1. Field of the Invention
The present invention relates to a system for anchoring a kayak in shallow water.
2. Description of the Prior Art
Fishing is a popular sport, and this popularity has prompted the development of many fishing aids designed to assist the fisherman. Fishermen frequently need to maintain the position of their boats, and various techniques have been developed which purport to assist the fisherman in that regard. Such techniques are, for example, disclosed in U.S. Patent Application Publication 2006/0207489; U.S. Pat. No. 6,273,016; U.S. Pat. No. 3,238,912; and U.S. Pat. No. 5,062,376.
Kayaking and kayak fishing have grown in popularity in recent years, and since the kayak is a lightweight craft, winds and currents may often cause the kayak to drift away from a desired position. It is often essential, therefore, that the kayak operator (whether fisherman or photographer) be able to anchor his or her kayak at a particular location. Anchoring systems for kayaks have, however, been quite rustic and have consisted for the most part of a weight attached to a rope which the kayak operator drops into the water near the seat of the kayak to anchor the kayak. These weights tend to be noisy when deployed and such noise tends to scare away the fish or other wildlife in the vicinity of the kayak. Also, such weights tend to be bulky and cumbersome to use.
It is often advantageous to be able to anchor a boat both at the bow and the stern of the boat, and this would be especially true in the case of a lightweight kayak. Developing a suitable system for anchoring a kayak both at the bow and the stern is complicated by the fact that the operator of a kayak must remain seated or run the very substantial risk of capsizing the kayak, if the operator were to attempt a move from the seat of the kayak to another position on the kayak.
A system which allows a kayak operator to anchor the kayak either at the bow or the stern of the kayak or both and to do so from the seat of the kayak using only one hand would be desirable. This new and useful result has been achieved by the anchoring system of the present invention.
In accordance with the present invention, apparatus is provided for anchoring a kayak to the bottom of a body of water. The kayak comprises a hull having a bow and stern and upper and lower portions and a seat disposed in the hull between the bow and stern. In one embodiment, the anchoring apparatus comprises a tube which may be attached to the kayak proximate the upper portion of the kayak between the bow and stern of the kayak. A shaft is installed in the tube, and the shaft is preferably a rack and pinion gear driven shaft. In this embodiment, anchoring apparatus according to the present invention further comprises a gear box which may be attached to the kayak proximate the seat of the kayak, where the gear box comprises a gear for operative engagement with the shaft, and a rotatable handle external to the gear box for operative connection to the gear in the gear box. When the handle is rotated in a first direction, the shaft is deployed from a position inside the first tube to a position outside of the first tube and into engagement with the bottom of a body of water. The shaft may be returned to the tube by rotating the handle in the opposite direction from which it was rotated to deploy the shaft.
In one embodiment, the shaft is deployed from the tube at a location proximate the bow of the kayak, while in a second embodiment, the shaft is deployed from the tube at a location proximate the stern of the kayak.
In another embodiment, apparatus for anchoring a kayak to the bottom of a body of water is provided where the apparatus comprises first and second tubes which may be attached to the kayak proximate the upper portion of the kayak between the bow and stern of the kayak. First and second shafts are disposed in the first and second tubes, respectively, and these shafts may be deployed from the tubes and into engagement with the bottom of the body of water. Anchoring apparatus in this embodiment also comprises a gear box which may be attached to the kayak proximate the seat of the kayak which comprises a first gearing mechanism for operative engagement with the first shaft and a second gearing mechanism for operative engagement with the second shaft. A rotatable handle external to the gear box is provided for operative connection to the first and second gearing mechanisms in the gear box.
The gear box further comprises first and second actuation devices which are external to the gear box and which have first and second positions. When the first and second actuation devices are in their respective first positions, operative connection is enabled between the first and second gearing mechanisms and the handle, so that when the handle is rotated in a first direction, the first and second shafts are deployed out of the first and second tubes. The shafts, when deployed, engage the bottom of the body of water and anchor the kayak. When the first and second actuation devices are in their respective second positions, operative connection between the first and second gearing mechanisms and the handle is disabled.
In one embodiment of the present invention, the actuation devices comprise switches, while in another embodiment, the actuation devices comprise levers.
Anchoring apparatus according to the present invention further comprises rollers in the tubes on which the shafts move as they are deployed. The shafts may also comprise at least one connector bolt to permit rotation of the shaft as it is deployed.
Various accessories may be included in embodiments of the anchoring apparatus of the present invention. For example, such accessories may include foldable lights which are attached to the tubes to permit the kayak to be seen at times when lighting is dim. Additionally, such accessories may include depth indicators on the shafts. Such depth indicators may, for example, be implemented by forming a window in each tube and applying markings to the shafts to indicate the depth to which each shaft has been deployed. A further accessory may comprise a paddle holder.
In another embodiment of the present invention there is disclosed an apparatus for anchoring a kayak to the bottom of a body of water, the kayak comprising a hull having a bow and a stern and upper and lower portions, and a seat disposed in the hull between the bow and stern, the anchoring apparatus comprising: a tube for attachment to the kayak proximate the upper portion of the kayak between the bow and the stern of the kayak, wherein the tube has first and second opposed ends, a central substantially horizontal section between the opposed ends, and a length equal to approximately the length of the kayak, and wherein the tube ends are directed generally downward. In this embodiment, the apparatus also comprises a shaft in the tube, wherein the shaft has first and second opposed ends. The embodiment also includes a gear box for attachment to the kayak proximate the seat which comprises: (i) a gear for operative engagement with the shaft; and (ii) a rotatable handle external to the gear box for operative connection to the gear in the gear box. The rotation of the handle in a first direction causes the shaft to deploy from a position inside the tube to a position outside the tube from the generally downwardly directed first tube end and into engagement with the bottom of the body of water. The rotation of the handle in a second direction, opposite the first direction, causes the shaft, if already deployed, to return into the tube, and if desired, to deploy from a position inside the tube to a position outside the tube from the generally downwardly directed second tube end and into engagement with the bottom of the body of water.
The shaft may be deployed from the tube at a location proximate to the bow or stern of the kayak. The apparatus may further comprise rollers in the tube on which the shaft moves as it is deployed. In one embodiment, at least one connector bolt in the shaft to permit rotation of the shaft as it is deployed. As with prior embodiments, this embodiment may further comprise one or more accessories selected from the group consisting of: a foldable light which is attached to the tube; a depth indicator for the shaft; and a paddle holder. The shaft may further comprise a rack and pinion gear driven shaft. The shaft may further comprise a toothed portion for operative engagement with the gear in the gear box. The shaft may further comprise a probe portion on the end of the shaft that is deployed from the tube, for engagement with the bottom of the body of water. In one embodiment, the shaft further comprises a probe portion on each end of the shaft, for engagement with the bottom of the body of water, when one end of the shaft is deployed from the tube. The probe portion(s) may be rotatably attached to the shaft with a connector bolt(s). The gear box may further comprise a housing having an openable and closeable access to permit maintenance of the gear works.
The apparatus may also be outfitted with a locking mechanism for preventing the gear from turning or to prevent the shaft from being further deployed. In one embodiment, the handle is configured to be collapsible into a storage position, in another embodiment, the handle is not collapsible. The apparatus may also be equipped with a scraper to scrape debris off of the deployed shaft as the deployed shaft is directed back into the tube. The tube may be of unitary construction or comprises attachable and detachable tube segments.
In another embodiment of the present invention, there is described a kayak anchoring system for anchoring a kayak to the bottom of a body of water, comprising: (a) a kayak comprising a hull having a bow and a stern and upper and lower portions, and a seat disposed in the hull between the bow and stern; (b) a tube for attachment to the kayak proximate the upper portion of the kayak between the bow and the stern of the kayak, wherein the tube has first and second opposed ends, a central substantially horizontal section between the opposed ends, and a length equal to approximately the length of the kayak, and wherein the tube ends are directed generally downward; (c) a shaft in the tube, wherein the shaft has first and second opposed ends; and (d) a gear box for attachment to the kayak proximate the seat which comprises: (i) a gear for operative engagement with the shaft; and (ii) a rotatable handle external to the gear box for operative connection to the gear in the gear box; the rotation of the handle in a first direction causing the shaft to deploy from a position inside the tube to a position outside the tube from the generally downwardly directed first tube end and into engagement with the bottom of the body of water; the rotation of the handle in a second direction, opposite the first direction, causing the shaft, if already deployed, to return into the tube, and if desired, to deploy from a position inside the tube to a position outside the tube from the generally downwardly directed second tube end and into engagement with the bottom of the body of water.
In yet another embodiment of the present invention, there is disclosed and described an apparatus for anchoring a kayak to the bottom of a body of water, the kayak comprising a hull having a bow and a stern and upper and lower portions, and a seat disposed in the hull between the bow and stern, the anchoring apparatus comprising: a tube for attachment to the kayak proximate the upper portion of the kayak between the bow and the stern of the kayak, wherein the tube has first and second opposed ends, a central substantially horizontal section between the opposed ends, and a length equal to approximately the length of the kayak, and wherein the tube ends are directed generally downward; a shaft in the tube, wherein the shaft has first and second opposed ends capable of engagement with the bottom of the body of water when deployed from the tube; and a gear box for attachment to the kayak proximate the seat which comprises: (i) a gear for operative engagement with the shaft; and (ii) a rotatable handle external to the gear box for operative connection to the gear in the gear box; the rotation of the handle in a first direction causing the shaft to move in a first direction, the rotation of the handle in a second direction causing the shaft to move in a second direction opposite the first direction; the first end of the shaft being deployable in and out of the first end of the tube, the second end of the shaft being deployable in and out of the second end of the tube.
In the accompanying drawings:
It will be appreciated that the present invention may take many forms and embodiments. In the following description, some embodiments of the invention are described and numerous details are set forth to provide an understanding of the present invention. Those skilled in the art will appreciate, however, that the present invention may be practiced without those details and that numerous variations and modifications from the described embodiments may be possible. The following description is thus intended to illustrate and not to limit the present invention.
With reference first to
While the anchoring system in
With reference now to
With reference now to
Referring now to
As illustrated in
In operation, the operator of the kayak 10 may elect to anchor the kayak at either the stern or at the bow or at both the stern and the bow simultaneously. In order to anchor the kayak both at the bow and the stern, switches 18 and 19 are each placed in the first position such that gear wheels 31 and 41, respectively, are lowered into operative engagement with gear wheels 32, 33, 50, 42, 43 and 44. The operator of the kayak then turns the handle 17 in a clockwise direction to lower the probe portions of shafts 60 and 70 into the bottom of the body of water in which the kayak is operating. As illustrated in
If the operator desires only to anchor the kayak at the bow, the operator will only actuate the switch 19. Alternatively, if the operator desires to anchor only at the stern, the operator will only actuate the switch 18. If the kayak operator has elected to anchor only at the bow or stern, but later determines that anchoring at both locations is needed, the switch which was initially actuated is de-actuated, the switch which was initially de-actuated is actuated, and the handle 17 is rotated to deploy the other shaft into engagement with the bottom of the body of water.
Referring now to
Lever 94 is operatively connected to shaft 95a via linkage 96a, tri-linkage 97a and ball linkage 98a. Tri-linkage 97a is rotatably mounted on hinge pin 110a. Shaft cog 99a is fixedly attached to shaft 95a. Lever ball 94 has two positions, and when lever ball 94 is moved between these two positions, shaft cog 99a engages or disengages slip bearing cog 100a.
Still referring to
Referring now to
With reference now to
Accessories may be provided with anchoring apparatus according to the present invention. For example, with reference to
Referring now to
As illustrated in, e.g.,
A gear wheel 350 is located inside gear box 316 and is operatively connected to handle 317 via, e.g., gear axle 369. The operable connection, as is well understood in the art, may include, for example, an axially-oriented shoulder tongue (not shown) on the inner face of the gear wheel's central aperture 350c to mate in receiving relationship with an axially-oriented groove (not shown) in axle 369 to thereby lock the axle 369 to the gear wheel 350 for rotational movement. Other mechanisms for securing the operable connection of the gear axle 369 to the gear wheel 350 include friction, tapered fit, or the like. The axle 369 is mounted in the gear box 316 with suitable axle mounts 316c. For example, the axle mounts 316c could comprise apertures or aperture bushings. The axle 369 is secured in place with a suitable fastener of the types known in the art.
In one embodiment (see
The handle 317 may be a fixed configuration, or comprise a collapsible configuration where, for example, hand hold 317a may be rotatably connected to the handle body 317 via rotational connection 317b at one end to permit hand hold 317a to be collapsed or tucked into a handle body recessed area 317c to present a lower profile when not in use.
Much like as discussed with the prior embodiments in the earlier figures, the gear box 350 is suitably mounted to the kayak. For example, in one embodiment, the gear box may be secured to the kayak in similar fashion to that described above in connection with
The teeth 350d of gear wheel 350 engage the toothed portion 361 of shaft 360. The shaft 360 also includes opposed probe portions 362a and 362b which may advantageously be respectively coupled to the toothed portion 361 by utilizing connector bolts 363. In one embodiment, the probe portions 362a and/or 362b may also comprise a toothed section 359 for engaging the teeth on the gear wheel 350. Similar to
As the handle 317 is rotated in a first direction, the probe portion 362b of shaft 360 is deployed from a first end 314b of tube 314 and penetrates the bottom 324 of the body of water in which kayak 310 is floating. As the handle 317 is rotated in a second (opposite) direction, the shaft 360 is retracted into tube 314 and brings probe 362b back into tube 314 into a storage position. If desired, continuing to rotate the handle in the second (opposite) direction will permit the opposite probe 362a to deploy from the opposite (second) end 314a of tube 314 and penetrate the bottom 324 of the body of water. As such, in this embodiment, the shaft 360 may be moved in either direction within the tube 314 depending upon whether it is desired to deploy the anchor probe (362a, 362b) on shaft 360 from the bow 311 of the kayak or the stern 312 of the kayak 310.
In some situations, it may be desirable to lock the anchoring system in place, either during anchoring use or when the anchor is stored. There are two exemplary locking embodiments described herein. In one embodiment, a locking slide 364 is employed. The locking slide 364 will slide into locking slide holes 367 which are located on handle 317. As will be understood, the locking slide 364 serves as one mechanism for locking the handle 317 so that the handle cannot rotate. Referring to
Another option for locking the anchoring system in place may be achieved with the use of a locking pin 366 to engage and lock in place the gear wheel 350. In one embodiment, the locking pin 366 may be located on gear box 316, on the opposite side of handle 317. Locking pin 366 has a locking shaft section 366a that may be inserted into a receiving well 350a (or into one of a plurality of receiving wells 350a) located on the side face 350b of gear wheel 350 is to engage and lock gear wheel 350 inside gear box 316. In one embodiment, locking pin 366 is slidably mounted on gear box 316 to permit movement, when desired, from a first, disengaged position (not in contact with gear wheel 350) to a second, engaged position where the pin 366 engages the gear wheel 350, e.g., by moving locking shaft section 366a into one of the one or more receiving wells 350a. The locking shaft 366a can employ one or more shoulder stops 166b to regulate movement. It will be apparent from the various views in the drawings that the locking pin 366 can be mounted to the housing in many different ways to achieve the desired interaction between the pin and the gear. For example, in
It will be apparent to one of ordinary skill in the art having the benefit of this disclosure that many different locking configurations could be employed to prevent rotational movement of the gear wheel when desired, or to otherwise prevent the shaft from moving, or slipping while anchored.
The gear box assembly 316 preferably permits disassembly and removal of the gear wheel 350. For example, the gear box assembly 316 preferably comprises a housing having an openable and closeable access to permit maintenance of the gear works. This would permit routine maintenance or on demand maintenance in the event that the probe is lodged or stuck. For example, the gear box 316 can be opened via hinge 370. Locking pin 373 can be pulled out of axle retainer ring 368. Handle 317 along with axle 369 can be pulled out of gear box 316. Then gear wheel 350 can be pulled out the top. Shaft 360 can be pulled out either end of tube 314. Also, for maintenance and emergency, tube 314 may optionally employ an end cap 371 that unscrews to pull end shaft 360 and 362 out of end of tube 314.
In another embodiment, the tube 314 may further comprise an end cap 371, attachable to the ends 314a, 314b of tube 314, wherein the end cap 372 further comprises a scraper/cleaner 372 to clean or wipe mud and other debris off of the shaft 360 and or probe 362a, 362b. The scraper/cleaner 372 preferably comprises a sloped face section as shown to deflect mud and debris away from the probe 362a (or shaft 360) as the probe (or shaft 360) enters the tube 314. The sloped section may be configured as a unitary construction (as shown) or comprise a plurality of sloped tabs, teeth or wipers (not shown). The scraper may be formed of a rigid or flexible material.
Referring also to
In one embodiment of the present invention, the overall length of the shaft 360 is approximately the same length as the overall length of the tube 314. In another embodiment, the combined length of the opposed probe sections 362a, 362b, and the shaft 360, is approximately the same length as the overall length of the tube 314. In another embodiment, the combined length of one probe section 362a and the shaft 360, is approximately the same length as the overall length of the tube 314.
Accessories may be provided with anchoring apparatus to the present invention. For example, such accessories may include foldable lights 8 and 9, which are attached to tubes 314. These would permit the kayak to be identified when lighting is dim. Additionally, such accessories may include depth indicators on the shaft 360, which may be implemented by forming a window 305 on tube 314 and applying markings 306 to the shaft 360 to indicate the depth to which the shaft 360 has been deployed. An additional accessory may comprise one or more paddle holders 307.
This application is a continuation-in-part of U.S. application Ser. No. 12/952,119, filed Nov. 22, 2010, now U.S. Pat. No. 8,082,869, issued Dec. 27, 2011, which in turn is a continuation of U.S. application Ser. No. 12/185,113, filed Aug. 3, 2008, now U.S. Pat. No. 7,861,661 issued Jan. 4, 2011.
Number | Name | Date | Kind |
---|---|---|---|
415501 | Cole | Nov 1889 | A |
2009356 | De Seversky | Jul 1935 | A |
2092011 | Musham | Sep 1937 | A |
2526953 | Kruse | Oct 1950 | A |
2881591 | Rimsey | Apr 1959 | A |
2991750 | Letourneau | Jul 1961 | A |
3238912 | Perlick | Mar 1966 | A |
5025746 | Boulter | Jun 1991 | A |
5062376 | Tremblay | Nov 1991 | A |
6041730 | Oliverio | Mar 2000 | A |
6220197 | Pohlman | Apr 2001 | B1 |
6273016 | Gibbs | Aug 2001 | B1 |
7861661 | Beaty | Jan 2011 | B2 |
8082869 | Beaty | Dec 2011 | B2 |
20020108544 | Hsu | Aug 2002 | A1 |
20060207489 | Waldrop | Sep 2006 | A1 |
20070181051 | Waldrop | Aug 2007 | A1 |
20100024712 | Beaty | Feb 2010 | A1 |
20110061580 | Beaty | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120090522 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12185113 | Aug 2008 | US |
Child | 12952119 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12952119 | Nov 2010 | US |
Child | 13336877 | US |