The subject matter described herein relates to anchoring mechanisms for Binishells and similar structures.
In 1964, Dante N. Bini built the first hemispherical thin shell structure by pneumatically and automatically lifting all the necessary construction materials, which were distributed horizontally over a pneumatic form anchored to a circular ring beam, from ground level into an hemispherical dome typically having an elliptical section. After the initial ground preparation was finished, that concrete thin shell structure was erected via air pressure in 60 minutes.
The term, Binishells, was previously used to refer to a type of hemispherical and/or elliptical thin shell structure. Specifically, the Binishells originally referred to a reinforced concrete structure erected over a circular footing ring beam and fabricated by pouring concrete on an inflatable pre-shaped and inelastic membrane, inflating the membrane, and then allowing the resulting reinforced concrete dome to cure. This method of construction produces circular-based, monolithic, reinforced concrete shell structures, with hemispherical and/or elliptical sections ranging in size from 12 to 40 meters in diameter. Over 1,500 of these Binishells-based buildings are in use in 23 countries. U.S. Pat. No. 3,462,521 entitled “Method of Erecting Structures” describes an example of a method for erecting the Binishells-structure and is incorporated by reference in its entirety.
The subject matter disclosed herein provides methods and apparatus for fabricating (e.g., erecting, lifting, shaping, etc) thin-shell reinforced structures of hardening building materials using a pneumoform. Also described are anchoring mechanisms and assemblies for erecting such reinforced structures.
In one aspect, there are provided systems, devices, and methods for erecting a reinforced structure of a hardening building material using a pneumoform. The assembly includes an anchor bar having a first portion secured to a foundation and a second portion; a clamp bar configured to be aligned with the second portion of the anchor bar; a fixation element configured to extend through the clamp bar and the second portion of the anchor bar; and a pneumoform having an outer perimeter incorporating a keder. The outer perimeter of the pneumoform is positionable within a space between the second portion of the anchor bar and the clamp bar such that upon locking the clamp bar to the anchor bar with the fixation element the keder is captured by the clamp bar creating a first seal and forming a fluid-tight internal volume configured to be inflated.
A portion of an external surface of the pneumoform can be urged against the keder upon application of pressure against an internal surface of the pneumoform creating a second seal and forming a pocket around at least a portion of the fixation element. The second seal can prevent hardening building material applied to the pneumoform from entering the pocket and contacting the at least a portion of the fixation element. Removal of the pressure can deflate the internal volume and reveal the at least a portion of the fixation element. The at least a portion of the fixation element can be removable and the pneumoform can be removable from the assembly. The pneumoform can be reusable after it is removed. The pneumoform can have a double wall configured to be inflated internally. One or more regions of the clamp bar can be covered with a cushioned material. The keder can be prevented from being pulled through the space. Inflating the fluid-tight internal volume of the pneumoform can create a freeform shape. The pneumoform can be formed of a reinforced material that locks into position once a certain shape is achieved. The pneumoform can be formed of an elastomeric material. The pneumoform can have a single wall.
The anchor bar can have a first hole extending through the second portion. The clamp bar can have a second hole extending through the clamp bar. The fixation element can extend through a bore created when the first and second holes align. The fixation element can extend through a portion of the outer perimeter of the pneumoform positioned within the space when it extends through the bore. The fixation element can be a bolt having a shaft and a head. The shaft can extend through the bore from an internal side of the pneumoform to an external side of the pneumoform such that the head of the bolt remains on the internal side of the pneumoform. The shaft of the bolt can be secured with a lock nut or lock washer on the external side of the pneumoform locking the clamp bar to the anchor bar. The keder can be positioned along an upper surface of the clamp bar such that the pneumoform extends from the space under a lower surface of the clamp bar. The first seal can form collectively between the keder, the anchor bar and the clamp bar locked to the anchor bar. Inflating the pneumoform can increase internal air pressure within the fluid-tight volume. A portion of an external surface of the pneumoform can be urged against the keder forming a second seal. The second seal can form automatically upon inflating the fluid-tight internal volume. Inflating the internal volume can include injecting air using a blower, compressor or compressed air tank. Inflating the internal volume can include applying a pressure against an internal surface of the pneumoform pushing the pneumoform outward. The first and second seals can be each configured to maintain a seal during inflation of the internal volume and upon application of an internal pressure. The second seal can form a pocket around the clamp bar and the head of the bolt. The head of the bolt can be positioned within the pocket between the clamp bar and the pneumoform.
The assembly can further include a rebar matrix assembled over the inflated pneumoform. The first and second seals can be each configured to maintain a seal during applying of a hardening building material. The second seal can prevent the hardening building material applied to the pneumoform from entering the pocket and contacting the head of the bolt. Applying the hardening building material can include pouring the hardening building material. Applying the hardening building material can include spraying the hardening building material. The hardening building material can include concrete, shotcrete, gunite, or other hardening building material.
The head of the bolt can be revealed upon deflating the pneumoform. The bolt can be configured to be accessed and removed from the bore after deflating the pneumoform. The pneumoform can be configured to be recovered by disengaging the outer perimeter from within the space between the anchor bar and the clamp bar. The disengaged pneumoform can be reusable to fabricate a second reinforced structure of hardening building material.
In an interrelated aspect, disclosed is a method of fabricating a reinforced structure of hardening building material using a pneumoform shaped by air pressure. The method includes securing a first portion of an anchor bar to a foundation; positioning an outer perimeter of a pneumoform within a space between a second portion of the anchor bar and a clamp bar, the outer perimeter incorporating a keder; preventing the keder from being pulled through the space; and inflating the pneumoform to create a freeform shape.
The anchor bar can have a first hole extending through the second portion and the clamp bar can have a second hole extending through the clamp bar. The first and second holes can align to create a bore through which a fixation element is configured to be inserted. The method can further include inserting the fixation element through the bore and a portion of the outer perimeter of the pneumoform positioned within the space. The fixation element can be a bolt having a shaft and a head. Inserting the fixation element can include extending the shaft through the bore from an internal side of the pneumoform to an external side of the pneumoform such that the head of the bolt remains on the internal side of the pneumoform. The shaft of the bolt can be secured with a lock nut or lock washer on the external side of the pneumoform locking the clamp bar to the anchor bar. The method can further include positioning the keder along an upper surface of the clamp bar such that the pneumoform extends from the space under a lower surface of the clamp bar. The method can further include creating a fluid-tight volume within the pneumoform by forming a first seal. The first seal can form collectively between the keder, the anchor bar and the clamp bar locked to the anchor bar.
Inflating the pneumoform can increase internal air pressure within the fluid-tight volume. The method can further include urging a portion of an external surface of the pneumoform against the keder forming a second seal. The second seal can form automatically upon inflating the pneumoform. Inflating the pneumoform can include injecting air into the fluid-tight volume using a blower, compressor or compressed air tank. Inflating the pneumoform can include applying a pressure against an internal surface of the pneumoform pushing the pneumoform outward. The first and second seals can each be configured to maintain a seal during inflation of the pneumoform. Forming the second seal can include forming a pocket around the clamp bar and the head of the bolt. The head of the bolt can be positioned within the pocket between the clamp bar and the pneumoform.
The method can further include assembling a rebar matrix over the inflated pneumoform. The method can further include performing a slump test on the rebar matrix and the inflated pneumoform. The method can further include applying a hardening building material over the rebar matrix. Applying the hardening building material can include pouring the hardening building material. Applying the hardening building material can include spraying the hardening building material. The hardening building material comprises concrete, Shotcrete, Gunite or other hardening building material. Spraying can include pneumatically projecting the hardening building material over the inflated pneumoform. The first and second seals can each be configured to maintain a seal during applying the hardening building material. The second seal can prevent the hardening building material applied to the pneumoform from entering the pocket and contacting the head of the bolt. The method can further include continuously troweling the hardening building material while applying it. The method can further include maintaining constant air pressure while the hardening building material sets to a specific compressive self-supporting strength.
The method can further include deflating the pneumoform. Deflating the pneumoform can include revealing the head of the bolt. The method can further include accessing and removing the bolt in the pocket from the bore. The method can further include recovering the pneumoform by disengaging the outer perimeter from within the space between the anchor bar and the clamp bar. The method can further include reusing the pneumoform to fabricate a second reinforced structure of hardening building material. The second reinforced structure can have a shape that is the same or different as the first reinforced structure. The foundation can include a slab coupled to a first ring beam defining an outer perimeter of the reinforced structure. The foundation can further include a second ring beam defining an inner perimeter of the reinforced structure.
The above-noted aspects and features may be implemented in systems, apparatus, and/or methods, depending on the desired configuration. The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
In the drawings,
The subject matter disclosed herein provides methods and apparatus for fabricating (e.g., erecting, lifting, shaping, etc) thin-shell reinforced structures of hardening building materials using a pneumoform. Also described are anchoring mechanisms and assemblies for erecting such reinforced structures.
Described herein are anchoring mechanisms and assemblies for erecting a reinforced structure of a hardening building material in the fabrication of structures, such as Binishells, freeform Binishells or thin-shell structures that are shaped by air pressure. The structures are generally very fast and inexpensive to construct as well as benefitting from relatively high strength and a reduced carbon footprint compared to conventional construction. The structures have a variety of uses including housing, storage buildings, schools and the like.
Pneumoform stands for PNEUMatic FORMwork and can also be referred to as an “airform.” It should be appreciated that use of the terms “pneumoform” or “pneumatic formwork” or “membrane” is not intended to be limiting. The pneumoform can take a variety of forms including having a base layer or double layer, which will complete the air seal internally. The pneumoform can have a single wall. The pneumoform may also have a double wall that is inflated internally to create the desired shape and/or have webbing pinch point(s), cables, baffles and/or other designed elements to control or alter the inflated shape as will be described in more detail herein. The pneumoform can be formed of a reinforced material such that it locks into position once a certain shape is achieved. Alternatively, the pneumoform can be formed of an elastomeric material.
Although structure 100 may be fabricated in a variety of ways, the following description provides a process for fabricating a structure 100, such as freeform Binishells. It should be appreciated that this is an example of a fabrication process and is not intended to be limiting.
Around the outer perimeter 105 a trench 220A can be dug, and around the inner perimeter 110 another trench can be dug 220B. The trenches 220A-B may be dug around the outer perimeter 105 and inner perimeters 110 in whatever shape is specified (e.g., per the architectural and/or engineering drawings). As noted the outer and inner perimeters 105 and 110 may be freeform. The freeform shape of each of the outer and inner perimeters 105 and 110 may be of almost any shape and may have curvilinear segments and/or straight-line segments within it. The inner perimeter 110 may provide interior support point(s) to the structure 100. Moreover, the inner perimeter 110 may be configured as an interior courtyard, garden, and the like. Moreover, wherever there is an inner perimeter 110 forming, for example, an interior courtyard, the structure 100 may be designed to include a drain mechanism to provide drainage (or some other type of water handing mechanism) for any rainwater that will flow into the inner perimeter, e.g., interior courtyard, by virtue of the geometry of the structure 100. Mechanisms to handle water runoff to the outer perimeter 105 from the structure 100 are also typically implemented as well.
The perimeter ring beam 515 can be used to structurally tie the rebar reinforcements of the structure to those of the foundation, for example, using a hook at the extreme ends of the reinforcement running the perimeter. The hooks can capture the perimeter tie rod 598, connecting it structurally to the foundation. In any scenario, the reinforcement should be located and provided in the number, quantity and pattern specified in the engineering drawings. It should be appreciated that the use of the term ‘rebar’, ‘welded wire mesh’ or ‘steel reinforcement’ are not intended to be limiting and that other reinforcing materials such as glass fiber, bamboo, plastics, fiberglass, meshes etc. can be used.
Once the pneumoform is inflated using blowers 115 or compressors 116, a steel reinforcement bar or rebar matrix or other reinforcement system can be assembled upon the membrane and the building material, such as concrete, applied such as by pouring or spraying.
Phase 7 includes performing slump tests both at the batching plant and on site and other tests to determine that the concrete mix is as per the specification. Slump tests can be performed both at the batching plant (unless concrete is mixed on site) and on site. The appropriate slump can be determined according to specifications and verified by field inspectors and/or special inspectors. The strength of the concrete can be as specified in accordance with the engineering/architectural designs for the structure 100. The spacing and positioning of the concrete reinforcement may also be reviewed and approved by the field inspector and/or special inspector prior to the application of the concrete. The concrete can then be applied in accordance to a pre-determined pattern to envelope the reinforcing steel mesh and provide the concrete cover and wall thickness as specified in the engineering drawings. The spacers and/or chairs 720A-D can be sized to facilitate measuring and providing a consistent wall thickness. It should be appreciated that use of the term “concrete” herein is not intended to be limiting and the material used to create the shell need not be necessarily poured. For example, the shell material(s) can be sprayed on such as in the case of Shotcrete, or Gunite or other hardening building materials may be used.
During and/or after its application, the concrete may be continuously troweled by hand or both other methods. The application of the concrete structure 100 can be completed in Phase 8 although the curing time of the concrete will depend on a number of factors including temperature, humidity, slump, desired compressive strength, use of additives such as plasticizers and retardants and/or other aspects of the concrete mix etc.
As described above, compressors and/or blowers can be used to inflate the pneumoform and maintain the desired shape for the pneumoform throughout the fabrication process. Compressed air tanks can also be substituted for the compressors and/or blowers. The air pressure used to inflate the pneumatic formworks can vary during the construction process. A significantly higher inflation pressure allows for the generation of buildings having a variety of shapes, such as freeform shapes or having double wall membranes etc. The pressure can also vary depending on the amount of concrete that is added at any particular time, the desired and specified thickness of the concrete, the size and shape of the structure and other characteristics of the pneumoform. In some implementations, the inflation pressure can be within a range from about 0.1 psi to about 2.0 psi.
After achieving the desired shape, a constant air pressure can be maintained to allow the concrete to set such that the entire assembly and exterior structure is now self-supporting. The cables used to measure the shape of the pneumoform 610 during the test inflation can be again deployed to empirically indicate when the final shape of the wet structure 100 is achieved. In some cases, concrete is not added to areas where, for example, openings in the structure such as doors and/or windows may be positioned. In these cases, arch beams may be added around the perimeter of the openings to reinforce the structure and per the architectural and engineering specifications. In other cases, arch beams may be added to the structure after the concrete has cured and tied into the existing structure. In these instances, once arch beams are in place and have been allowed to set to reach their required strength, openings may be cut into the structure 100 using traditional means and as indicated in the architectural drawings. Lintels and interior and exterior finishes can be added during or after the curing of the structural walls and per the structure 100 design which is typically specified in architectural drawings.
In Phase 9, after the concrete (or other hardening building material) has set or cured to a specific compressive strength wherein the structure 100 is self-supporting, the compressors can be removed, the pneumoform 610 can be deflated and removed and depending on, for example, the anchoring assemblies used during fabrication, the pneumoform 610 re-used. The pneumoform 610 can be re-used for structures having the same or different shapes. As described herein, the pneumoform may be made of a reinforced material and be pre-formed or the pneumoform can be an elastomeric sheet material. In the case of elastomeric pneumoforms, the shape of the building can change depending on the amount of air pressure used to inflate the pneumoform. In contrast, once a pre-determined or maximum shape is achieved in the inelastic reinforced membrane additional air pressure will generally not affect the final shape. Anchoring systems or elements such as baffles, cables or other materials may be used with the structures 100 to modify the naturally occurring shape of the pneumoform. However, in both the elastomeric and the inelastic membranes, the air pressure can be distributed evenly on the interior surface of the membrane, giving the structure 100 its final shape.
As mentioned above, the membrane or pneumoform can be re-used following fabrication of the structure. Described in more detail below are implementations of anchoring assemblies that provide anchoring support to the pneumoform and that can be removed from the pneumoform after forming the concrete shell such that the pneumoform may be re-used.
Keder 1612 can be captured within a space 1624 between the anchor bar 1618 and the clamp bar 1620 such that the rail element 1614 of the keder 1612 is positioned along an upper surface 1626 of the clamp bar 1620 and the pneumoform 610 clamped between the anchor bar 1618 and the clamp bar 1620 extends out from the space 1624 along a lower surface 1628 of the clamp bar 1620. The anchor bar 1618 and the clamp bar 1620 can each include holes 1622 such that upon alignment with one another (see
As mentioned above and best shown in
As mentioned above, in addition to providing the important function of anchoring the pneumoform 610 to the slab 420 during the fabrication of a structure, the anchoring assembly 1000 can also be self-sealing eliminating the need to separately seal the pneumoform during the fabrication process as in other implementations described herein. The keder 1612 also can create a second seal 1641 when the pneumoform 610 is inflated that provides for the pneumoform 610 to be more easily re-used. The internal air pressure (arrows) during inflation of the pneumoform 610 pushes the pneumoform 610 outward. A portion of the exterior surface 1634 of the pneumoform 610 near the outer perimeter is urged by the internal air pressure against the rail element 1614 of the keder 1612 creating the seal 1641. The seal 1641 creates a pocket 1644 within which the clamp bar 1620 and the head of the bolt 1630 is contained. The seal 1641 prevents concrete 1642 applied to the exterior surface 1634 of the pneumoform 610 from entering the pocket 1644 of the anchoring assembly 1000 where the head of the bolt 1630 is positioned between the clamp bar 1620 and the pneumoform 610. The seal 1641 is particularly useful where shell materials may be sprayed on and have a greater tendency to come into contact with the head of the bolt. As mentioned above, the seal 1641 can be created automatically upon the inflation of the pneumoform and prior to the application of the concrete. A keder of ½″ in diameter or other dimensions may be coupled with a standard size bolt head to provide a seal that can withstand the intrusion of concrete that is sprayed on, such as Shotcrete, for example by pneumatically projecting at a high velocity once a specified internal air pressure for construction has been reached. As shown in
While this specification contains many specifics, these should not be construed as limitations on the scope of what is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it is used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.”
Use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.
The present application claims the benefit of priority to U.S. Provisional Application Ser. No. 62/010,942, filed Jun. 11, 2014, the full disclosure is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2388701 | Neff | Nov 1945 | A |
2979064 | Fischer | Apr 1961 | A |
3118010 | Harrington | Jan 1964 | A |
3225413 | Bird | Dec 1965 | A |
3277219 | Turner | Oct 1966 | A |
3462521 | Bini | Aug 1969 | A |
3643910 | Heifetz | Feb 1972 | A |
3686818 | Bini | Aug 1972 | A |
3719341 | Harrington | Mar 1973 | A |
3751862 | Linecker | Aug 1973 | A |
4041671 | Nicholson | Aug 1977 | A |
4047335 | Darmstadt | Sep 1977 | A |
4064663 | Moss | Dec 1977 | A |
4160523 | Stevens | Jul 1979 | A |
4170093 | Cappellini | Oct 1979 | A |
4192105 | Morgan | Mar 1980 | A |
4446083 | Nicholls | May 1984 | A |
4452017 | Tang | Jun 1984 | A |
4629592 | Harrington | Dec 1986 | A |
5177919 | Dykmans | Jan 1993 | A |
5522181 | Ellsworth | Jun 1996 | A |
5579609 | Sallee | Dec 1996 | A |
5675941 | Dykmans | Oct 1997 | A |
5918438 | South | Jul 1999 | A |
20030019515 | Fritzche | Jan 2003 | A1 |
20040045227 | South | Mar 2004 | A1 |
20070094938 | Thoeny | May 2007 | A1 |
20080313969 | Colucci | Dec 2008 | A1 |
20090145046 | Thoeny | Jun 2009 | A1 |
20100011674 | Crettol | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1161396 | Aug 1969 | GB |
1534331 | Dec 1978 | GB |
WO 2015191591 | Dec 2015 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Application No. PCT/US2015/034918, mailed Oct. 15, 2015. |
Number | Date | Country | |
---|---|---|---|
20150361680 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62010942 | Jun 2014 | US |