The present disclosure relates to power tools and electric motors therefore including permanent magnet DC motors in which a stator has a stator housing assembly having a housing to which permanent magnets are affixed to an inner surface thereof and overmolded with plastic. It also relates to power tools and electric motors therefore in which composite magnetic material is molded on the inner surfaces of the stator housing to form magnets.
In U.S. Pat. Nos. 6,522,042, 6,983,529 and 7,088,024, it is described that anchors for stator housings are formed in the housing or a flux ring, magnets are placed in the housing or flux ring such as between the anchors, and a plastic material is overmolded that fills around the anchors to secure the magnets to the flux ring or housing. It is also described that, alternatively, a magnet composite material is molded in the flux ring or housing and fills around the anchors to form molded magnets that are held in place in by the anchors. The entire disclosures of U.S. Pat. Nos. 6,522,042, 6,983,529 and 7,088,024 are incorporated by reference herein.
In accordance with an aspect of the present disclosure, a permanent magnet electric motor has a stator and a rotor. The stator has a stator housing with opposed axial ends and features skived in the stator housing to extend radially inwardly from an inner surface of the stator housing proximate to at least one of the axial ends of the stator housing. An overmolding of material is molded around the features. In an aspect, the overmolding of material is a magnetic composite material and is molded to form magnets. In an aspect, magnets are placed on the inner surface of the stator housing and the overmolding of material is a plastic that is over molded around the magnets and the features.
In an aspect, the features hold the magnets in place during the molding of the overmolding around the magnets.
In an aspect, the magnets have essentially the same inner radius and outer radius and the overmolding of material is thicker at edges of each magnet than at the center of each magnet.
In an aspect, the magnets are flat magnets and the overmolding of material is thicker at edges of each magnet than at the center of each magnet.
In an aspect a power tool has such a permanent magnet DC motor.
In an aspect, a power too has a housing with a permanent magnet electric motor in the housing, with an member coupled to the electric motor. The electric motor has a rotor and a stator but not an end plate. The stator has a stator housing having opposed axial ends and a plurality of magnets affixed to an inner surface of the stator housing and an overmolding of material molded around the magnets. The overmolding of material includes a pilot feature that mates with a pilot feature of a bearing support of the power tool.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
Referring now to
The motor includes a stator assembly 30. The stator assembly 30 includes a stator housing 32, a flux ring 34 and magnets 36. The flux ring 34 is an expandable or split flux ring. An armature 40 includes a shaft 42, a rotor 44 and a commutator 50 coupled with the shaft 42. The rotor 44 includes laminations 46 and windings 48. The motor 14 also includes end plates 52 and 54. End plate 52 includes a front bearing 56 which supports one end of a shaft 42. The shaft 42 is coupled with a pinion 60 that is part of the output member 20. Brushes 62 and 64 are associated with the commutator 50. A rear bearing 70 is also coupled with the end plate 54 to balance rotation of the shaft 42.
While motor 14 is illustratively shown as a permanent magnet DC (“PMDC”) motor in which magnets 36 are affixed to an inner surface of flux ring 34, it should be understood that motor 14 could be other types of motors that utilize permanent magnets, such as a brushless motor in which the rotor has permanent magnets and the stator has electronically commutated windings. Referring now to
The motor includes a stator assembly 30. The stator assembly 30 includes a stator housing 32, a flux ring 34 and magnets 36. The flux ring 34 is an expandable or split flux ring. An armature 40 includes a shaft 42, a rotor 44 and a commutator 50 coupled with the shaft 42. The rotor 44 includes laminations 46 and windings 48. The motor 14 also includes end plates 52 and 54. End plate 52 includes a front bearing 56 which supports one end of a shaft 42. The shaft 42 is coupled with a pinion 60 that is part of the output member 20. Brushes 62 and 64 are associated with the commutator 50. A rear bearing 70 is also coupled with the end plate 54 to balance rotation of the shaft 42.
Referring
The magnets may illustratively be formed placing stator housing 202 in a mold and molding a magnet composite material on inner surface 204 of stator housing 202. The magnets may alternatively be preformed, placed on inner surface 204 of stator housing 202 and affixed thereto.
Material of the stator housing 202 is skived at 210 to create features 212 (
Axially outer ends of the features 212 can be parallel (shown at 308) with the ends 310 of the stator housing 202). The axially outer ends of features 212 may alternatively angled slightly (shown at 312) to better key the plastic of the overmolding radially to inner surface 204 of the stator housing 202. The axial outer ends of the features 212 may also be chamfered (as shown at 800 in
In an aspect, with reference to
In such a process, the magnets could be partially or fully magnetized so that they are self-retained against inner surface 204 of the stator housing 202. Locating pins in the molding tool can additionally be used to position the magnets axially within the stator housing 202. Thus after molding, the magnets are in the proper position and well-secured in the stator housing 202. In such a case, the magnet arcs could be arcuate in shape, or they could be flat magnets as described in the patent application titled “Motor Can and Magnet Manufacturing Design,” (attorney docket no. 0275K-001245) filed concurrently herewith, the entire disclosure of which is incorporated herein by reference. And multiple flat magnets could be placed between the skived anchors, as shown in
In a variation, the magnets may be un-magnetized and features in the mold tooling may be used to properly locate and retain the magnets during the molding process. Or, the magnets may be glued to the stator housing 202 to locate and secure them to the stator housing 202 for molding. Or, the magnets could be adhered to the stator housing 202 by means of a double sided adhesive.
The stator housing could be made using the drawn over mandrel (DOM) process, or it could be made from stamped and rolled housings. For the magnets, they can be pre-formed discrete magnets, or they could be a composite blend of magnet and polymer material that is molded directly into the stator housing 202. In the case of discrete magnets, they could be of various compositions, including but not limited to ferrite, sintered NdFeB, compression bonded NdFeB.
During the overmolding process, if the magnets are designed having the “same OR and IR”, or are flat magnets, as described in the above referenced patent application titled “Motor Can and Magnet Manufacturing Design,” this provides the additional benefit of the overmolding having thicker molded walls at the edges of the magnets. This benefit can be used in either of two ways. First, the thicker molding at the edges of the magnets provides increased strength for magnet retention. Secondly, the wall thickness of the overmolding at the center of the magnets can be minimized, or made to essentially zero, while still having sufficient wall thickness at the edges of the magnet for sufficient magnet retention and a feasible molding process.
The above provides the advantages of a robust means of holding the magnets to a stator housing. Also, formed pilot features in the overmolding can be used to align the front bearing & armature shaft to the inner surface of the overmolding for reduced chances of the armature stack contacting the overmolding.
Overmolding also provides the advantage of improving corrosion resistance of magnets, especially for NdFeB magnets, which are prone to corrosion. Overmolding also allows the use of alternative magnet grades or coatings that are less expensive. Overmolding also provides a method of discrete magnet retention that lessens the dependency on the quality of the magnet gluing process or the quality of the magnet coating process.
This application claims the benefit of U.S. Provisional Application No. 60/851,813 filed on Oct. 13, 2006. The disclosure of the above application is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/21797 | 10/12/2007 | WO | 00 | 3/27/2009 |
Number | Date | Country | |
---|---|---|---|
60851813 | Oct 2006 | US |