 106 on the central portion 102 for a given native valve annulus size, which could thus accommodate a larger prosthetic valve orifice (where the anchor assembly is part of a prosthetic valve assembly) or a larger native valve orifice (where the anchor assembly is part of a repair device such as an annuloplasty ring).



FIGS. 14A and 14B depict further embodiments of an anchor assembly 110, wherein anchors 112a, 112p are secured directly to a central portion in the form of a stent structure 114. The stent structure 114 is thus the central portion in lieu of a central ring portion such as depicted in FIG. 3. FIG. 14B has the addition of the valve support assembly (i.e., commissure supports 116) being formed with or otherwise attached to the assembly 110. Such anchor assemblies could be useful as part of a prosthetic valve assembly, such as that previously depicted in FIGS. 7A-7D. The embodiments of FIGS. 14A-14B have the additional advantage that the entire anchor assembly can be radially compressed, so that a prosthesis (e.g., annuloplasty ring and/or prosthetic heart valve) could be crimped or otherwise radially compressed into a smaller delivery profile for potential delivery to and deployment at the native annulus via catheterization (e.g., percutaneous/MIS). The device as shown in FIGS. 14A-14B could be delivered through a catheter in a percutaneous or minimally-invasive type intervention, or via open heart.


Although the embodiments depicted above generally had substantially circular configurations, which may be preferred in some applications such as prosthetic heart valves and annuloplasty rings, the invention is not so limited. For example, non-circular configurations could also be used, such as the generally D-shaped configuration depicted in FIG. 15. The anchor assembly 120 has a central portion 122 which is substantially D-shaped, with anchors 124a, 124p extending therefrom and curving to match the substantially D-shape of the central portion 122. Such non-circular configurations could be particularly useful where the anchor assembly 120 was serving as part of an annuloplasty ring or similar repair device, such as an annuloplasty ring for the mitral valve. Note that an anchor assembly according to the invention, whether circular or non-circular, does not have to be planar. For example, three-dimensional forms, such as a so-called “3D saddle shape” like that disclosed in U.S. Pat. No. 6,805,710, issued Oct. 19, 2004 and entitled “Mitral Valve Annuloplasty Ring for Molding Left Ventricle Geometry” (the entire contents of which are incorporated by reference herein) could also be used with the invention in order to form a device to conform to, or to deform/reshape, the native anatomy.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims.

Claims
  • 1. An anchoring device for an implant intended for implantation at a native heart valve annulus having valve leaflets, the anchoring device comprising: a circular or generally D-shaped central portion with a plurality of elongated distinct anchors extending therefrom, each of the plurality of anchors having a fixed end secured to the central portion opposite a free end so that each anchor is cantilevered from the central portion, the plurality of anchors being spaced away from and running substantially parallel to a circumference of the central portion in a curved fashion through an angle of between 90-240° to form valve leaflet-receiving slots between the anchors and the central portion, the slots have a length of 0.25 to 3.5 inches to receive the leaflets, wherein the anchors all extend in the same angular direction relative to each other.
  • 2. The anchoring device of claim 1, wherein the device has exactly two anchors, one of which is longer than the other.
  • 3. The anchoring device of claim 1, wherein the device has exactly two anchors and a first anchor extends around the circumference of the central portion through an angle of at least 90 degrees while a second anchor extends around the circumference of the central portion through an angle of at least 120 degrees.
  • 4. The anchoring device of claim 3, wherein the first anchor extends around the circumference of the central portion through an angle of between 90-120 degrees while the second anchor extends around the circumference of the central portion through an angle of between 150-240 degrees.
  • 5. The anchoring device of claim 1, wherein the implant is a prosthetic valve comprising a support frame and a valve portion, and wherein the anchoring device is secured to the support frame of the prosthetic valve.
  • 6. The anchoring device of claim 5, wherein at least a portion of the prosthetic valve is tubular and has an exterior surface forming a continuously curved surface, and each of the plurality of anchors forms a curve which parallels the curved surface of the exterior surface of the prosthetic valve.
  • 7. The anchoring device of claim 1, wherein the implant is an annuloplasty ring, and wherein the anchoring device is secured to the annuloplasty ring such that each of the plurality of anchors extends partially around a circumference of the annuloplasty ring and substantially parallel to an outer surface of the annuloplasty ring.
  • 8. The anchoring device of claim 1, further comprising one or more radiopaque markers positioned at the free ends of each anchor.
  • 9. An anchoring device for an implant intended for implantation at a native heart valve annulus having valve leaflets, the anchoring device comprising: a circular or generally D-shaped central portion extending around a circumference and a plurality of anchors each having a fixed end secured to the central portion opposite a free end so that each anchor is cantilevered from the central portion, each anchor extending in continuous, unbroken fashion from the fixed end to the free end substantially parallel to and spaced from the curved circumference of the central portion, and each anchor extending from a different angular position around the central portion and extending in the same angular direction, the anchors being non-over-lapping.
  • 10. The anchoring device of claim 9, wherein the device has exactly two anchors, one of which is longer than the other.
  • 11. The anchoring device of claim 10, wherein a first anchor extends around the circumference of the central portion through an angle of at least 90 degrees while a second anchor extends around the circumference of the central portion through an angle of at least 120 degrees.
  • 12. The anchoring device of claim 9, wherein the anchors lie in the same plane as and radially outward from the central portion.
  • 13. The anchoring device of claim 9, wherein the anchors lie in a different plane than and axially spaced from the central portion.
  • 14. The anchoring device of claim 9, wherein the implant is a prosthetic valve comprising a support frame and a valve portion, and wherein the anchoring device is secured to the support frame of the prosthetic valve.
  • 15. The anchoring device of claim 9, wherein at least a portion of the prosthetic valve is tubular and has an exterior surface forming a continuously curved surface, and each of the plurality of anchors forms a curve which parallels the curved surface of the exterior surface of the prosthetic valve.
  • 16. The anchoring device of claim 9, wherein the implant is an annuloplasty ring, and wherein the anchoring device is secured to the annuloplasty ring such that each of the plurality of anchors extends partially around a circumference of the annuloplasty ring and substantially parallel to an outer surface of the annuloplasty ring.
  • 17. The anchoring device of claim 9, further comprising one or more radiopaque markers positioned at the free ends of each anchor.
  • 18. The anchoring device of claim 9, wherein the central portion comprises two planar ring portions rotatable with respect to one another, and each ring portion has at least one anchors extending therefrom.
  • 19. The anchoring device of claim 18, wherein each anchor lies in a different plane than and axially spaced from the associated ring portion.
  • 20. An anchoring device for an implant intended for implantation at a native heart valve annulus having valve leaflets, the anchoring device comprising: a circular or generally D-shaped central portion with a plurality of elongated distinct anchors extending therefrom, each of the plurality of anchors having a fixed end secured to the central portion opposite a free end so that each anchor is cantilevered from the central portion, the plurality of anchors being spaced away from and running substantially parallel to a circumference of the central portion in a curved fashion through an angle of between 90-240° to form valve leaflet-receiving slots between the anchors and the central portion, the slots have a length of 0.25 to 3.5 inches to receive the leaflets, wherein the central portion comprises two planar ring portions rotatable with respect to one another, and each ring portion has at least one anchor extending therefrom.
  • 21. The anchoring device of claim 20, wherein each anchor lies in a different plane than and axially spaced from the associated ring portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/297,187, filed Mar. 8, 2019, now U.S. Pat. No. 10,849,752, which is a continuation of U.S. application Ser. No. 15/482,529, filed Apr. 7, 2017, now U.S. Pat. No. 10,238,489, which is a continuation of U.S. application Ser. No. 14/797,163, filed Jul. 12, 2015, now U.S. Pat. No. 9,737,401, which is a divisional of U.S. application Ser. No. 13/675,801, filed Nov. 13, 2012, now U.S. Pat. No. 9,078,747, which claims the benefit of U.S. Provisional Application No. 61/578,758, filed Dec. 21, 2011, the entire disclosures all of which are incorporated herein by reference for all purposes.

US Referenced Citations (478)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320972 High et al. May 1967 A
3371352 Siposs et al. Mar 1968 A
3409013 Berry Nov 1968 A
3546710 Shumakov et al. Dec 1970 A
3574865 Hamaker Apr 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3657744 Ersek Apr 1972 A
3686740 Shiley Aug 1972 A
3755823 Hancock Sep 1973 A
3839741 Haller Oct 1974 A
4035849 Angell et al. Jul 1977 A
4078468 Civitello Mar 1978 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4172295 Batten Oct 1979 A
4217665 Bex et al. Aug 1980 A
4218782 Rygg Aug 1980 A
4259753 Liotta et al. Apr 1981 A
RE30912 Hancock Apr 1982 E
4340091 Skelton et al. Jul 1982 A
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier et al. Jun 1984 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4605407 Black et al. Aug 1986 A
4626255 Reichart et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4680031 Alonso Jul 1987 A
4687483 Fisher et al. Aug 1987 A
4702250 Ovil et al. Oct 1987 A
4705516 Barone et al. Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4851000 Gupta Jul 1989 A
4865600 Carpentier et al. Sep 1989 A
4888009 Lederman et al. Dec 1989 A
4914097 Oda et al. Apr 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5041130 Cosgrove et al. Aug 1991 A
5059177 Towne et al. Oct 1991 A
5147391 Lane Sep 1992 A
5163955 Love et al. Nov 1992 A
5258023 Reger Nov 1993 A
5290300 Cosgrove et al. Mar 1994 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411522 Trott May 1995 A
5411552 Andersen et al. May 1995 A
5413676 Nguyen et al. May 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5476510 Eberhardt et al. Dec 1995 A
5488789 Religa et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5522884 Wright Jun 1996 A
5531785 Love et al. Jul 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5562729 Purdy et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo, Sr. Nov 1996 A
5578076 Krueger et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney et al. May 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger et al. Dec 1997 A
5713952 Vanney et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5728064 Burns et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger et al. Apr 1998 A
5752522 Murphy May 1998 A
5755782 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5776187 Krueger et al. Jul 1998 A
5776188 Shepherd et al. Jul 1998 A
5800527 Jansen et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824064 Taheri Oct 1998 A
5824068 Bugge Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865801 Houser Feb 1999 A
5885228 Rosenman et al. Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5895420 Mirsch, II et al. Apr 1999 A
5902308 Murphy May 1999 A
5904695 Krueger May 1999 A
5908450 Gross et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6059827 Fenton, Jr. May 2000 A
6066160 Colvin et al. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward et al. Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6176877 Buchanan et al. Jan 2001 B1
6197054 Hamblin, Jr. et al. Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6241765 Griffin et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6283127 Sterman et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6350282 Eberhardt Feb 2002 B1
6371983 Lane Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6432134 Anson et al. Aug 2002 B1
6440164 Di Matteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458100 Roue et al. Oct 2002 B2
6458153 Bailey et al. Oct 2002 B1
6468305 Otte Oct 2002 B1
6527979 Constantz et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
6558416 Cosgrove et al. May 2003 B2
6558429 Taylor May 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6652578 Bailey et al. Nov 2003 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6702825 Frazier et al. Mar 2004 B2
6712804 Roue et al. Mar 2004 B2
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6746472 Frazier et al. Jun 2004 B2
6764508 Roehe et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6805711 Quijano et al. Oct 2004 B2
6846325 Liddicoat Jan 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6964682 Nguyen-Thien-Nhon et al. Nov 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6978176 Lattouf Dec 2005 B2
7011681 Vesely Mar 2006 B2
7018404 Holmberg et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7037334 Hlavka et al. May 2006 B1
7070616 Majercak et al. Jul 2006 B2
7077861 Spence Jul 2006 B2
7081131 Thornton Jul 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7160320 Duran Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7201771 Lane Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
7300463 Liddicoat Nov 2007 B2
7311730 Gabbay Dec 2007 B2
7377941 Rhee et al. May 2008 B2
RE40377 Williamson, IV et al. Jun 2008 E
7422603 Lane Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7468073 Johnson et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7513909 Lane et al. Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7534261 Friedman May 2009 B2
7556647 Drews et al. Jul 2009 B2
7569072 Berg et al. Aug 2009 B2
7578843 Shu Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591848 Allen Sep 2009 B2
7597711 Drews et al. Oct 2009 B2
7611535 Woolfson et al. Nov 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7622276 Cunanan et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7641687 Chinn et al. Jan 2010 B2
7658763 Stobie Feb 2010 B2
7682390 Seguin Mar 2010 B2
7704277 Zakay et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7727276 Machiraju Jun 2010 B2
7737060 Strickler et al. Jun 2010 B2
7740655 Birdsall Jun 2010 B2
7785366 Maurer et al. Aug 2010 B2
7799069 Bailey et al. Sep 2010 B2
7822414 Bender et al. Oct 2010 B2
7862610 Quintessenza Jan 2011 B2
7887583 Macoviak Feb 2011 B2
7896913 Damm et al. Mar 2011 B2
7947072 Yang et al. May 2011 B2
7951195 Antonsson et al. May 2011 B2
7951197 Lane et al. May 2011 B2
7967857 Lane Jun 2011 B2
7972377 Lane Jul 2011 B2
7989157 Cunanan et al. Aug 2011 B2
8062355 Figulla et al. Nov 2011 B2
8167932 Bourang et al. May 2012 B2
8246675 Zegdi Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8308798 Pintor et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8348998 Pintor et al. Jan 2013 B2
8353953 Giannetti et al. Jan 2013 B2
8377115 Thompson Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8449605 Lichtenstein et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8460173 Schweich, Jr. et al. Jun 2013 B2
8500798 Rowe et al. Aug 2013 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8734507 Keranen May 2014 B2
8784483 Navia Jul 2014 B2
8821569 Gurskis et al. Sep 2014 B2
9078747 Conklin Jul 2015 B2
9095434 Rowe Aug 2015 B2
9119718 Keranen Sep 2015 B2
9125738 Figulla et al. Sep 2015 B2
9237886 Seguin et al. Jan 2016 B2
9364326 Yaron Jun 2016 B2
9463268 Spence Oct 2016 B2
9474599 Keranen Oct 2016 B2
9622863 Karapetian et al. Apr 2017 B2
20010021872 Bailey et al. Sep 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188348 DiMatteo et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030040792 Gabbay Feb 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030225420 Wardle Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040167573 Williamson et al. Aug 2004 A1
20040186563 Iobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050151970 DeGeorge et al. Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060235508 Lane et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis et al. Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070282436 Pinchuk Dec 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080033542 Antonsson et al. Feb 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080082161 Woo Apr 2008 A1
20080119875 Ino et al. May 2008 A1
20080208330 Keranen Aug 2008 A1
20080281411 Berreklouw Nov 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090192602 Kuehn Jul 2009 A1
20090192603 Kuehn Jul 2009 A1
20090192604 Gloss Jul 2009 A1
20090192605 Gloss et al. Jul 2009 A1
20090192606 Gloss et al. Jul 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100076548 Konno Mar 2010 A1
20100145440 Keranen Jun 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100204785 Alkhatib Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100292784 Giannetti et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100318184 Spence Dec 2010 A1
20100331972 Pintor et al. Dec 2010 A1
20110137410 Hacohen Jun 2011 A1
20110147251 Hodshon et al. Jun 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110224785 Hacohen Sep 2011 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120065729 Pintor et al. Mar 2012 A1
20120087842 Kristiansson et al. Apr 2012 A1
20120094406 Patel et al. Apr 2012 A1
20120095116 Kishi et al. Apr 2012 A1
20120150288 Hodshon et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120283820 Tseng et al. Nov 2012 A1
20130175468 Uehara Jul 2013 A1
20140074299 Endou et al. Mar 2014 A1
20140172070 Seguin Jun 2014 A1
20140379074 Spence et al. Dec 2014 A1
20150173897 Raanani et al. Jun 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150335428 Keranen Nov 2015 A1
20150374493 Yaron et al. Dec 2015 A1
20160074165 Spence et al. Mar 2016 A1
20160095705 Keranen et al. Apr 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160199177 Spence et al. Jul 2016 A1
20160256276 Yaron Sep 2016 A1
20170007399 Keranen Jan 2017 A1
20170007402 Zerkowski et al. Jan 2017 A1
20170217385 Rinkleff et al. Aug 2017 A1
Foreign Referenced Citations (41)
Number Date Country
2356656 Jan 2000 CN
19532846 Mar 1997 DE
19907646 Aug 2000 DE
0125393 Nov 1984 EP
0143246 Jun 1985 EP
0592410 Oct 1995 EP
0850607 Jul 1998 EP
2620125 Jul 2013 EP
2726018 May 2014 EP
2806829 Dec 2014 EP
9117720 Nov 1991 WO
9213502 Aug 1992 WO
9742871 Nov 1997 WO
9806329 Feb 1998 WO
9911201 Mar 1999 WO
9915112 Apr 1999 WO
9951169 Oct 1999 WO
0032105 Jun 2000 WO
0040176 Jul 2000 WO
0060995 Oct 2000 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0247575 Jun 2002 WO
02076347 Oct 2002 WO
2005084595 Sep 2005 WO
2006011127 Feb 2006 WO
2006086135 Aug 2006 WO
2005102015 Apr 2007 WO
2007067942 Jun 2007 WO
2009155561 Dec 2009 WO
2010121076 Oct 2010 WO
2013110722 Aug 2013 WO
2013114214 Aug 2013 WO
2015023579 Feb 2015 WO
2015023862 Feb 2015 WO
2015127264 Aug 2015 WO
2015198125 Dec 2015 WO
2016038017 Mar 2016 WO
2016040881 Mar 2016 WO
2016130820 Aug 2016 WO
Non-Patent Literature Citations (2)
Entry
Krakow, “3F Therapeutics, Inc. Announces the First Clinical Implantation of the 3F Enable Aortic Heart Valve.TM., a Patented, Sutureless Implantation, Replacement Heart Valve Intended to Save Valuable Surgery Time and Reduce Time RelatedComplications . . . ” Healthcare Sales & Marketing Network News Feed, Jan. 18, 2005, pp. 1-2.
Sadowski, Jerzy; Kapelak, Boguslaw; Bartus, Krzysztof, “Sutureless Heart Valve Implantation—A Case Study,” Touch Briefings, 2005, pp. 48-50.
Related Publications (1)
Number Date Country
20210077259 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61578758 Dec 2011 US
Divisions (1)
Number Date Country
Parent 13675801 Nov 2012 US
Child 14797163 US
Continuations (3)
Number Date Country
Parent 16297187 Mar 2019 US
Child 17105373 US
Parent 15482529 Apr 2017 US
Child 16297187 US
Parent 14797163 Jul 2015 US
Child 15482529 US