This invention relates to the processing of heavy hydrocarbons, such as gasoils, vacuum gasoils and residues for the purpose of increasing the production of lighter hydrocarbons, such as ethylene, propylene and the butylenes, and gasoline in conjunction with the operation of a fluidized catalytic cracking process.
Propylene is second in importance only to ethylene as a petrochemical raw material building block. Propylene has traditionally been obtained as a by-product from steam cracking to produce ethylene and from refinery fluidized catalytic cracking processes to produce gasoline. The projected growth in demand for propylene has started to exceed that of ethylene so that existing processes cannot satisfy the foreseeable future growth in the demand for propylene.
Fluidized catalytic cracking, or FCC, is a well-known and widely practiced process for converting heavy hydrocarbons, gasoils and residues into lighter hydrocarbon fractions. The process for the catalytic cracking of heavy hydrocarbons, gasoils and residues is well known and currently practiced in all types of FCC units processing a variety of these feedstocks.
In general terms, the process for the cracking of hydrocarbon feedstocks relies on contact with fluidized catalytic particles in a reaction zone maintained at appropriate temperatures and pressures. When the heavier feed contacts the catalyst and is cracked to lighter products, carbonaceous deposits, commonly referred to as coke, form on the catalyst and deactivate it. The deactivated, or spent, catalyst is separated from the cracked products, stripped of removable hydrocarbons and passed to a regeneration vessel where the coke is burned from the catalyst in the presence of air to produce a substantially regenerated catalyst. The combustion products are removed from the vessel as flue gas. The regenerated and heated catalyst is then recycled to the FCC unit. A general description of the process as related to catalytic cracking with short duration contact times is provided in U.S. Pat. No. 3,074,878, the complete disclosure of which is incorporated herein by reference.
Various methods and apparatus have been proposed for increasing or enhancing the output of particular product streams from the FCC unit. In some cases, ancillary reactors and other treatment vessels have been provided to treat a particular fraction or reaction product stream. In some instances, multiple reactors are provided, each with a different feed, in order to derive a particularly desired product stream.
It is known from the prior art to employ a downflow reactor for processing various grades of oil, including heavy oils. It is also known to recover light olefins, e.g., ethylene, profylene and butane, and gasoline product streams from a downflow reactor along with other reaction products and unreacted feed.
A downflow reaction zone is described in U.S. Pat. No. 5,904,837 for the fluid catalytic cracking of oils, including straight-run and cracked gas oils, vacuum gas oil (VGO), atmospheric and reduced-pressure distillation residues and heavy fraction oils obtained by hydrorefining the residues and gas oils, either individually or as mixtures. The process employs a downflow type reaction zone, a separation zone, a catalyst stripping zone and a catalyst regeneration zone. The use of a temperature controlling quench oil at the outlet of the reactor is also disclosed. The principal product stream obtained was gasoline, e.g., about 38%-40% of the yield with a maximum of 16% propylene.
Another downflow FCC process is disclosed in U.S. Pat. No. 5,951,850 in which process conditions, reaction zone temperature, catalyst/oil ratios and catalyst regeneration zone temperatures are controlled to crack a variety of heavy fraction oils to provide relatively less dry gases, such as hydrogen, methane and ethane, and provide relatively higher yields of light fraction olefins. The use of more severe operating conditions, i.e., reaction temperatures and catalyst/oil ratios, produces somewhat more light olefins at the expense of reduced gasoline products in this FCC process.
Another method for operating a downflow FCC reactor for use in the processing of gas oil or heavy oil is disclosed in U.S. Pat. No. 6,656,346 and affords the recovery of significant quantities of light olefins. In this process, two types of zeolites are employed, the reaction zone temperature range is narrower than was disclosed in U.S. Pat. No. 5,951,850 and the contact time is shorter. Conversion to propylene ranged from about 20% to almost 24% by weight of the total conversion yield.
Each of the above downflow FCC unit operations includes a catalyst regeneration vessel to burn the coke from the spent catalyst and raise the temperature of the catalyst to provide heat for the endothermic cracking reaction.
The prior art relating to FCC apparatus and processes also includes examples of multiple reactor stages that are provided with different feedstocks that can be used to produce product streams containing light olefins. However, none of these disclosures provides a solution to the problem of enhancing the production of light olefins, and particularly of propylene in significant measure as an adjunct to existing FCC unit processes.
It is therefore an object of the present invention to provide a process in which a feedstream from an external source, such as heavy oil or from the same oil feedstock used in the FCC process, is further cracked to provide an enhanced light reaction product stream.
It is a further object of the invention to provide such a process that can be run efficiently utilizing the same catalyst employed in the FCC unit.
Yet another object of the invention is to provide a novel process for efficiently cracking a heavy hydrocarbon, gasoil and/or resid oil feedstock to produce a lighter hydrocarbon product stream consisting of ethylene, propylene, butylenes, and gasoline, which reaction product stream can either be recovered separately and further fractionated to recover the individual components or combined with an effluent stream from the FCC unit for further fractionation.
The term “heavy oil feed” shall be understood to include any hydrocarbon charge stock boiling in the range of 600° F. to 1050° F., or higher.
The above objects and other advantages are achieved by the improved process and apparatus of the invention in which a downward flow fluidized catalyst reactor is added as an ancillary reactor to an existing FCC process unit operation. The ancillary downflow reactor system utilizes the same hot regenerated catalyst as is used in the FCC unit, thereby minimizing capital investment for new equipment and operating costs. The regenerated catalyst and a heavy hydrocarbon or gasoil feedstream that can be derived from a source that is the same as, or independent of the FCC unit are introduced and thoroughly mixed in an upper portion of the downflow reactor that is above the reaction zone.
The mixture passes through the reaction zone with a residence time of 0.1 seconds to 5 seconds, and preferably in a range of 0.2 seconds to 2 seconds. The reaction zone operating temperature can be in the range from 990° F. to 1,300° F. The ratio of catalyst-to-oil, or catalyst/oil ratio, in the reaction zone is in the range of from 10 percent to 50 percent by weight, with a preferred operating range of from 20 percent to 40 percent by weight. The determination of the catalyst-to-oil ratio is an indication of operating severity and the determination of the optimum value is well within the ordinary skill in the art.
The ancillary downflow reactor can be of the same or a different capacity than the FCC reactor. As will be understood by one of ordinary skill in the art, the coke produced and deposited on the catalyst in the downflow reactor of the invention will be sufficient when burned in the regenerator to raise the temperature of the regenerated coke for use in either the FCC unit or the ancillary downflow unit.
A design factor that is to be considered is that the regenerator vessel be able to maintain the throughput necessary to supply regenerated catalyst to both the FCC unit and the ancillary downflow reactor. The management and control of the throughput of both the catalyst material and the feedstock and the control of the catalyst temperature in, and issuing from the regenerator is also within the skill of the art and includes automated control systems. As will also be apparent to those of ordinary skill in the art, the quality and condition of the catalyst material(s) must also be routinely monitored, particularly where severe conditions are imposed in cracking one or more heavy oil feedstocks, in one or both of the reactors.
The efficient operation of the auxiliary process of the invention is dependent upon the optimization of cracking conditions for a given feedstream that consists of one or more heavy hydrocarbon feeds. The relatively low residence times and higher catalyst-to-oil ratios of 20 to 40 percent by weight when compared to the FCC primary reaction zone are specific to the heavy hydrocarbon feedstream.
It will therefore be understood that the present invention broadly comprehends a method of producing a product stream consisting primarily of the light olefins ethylene, propylene and butylenes, and of gasoline in conjunction with the processing of a separate petroleum feedstock in a fluidized catalytic cracking (FCC) unit containing a catalyst of specified composition, the FCC and associated downflow reactor catalyst feed being regenerated from spent catalyst, and the method including the steps of:
Downflow reactors that are suitable for use in the practice of the invention are known in the art. One example of such a reactor is described in U.S. Pat. No. 5,904,837 (the '837 patent), the disclosure of which is incorporated herein by reference in its entirety. It will be understood that the '837 disclosure is directed to an FCC unit process which necessarily includes a regeneration vessel, while the present invention is distinguished by its utilization of an existing regenerator.
A second example of a suitable downflow reactor is described in U.S. Pat. No. 6,045,690 (the '690 patent) and is directed to an FCC unit operation using the downflow reactor and, as such, is also distinguished from the present improvement that is used in association with an FCC unit's catalyst regenerator. In the downflow reactor of the '690 patent, regenerated catalyst is introduced at two locations in the reaction zone: a regenerated catalyst is introduced at the reaction zone inlet and mixed with heavy oil, while a second portion of regenerated catalyst is introduced in at least one intermediate position between the inlet and outlet of the reaction zone. A quench oil is also optionally introduced near the outlet of the reactor to lower the temperature of the reaction mixture of cracked products, unreacted hydrocarbons and catalyst. This quench oil is a recovered fraction having a boiling point of at least about 570° F.
The improved ancillary process of the invention can be utilized with prior art FCC units, whether they employ riser cracking in an upward or downward flow reaction scheme, or bed cracking, to catalytically convert the feedstock into the desired lighter hydrocarbons, and particularly to provide an enhanced propylene yield for the overall unit operation.
The hydrocarbon feedstocks that can be utilized in the ancillary downflow reactor processing can include those boiling in the range from 600° F. to 1050° F., and preferably from 650° F. to 1050° F., as initial and final boiling point temperatures. These feedstocks are commonly referred to in the art as straight-run gasoils, vacuum gasoils, residues from atmostpheric and vacuum distillation columns and cracked gasoil from refinery processes. Preferred for use in the ancillary downflow reactor of the invention are heavy oils derived from hydrocracking and hydrotreating processes. The feedstocks can be used alone or combined for treatment in the downflow reactor in accordance with the invention.
Any existing FCC catalyst can be employed in the practice of the improved process of the invention. Typical FCC catalysts with, or without catalyst additives are suitable for use in this process enhancement.
In order to optimize separation of the catalyst from the products and unreacted starting material(s), a rapid separation is preferred. A suitable device that can achieve the desired rapid separation is disclosed in U.S. Pat. No. 6,146,597 (the '597 patent), the disclosure of which is incorporated herein in its entirety by reference.
The apparatus and method of the invention will be described in further detail below and with reference to the attached drawings where the same or similar elements are referred to by the same numerals, and in which:
As indicated above, the method and apparatus of the present invention can be employed with any number of FCC process units known to the prior art. With reference to
In this continuous process, the mixture of catalyst and FCC reactor feedstream proceed upward through the riser into a reaction zone in which the temperature, pressure and residence time are controlled within ranges that are conventional and related to the operating characteristics of the one or more catalysts used in the process, the configuration of the apparatus, the type and characteristics of the feedstock and a variety of other parameters that are well known to those of ordinary skill in the art and which form no part of the present invention. The reaction product is withdrawn through conduit (16) for recovery and/or further processing in the refinery.
The spent catalyst from the FCC unit is withdrawn via transfer line (18) for delivery to the lower portion of regeneration vessel (20), most conveniently located in relatively close proximity to FCC unit (10). The spent catalyst entering through transfer line (18) is contacted by at least a stream of air admitted through conduit (24) for controlled combustion of accumulated coke. The flue gases are removed from the regenerator (20) via conduit (26), and the temperature of the regenerated catalyst is raised by the combustion of the coke to provide heat for the endothermic cracking reaction.
Referring now to
Although a variety of catalysts can be utilized in the process, it will be understood that the same catalyst used in the main FCC unit is also employed in the catalytic cracking of the heavy oil feedstream in the ancillary downflow reactor (30). Typical FCC units utilize zeolites, silica-alumina, carbon monoxide burning promoter additives, bottom cracking additives and light olefin promoting additives. In the practice of the invention it is preferred that zeolite catalysts of the Y, REY, USY and RE-USY types be used alone or in combination with a ZSM-5 catalyst additive. As will be understood by those of ordinary skill in this art, the catalysts and additives are preferably selected to maximize and optimize the production of light olefins and gasoline. The choice of the catalyst(s) system does not form a part of the present invention.
With continuing reference to
Stripping steam is admitted through line (36) to drive off any removable hydrocarbons from the spent catalyst. The product gases are discharged from the reaction zone (33) of the downflow reactor (30) and introduced into the upper portion of the stripper vessel (37) where they combine with the stripping steam and other gases and vapors and pass through cyclone separators (39) and out of the stripper vessel via product line (34) for product recovery in accordance with methods known to the art.
The spent catalyst recovered from the downflow reactor (30) is discharged through transfer line (40) and admitted to the lower end of the diptube, or lift riser, (29) which extends from the catalyst regenerator (20) that has been modified in accordance with the method of this invention. In this embodiment, air is introduced below the spent catalyst transfer line (40) at the end of diptube or lift riser (29) via pressurized air line (25). A more detailed description of the functioning of the secondary downflow reactor is provided below.
The configuration and selection of materials for the downflow reactor (30), as well as the specific operating characteristics and parameters will be dependent upon the specific qualities and flow rate of the heavy oil feed introduced at the feedstock line (32), which in turn will be dependent upon the source of the feedstock. More detailed operating conditions are set forth below.
With continuing reference to
The reaction temperature, i.e., the outlet temperature of the downflow reactor, is controlled by opening and closing a catalyst slide valve (not shown) that controls the flow of regenerated catalyst from the withdrawal well (31) and into the mix zone. The heat required for the endothermic cracking reaction is supplied by the regenerated catalyst. By changing the flow rate of the hot regenerated catalyst, the operating severity or cracking conditions can be controlled to produce the desired yields of light olefinic hydrocarbons and gasoline.
The heavy oil feedstock (32) is injected into the mixing zone through feed injection nozzles (32a) placed in the immediate vicinity of the point of introduction of the regenerated catalyst into the downflow reactor (30). These multiple injection nozzles (32a) result in the catalyst and oil being mixed thoroughly and uniformly. Once the feedstock contacts the hot catalyst the cracking reactions occur. The reaction vapor of hydrocarbon cracked products and unreacted heavy oil feed and catalyst mixture quickly flows through the remainder of the downflow reactor and into a rapid separation section (35) at the bottom portion of the reactor. The residence time of the mixture in the reaction zone is controlled in accordance with apparatus and procedures known to the art.
If necessary for temperature control, a quench injection (50) is provided near the bottom of the reaction zone (33) immediately before the separator. This quench injection quickly reduces or stops the cracking reactions and can be utilized for controlling cracking severity and allows for added process flexibility.
The rapid separator (35) along with the end portion of the downflow reactor (30) is housed in the upper section of a large vessel referred to as the catalyst stripper (37). The rapid separator directs the reaction vapor and catalyst directly into the top part the stripper vessel (37).
The reaction vapors move upwardly from the rapid separator outlet into the stripper, combine with stripped hydrocarbon product vapors and stripping gas from the catalyst stripping section of this vessel and pass through conventional separating means such as one or more cyclones (39), which further separate any entrained catalyst particles from the vapors. The catalyst from the separator that is captured in the cyclones is directed to the bottom of the stripper vessel (37) through a cyclone dipleg for discharge into the bed of catalyst that was recovered from the rapid separator in the stripping section.
After the combined vapor stream passes through the cyclones and out of the stripper vessel, it is directed through a conduit or pipe commonly referred to as a reactor vapor line (34) to a conventional product recovery section known in the FCC art.
The catalyst from the rapid separator and cyclone diplegs flows to the lower section of the stripper vessel that includes a catalyst stripping section into which a suitable stripping gas, such as steam, is introduced through line (36). The stripping section is provided with several baffles or structured packing (not shown) over which the downwardly flowing catalyst passes counter-currently to the flowing stripping gas. The upwardly flowing stripping gas, which is typically steam, is used to remove any additional hydrocarbons that remain in the catalyst pores or between catalyst particles.
The stripped catalyst is transported by the combustion air stream (25) through a lift riser (29) that terminates in the existing, but modified, regenerator (20) in a typical FCC process to burn off any coke that is a by-product of the cracking process. In the regenerator, the heat produced from the combustion of the by-product coke produced in the first reaction zone (10 and 14) of a typical FCC process from cracking heavy hydrocarbons and from the heavy oil cracking in zone (33) of the downflow reactor (30) is transferred to the catalyst.
The regenerator vessel (20) can be of any conventional previously known design and can be used with the enhanced process and downflow reaction zone of this invention. When modified for the practice of the invention, the placement of the regenerator-to-reactor conduit (28) or regenerated catalyst transfer line for the regenerator will be such that it insures a steady and continuous flow of a substantial quantity of regenerated catalyst that is needed to meet the maximum design requirements of the downflow reactor.
The catalyst requirements for the process of the invention can be determined in conjunction with any catalyst conventionally used in FCC processes, e.g., zeolites, silica-alumina, carbon monoxide burning promoter additives, bottoms cracking additives, light olefin-producing additives and any other catalyst additives routinely used in the FCC process. The preferred cracking zeolites in the FCC process are zeolites Y, REY, USY, and RE-USY. For the entranced production of light olefins, a preferred shaped selective catalyst additive typically used in the FCC process to produce light olefins and increase FCC gasoline octane is ZSM-5 zeolite crystal or other pentasil type catalyst structure. This ZSM-5 additive is mixed with the cracking catalyst zeolites and matrix structures in the conventional FCC catalyst and is preferably used in the method of the invention to maximize and optimize light olefin production in the ancillary downflow reactor.
A particular advantage of the present invention as an enhancement to existing FCC processes for co-processing heavy oils is that separate recovery of the products from each reactor for further downstream processing can be provided. The method and apparatus of the invention provides enhanced product recovery in conjunction with the existing FCC reactor thereby effectively increasing the overall capacity of the FCC unit process to produce more light olefins to meet the growing commercial demands described above. In addition, the process has the advantage that the products can be recovered in the existing section of the FCC unit without the need for additional facilities and capital expenditures.
The following comparative example illustrates the improvement in product yield when an existing convention FCC unit is provided with the enhancement of the down flow reactor of the present invention to increase the yield of light olefins. The product yields are typical for an FCC unit operating on unhydrotreated Middle East vacuum gasoil (VGO) feedstock. The downflow reactor yields are based on a bench scale pilot plant results representing the cracking conditions in the downflow reactor using hydrotreated Middle East vacuum gasoil. In this example the catalyst systems are similar and use USY zeolite.
The following Table summarizes the yield improvement in the production of light olefins when utilizing the downflow enhancement with a feedstock that is different than the feedstock provided to the conventional FCC unit.
As reported in the table, the total weight percent of the light olefins (C2′, C3 and C4) produced in the conventional FCC unit was 10.41, while the method of the invention increased the yield of these compounds to 39.86 weight percent.
These comparative examples also indicate that two different feedstocks can be introduced and the processes operated at different severities in order to produce these yields.
It will be understood that the embodiments described above are illustrative of the invention and that various modifications can be made by those of ordinary skill in the art that will be within the scope of the invention, which is to be determined by the claims that follow.
This application is a continuation of U.S. application Ser. No. 11/487,011, which is to be abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3424672 | Mitchell | Jan 1969 | A |
3542667 | Mcmahon et al. | Nov 1970 | A |
3617496 | Murphy et al. | Nov 1971 | A |
3784463 | Reynolds et al. | Jan 1974 | A |
3856659 | Owen et al. | Dec 1974 | A |
3928172 | Davis et al. | Dec 1975 | A |
4051013 | Strother | Sep 1977 | A |
4090949 | Owen et al. | May 1978 | A |
4097363 | McKinney et al. | Jun 1978 | A |
4116814 | Zahner | Sep 1978 | A |
4297203 | Ford et al. | Oct 1981 | A |
4310489 | Fahrig et al. | Jan 1982 | A |
4385985 | Gross et al. | May 1983 | A |
4693808 | Dewitz | Sep 1987 | A |
4814067 | Gartside et al. | Mar 1989 | A |
4830728 | Herbst et al. | May 1989 | A |
5049360 | Harandi et al. | Sep 1991 | A |
5053204 | Herbst et al. | Oct 1991 | A |
5314610 | Gartside | May 1994 | A |
5344554 | Pontier et al. | Sep 1994 | A |
5372704 | Harandi et al. | Dec 1994 | A |
5449496 | Pontier et al. | Sep 1995 | A |
5582712 | Zinke et al. | Dec 1996 | A |
5584986 | Bartholic | Dec 1996 | A |
5730859 | Johnson et al. | Mar 1998 | A |
5846403 | Swan et al. | Dec 1998 | A |
5904837 | Fujiyama | May 1999 | A |
5951850 | Ino et al. | Sep 1999 | A |
5965012 | Lomas | Oct 1999 | A |
6045690 | Fujiyama et al. | Apr 2000 | A |
6099720 | Pontier et al. | Aug 2000 | A |
6146597 | Nishida et al. | Nov 2000 | A |
6187272 | Ikeda | Feb 2001 | B1 |
6616899 | Upson | Sep 2003 | B1 |
6641715 | Gauthier | Nov 2003 | B1 |
6656346 | Ino et al. | Dec 2003 | B2 |
6837989 | Stuntz et al. | Jan 2005 | B2 |
6866771 | Lomas et al. | Mar 2005 | B2 |
7220351 | Pontier et al. | May 2007 | B1 |
20020096452 | Espeillac et al. | Jul 2002 | A1 |
20020195373 | Ino et al. | Dec 2002 | A1 |
20040004025 | Xu et al. | Jan 2004 | A1 |
20040110629 | Stamires et al. | Jun 2004 | A1 |
20040124124 | Pinho et al. | Jul 2004 | A1 |
20050167333 | McCall et al. | Aug 2005 | A1 |
20080011644 | Dean et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
142900 | May 1985 | EP |
0144409 | Jun 2001 | WO |
WO 0144409 | Jun 2001 | WO |
2006020547 | Feb 2006 | WO |
Entry |
---|
Corma, A. Melo, et al., “Different Process Schemes for Converting Light Straight Run and Fluid Catalytic Cracking Naphthas in A FCC Unit for Maximum Propylene Production,” Applied Catalysis A: General; vol. 265, Issue 2, Jul. 8, 2004, pp. 195-206. |
Pinho, A., et al., “Pioneering FCC Process in Down-Flow for Light Olefins,” Presented during Scope 2004 Conference, Florence, Italy, Jun. 21-23, 2004, pp. 1-9. |
Al-Tayyar, H. Mohammad, et al., “Development of a Novel Refinery Process: From Laboratory Experiments to Commercial Applications,” Saudi Aramco Journal of Technology, Spring 2008, pp. 2-9. |
PCT/US2007/15950, International Search Report and Written Opinion dated Dec. 3, 2007, 2 pages. |
PCT/US2007/16054, International Search Report and Written Opinion dated Dec. 6, 2007, 2 pages. |
Yatsuzuka et al., “Development of HS-FCC (High-Severity FCC) Process”, 2000 International 5, Petroleum Energy Center, 2000, pp. 1-5. |
Fujiyama et al., “Demonstration Plant for New FCC Technology Yields Increased Propylene”, Oil & Gas Journal, Sep. 26, 2005, pp. 54-58. |
Fujiyama et al., Development of High-Severity FCC Process: An Overview, Studies in Surface Science and Catalysis, vol. 166, 2007, pp. 1-12 (Abstract only). |
European Seach Report in EP 07796864.2 dated Oct. 13, 2011. |
Number | Date | Country | |
---|---|---|---|
20110226668 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11487011 | Jul 2006 | US |
Child | 13111437 | US |