Aneurysm device and delivery system

Information

  • Patent Grant
  • 11672540
  • Patent Number
    11,672,540
  • Date Filed
    Monday, August 31, 2020
    4 years ago
  • Date Issued
    Tuesday, June 13, 2023
    a year ago
Abstract
A braid for treating an aneurysm can include a first radially expandable segment operable to move from a collapsed state within a microcatheter to a deployed state distal of the microcatheter. The first radially expandable segment can be capable of radially expanding to form an outer occlusive sack in the aneurysm in the deployed state. The braid can also include a second radially expandable segment operable to move from the collapsed state within the microcatheter to the deployed state distal of the microcatheter, wherein the second radially expandable segment is capable of radially expanding inside the outer occlusive sack to form an inner occlusive sack in the outer occlusive sack in the deployed state. An expansion mechanism can be included and be disposed at a proximal end of the first and second radially expandable segments.
Description
FIELD

This disclosure relates to medical instruments, and more particularly, systems and devices for aneurysm therapy.


BACKGROUND

Aneurysms can be complicated and difficult to treat. For example, treatment access may be limited or unavailable when an aneurysm is located proximate critical tissues. Such factors are of particular concern with cranial aneurysms due to the brain tissue surrounding cranial vessels the corresponding limited treatment access.


Prior solutions have included endovascular treatment access whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow. In this respect, because the interior walls of the aneurysm may continue being subjected to flow of blood and related pressure, aneurysm rupture remains possible.


Alternative to endovascular or other surgical approaches can include occlusive devices. Such devices have typically incorporated multiple embolic coils that are delivered to the vasculature using microcatheter delivery systems. For example, when treating cranial aneurysms, a delivery catheter with embolic coils is typically first inserted into non-cranial vasculature through a femoral artery in the hip or groin area. Thereafter, the catheter is guided to a location of interest within the cranium. The sac of the aneurysm can then be filled with the embolic material to create a thrombotic mass that protects the arterial walls from blood flow and related pressure. However, such occlusive devices do have certain shortcomings, including mass effect, which can cause compression on the brain and its nerves.


One particular type of occlusive approach endeavors to deliver and treat the entrance or “neck” of the aneurysm as opposed to the volume of the aneurysm. In such “neck” approaches, by minimizing blood flow across the neck, then a cessation of flow into the aneurysm may be achieved. In turn, a thrombotic mass may naturally form without having to deliver embolic materials, as previously described. This is preferable to masses formed from embolic material since a natural mass can improve healing by reducing possible distention from arterial walls and permits reintegration into the original parent vessel shape along the neck plane of the aneurysm. It is understood that the neck plane is an imaginary surface where the inner most layer of the parent wall would be but for the aneurysm. However, neck-occlusive approaches are not without drawbacks. It is desired to block the neck of the aneurysm in the parent vessel. Furthermore, embolic coils do not always effectively treat aneurysms as re-canalization of the aneurysm and/or coil compaction can occur over time.


It is therefore desirable to have a device which easily, accurately, and safely occludes a neck of an aneurysm or other arterio-venous malformation in a parent vessel without blocking flow into perforator vessels communicating with the parent vessel.


SUMMARY

In some embodiments, the present disclosure relates to a braid for treating an aneurysm. The braid can include a first radially expandable segment operable to move from a collapsed state within a microcatheter to a deployed state distal of the microcatheter. The first radially expandable segment can be capable of radially expanding to form an outer occlusive sack in the aneurysm that seals the neck of the aneurysm in the deployed state. The braid can also include a second radially expandable segment operable to move from the collapsed state within the microcatheter to the deployed state distal of the microcatheter, wherein the second radially expandable segment is capable of radially expanding inside the outer occlusive sack to form an inner occlusive sack in the outer occlusive sack in the deployed state. An expansion mechanism can be included and be disposed at a proximal end of the first and second radially expandable segments.


In some embodiments, the expansion mechanism can include an expansion ring with an opening. A distal end of the braid can be inserted through the opening and then the proximal end can be folded over the opening.


In some embodiments, the expansion mechanism can include an opening and a plurality of radially flexible elements. Each flexible element can be capable of expanding from a collapsed condition in the microcatheter to an expanded condition in the deployed state distal of the microcatheter to support a proximal portion of the outer occlusive sack. Each radially flexible element can be evenly radially spaced about a central axis of the expansion mechanism. The central axis of the expansion mechanism can be axially aligned with a central axis of the first and second radially expandable segments.


In some embodiments, the expansion mechanism can include at least four radially spaced flexible elements that extend from an expansion ring (e.g. a radially movable leaf capable of moving between collapsed to deployed conditions). However, the solution is not so limited any instead greater or fewer than four leaves can be included, as needed or required.


In some embodiments, the expansion ring and leaf or leaves can be a monolithic structure. The expansion ring and leaf or leaves can also be formed from a memory alloy material such as nitinol.


In some embodiments, the expansion mechanism can include a plurality of expandable support elements that include potential energy stored in the collapsed state (e.g. the support elements may include biased bias elements or be memory shaped to expand a predetermined manner and release a predetermined amount of potential energy). The expandable support elements can be configured to urge the proximal end of the first radially expandable segment from the collapsed to the deployed state by releasing the potential energy of the expandable support elements.


In some embodiments, a porosity of the inner occlusive sack is greater than a porosity of the outer occlusive sack.


In some embodiments, distally translating the braid after the outer occlusive sack is formed causes an inner layer of the braid inside of the outer occlusive sack to radially expand inside the outer occlusive sack and form the inner occlusive sack. The inner layer of the braid can also be capable of radially expanding inside the outer occlusive sack while the outer occlusive sack is pushed against the aneurysm wall and aneurysm neck.


In some embodiments, a marker band can be included and in communication with the proximal end of the braid. The inner layer that radially expands inside the outer occlusive sack can also be formed by folding the proximal end over the marker band.


In some embodiments, wherein in the deployed state, the braid is detachable from a delivery system in the aneurysm.


In some embodiments, the delivery system can include a microcatheter and a delivery tube. The distal end of the delivery tube can be detachably connected to the proximal end of the braid. The delivery tube can be translatably disposable within the microcatheter. The delivery tube can also be capable of distally translating the braid within the microcatheter from the collapsed state to the deployed state.


In some embodiments, the outer occlusive sack can be a collapsible cage-like vaso-occlusive structure.


In some embodiments, the outer occlusive sack can include fewer wire segments than the inner occlusive sack.


In some embodiments, dimensions of interstices of the braid vary at the proximal end versus the distal end so that a porosity of the outer occlusive sack is less than a porosity of the inner occlusive sack.


In some embodiments, the braid can be included in a system or otherwise in communication with an imaging device capable of imaging the outer and/or inner occlusive sacks with respect to the aneurysm. An orientation of the outer and/or inner occlusive sacks can be adjustable by the braid being distally or proximally moved.


In some embodiments, an occlusive device for treating an aneurysm is provided. The device can include a braid being translatably disposable within a microcatheter from a collapsed state to a deployed state. The braid can include a distal end and a proximal end. In the deployed state, the braid can include an outer occlusive sack capable of pushing against an aneurysm wall of the aneurysm and sealing a neck of the aneurysm to deflect, divert, and/or slow a flow into the aneurysm, an inner occlusive sack disposed inside the outer occlusive sack, and an expansion mechanism disposed at the proximal end for urging formation of the outer and/or inner occlusive sacks in the deployed state.


In other embodiments, a method of occluding an aneurysm is disclosed. The method can include one or more of the following steps: positioning a radially expandable braid within a microcatheter, the braid being in a collapsed state within the microcatheter and comprising a distal end and a proximal end; attaching the proximal end of the braid to the distal end of a delivery tube; distally sliding the braid from the microcatheter, by the delivery tube, towards an aneurysm; urging a first radially expandable segment of the braid to form an outer occlusive sack by expanding an expansion mechanism of the braid, wherein the expansion mechanism is attached to the proximal end of the braid; laying the outer occlusive sack across a neck of the aneurysm; and further distally pushing the braid thereby expanding a second radially expandable segment inside of the outer occlusive sack while distally pushing the outer occlusive sack against the aneurysm wall and the neck of the aneurysm.


In certain embodiments, the method can include releasing the braid, including the outer and inner occlusive sacks, and withdrawing the delivery tube and the microcatheter from the aneurysm.


In certain embodiments, the expansion mechanism includes a plurality of radially spaced flexible elements, each flexible element capable of expanding from a collapsed condition in the microcatheter to an expanded condition in the deployed state to support a proximal portion of the outer occlusive sack. In this respect, the method can also include axially aligning the central axis of the expansion mechanism with a central axis of the first and second radially expandable segments; and radially spacing each flexible element about the central axis of the expansion mechanism.


In some embodiments, the method can include providing an expansion ring with an opening on or with the expansion mechanism; inserting a distal end of the braid through the opening; and folding the proximal end of the braid over the opening.


In some embodiments, the method can include radially spacing, about the expansion mechanism, at least four flexible elements that extend from an expansion ring, each flexible element being a radially movable leaf capable of moving between collapsed to deployed conditions.


In some embodiments, the method can include forming a monolithic structure from the expansion ring and the at least four flexible elements.


In some embodiments, the method can include forming a plurality of expandable support elements on the expansion mechanism that comprise potential energy stored in the collapsed state; and urging, by the expandable support elements, the proximal end of the first radially expandable segment from the collapsed to the deployed state by releasing the potential energy.


In some embodiments, the method can include forming the first radially expandable segment with a porosity lower than a porosity of the second radially expandable segment; positioning the first radially expandable segment adjacent or in communication with a neck of the aneurysm; and deflecting, diverting, and/or slowing a flow into the aneurysm.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.



FIG. 1A depicts an example occlusive device of this disclosure in a collapsed state.



FIG. 1B depicts an example occlusive device of this disclosure in a collapsed state within an example microcatheter.



FIG. 2A is a schematic side view of an exemplary delivery system with an occlusive device in a deployed state but not delivered to the aneurysm.



FIG. 2B is a schematic bottom view of an exemplary expansion mechanism and the outer occlusive sack of FIG. 2A with the delivery system removed.



FIG. 3A is an enlarged schematic side view of the delivery system and braid of FIGS. 1-2 as the occlusive device is being pushed into an example aneurysm;



FIG. 3B is an enlarged schematic side view of the delivery system and braid of FIGS. 1-2 as the occlusive device is being pushed into an example aneurysm;



FIG. 4A is an enlarged schematic side view of the delivery system and braid of FIGS. 1-2 as the occlusive device is being pushed into an example aneurysm;



FIG. 4B is an enlarged schematic side view of the delivery system and braid of FIGS. 1-2 after the occlusive device is deployed into an example aneurysm;



FIG. 5A is a perspective schematic view showing an exemplary delivery system for use with an example occlusive device;



FIG. 5B is a perspective schematic view of FIG. 5A but with partial cross-section of the delivery system and the occlusive device;



FIG. 6A is a perspective schematic view of FIGS. 5A-5B being deployed with partial cross-section of the delivery system and the occlusive device;



FIG. 6B is a perspective schematic view of FIGS. 5A-5B deployed with the exemplary delivery system detached from the occlusive device;



FIG. 7 depicts an example braid of this disclosure deployed in an example aneurysm;



FIG. 8A depicts an example prototype braid of this disclosure without an example expansion mechanism;



FIG. 8B depicts an example prototype braid of this disclosure without an example expansion mechanism;



FIG. 8C depicts an example prototype braid of this disclosure without an example expansion mechanism;



FIG. 8D depicts an example prototype braid of this disclosure without an example expansion mechanism; and



FIG. 9 is a flow diagram for a method of delivering an occlusive device





DETAILED DESCRIPTION

Although example embodiments of the disclosed technology are explained in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or carried out in various ways.


It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. By “comprising” or “containing” or “including” it is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.


In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.


As discussed herein, vasculature can be that of any “subject” or “patient” including of any human or animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.


As discussed herein, “operator” may include a doctor, surgeon, or any other individual or delivery instrumentation associated with delivery of a braid body to the vasculature of a subject.


Relatedly, flow diverters that are deployed across the aneurysm neck can alter the flow of blood into the aneurysm. An example flow diverter can be a braided device with relatively low porosity. Over time, the aneurysms can heal by sealing the aneurysm neck with a high rate of success. However, flow diversion technology is not without limitations. Challenges include placement of the devices intra-vascularly due to vessel morphology, vessel tortuosity, or braid malposition. In addition, patients receiving a flow diverter must be on anticoagulation medicine for an extended period to prevent vessel thrombosis. Intravascular devices also aim to cut circulation into the aneurysm while minimizing the amount of metal in the vessel and significantly cutting, or eliminating the need for coagulation medication. These types of devices may also be easier to track and/or deploy at the lesion site.


The occlusive device 1 disclosed herein addresses these and other drawbacks of previous approaches by using a single device to seal the aneurysm neck. Turning to FIG. 1A, an example occlusive device 1 of this disclosure is shown in a collapsed state prior to being arranged with a microcatheter 20. FIG. 1B depicts the occlusive device of FIG. 1A arranged in the collapsed state within the microcatheter 20. As shown, device 1 can include a braid 10 formed from multiple self-expanding multi-filament segments that can be formed from a mesh. For example, braid 10 can include a first radially expandable segment 12 associated with an outer occlusive sack and a second radially expandable segment 13 associated with an inner occlusive sack. Braid 10 can also have a distal end 14 associated with segment 12, a distal end 18 associated with segment 13, and a proximal end 16.


An expansion mechanism 9 can also be included disposed at or about proximal end 16 of braid 10. The expansion mechanism 9 can include one or more flexible support elements 7 that extend from or are attached to an expansion ring 5 with an opening 3. As shown, the flexible support elements 7 can be oriented to extend along the inner layer of braid 10 in both the collapsed and deployed states. Each flexible support element 7 of mechanism 9 can be elongate and extend at one or more depths into braid 10. Each element 7 of mechanism 9 can facilitate expansion of braid 10 to form sacks of segments 12 and/or 13, collectively with other flexible elements or individually. The flexible support element 7 is also referred to interchangeably herein as an elongate support element 7, a support element 7, or a flexible element 7.


The mesh of braid 10 can be defined by one or more mesh patterns, one or more discrete mesh portions, and/or one or more mesh openings defined by braided filaments. For example, the mesh of braid 10 can include a porosity region associated with an outer occlusive sack formed by braid 10 and another porosity region associated with an inner occlusive sack configured to expand and/or internally overlay the outer occlusive sack. The inner occlusive sack can have a higher porosity than the outer occlusive sack. For example, the mesh of braid 10 shown in FIGS. 1A and 1B can include a different porosity region associated with each of segments 12, 13.


Each of segments 12, 13 can be radially expandable and capable of being disposed inside microcatheter 20 in a collapsed state. Segment 12 can be an expandable, outer shell while segment 13 can be an inner, expandable shell. Segment 12 may expand and only partially file some of the aneurysm as shown and may form a “cup” like shape that within segment 13 can form and expand. Each of segments 12, 13 can be heat shaped to spherical, saddled, ellipsoid shaped, or any other shape, as shown in FIGS. 1A-2B. Though only segments 12, 13 are depicted, any number of segments could be included as needed or required. Each of segments 12, 13 can be capable of being moved from the collapsed state to a deployed state.


In practice, the porosity of segment 12 can permit the outer occlusive sack of segment 12 to take on many shapes prior to, during, or after delivery to aneurysm A. For example, the porosity of segment 12 can be relatively low to permit its sack to flexibly conform to a plurality of different shaped aneurysms. Segment 12 in this respect can have a porosity less than the porosity of segment 13 based on differing aperture sizes of the mesh. The porosities associated with segments 12, 13 and/or any other region or segment of braid 10 can also include a mesh with filaments having a different shape and/or pick count than the filaments in the other porosity regions.


The mesh of braid 10 can be comprised of a tube that is closed at one end (e.g. proximal end 16) and/or opened at opposite distal ends 14 and 18. Braid 10 can be made of several materials such as deposited thin films or of one single material. The mesh of braid 10 can include multiple wires, for example from 4 to 96 wires. The number of wires can be a factor in controlling material properties of the braid 10, including the porosity, shape in the deployed state, flexibility, stiffness, and the like. The combination of the one or more sacks internally overlaid with an outer occlusive sack can be considered when determining the number of wires of the mesh of braid 10 since one sack is inside the other. Further, the outer occlusive sack of segment 12 and/or the inner occlusive sack of segment 13 can be a collapsible cage-like vaso-occlusive structure.


The diameter of the braid 10, and the braid wire count can vary depending the diameter of the device needed to treat the aneurysm, and/or the desired porosity. For example, the distal end 14 of segment 12 can be an open end with a first diameter. The distal end 18 of segment 13 can be an open end with a second diameter that is less than the first diameter in the deployed state. The braid angle of the braid 10 can also be fixed, or vary along the length of braid 10 to create different porosity therealong. For example, to induce formation of the predetermined shape and strength of the occlusive sacks of segments 12 and 13, ends 14 and 18 may be more pliable than end 16, or vice versa, and other segments of braid 10 may vary from most pliable on or about end 14 and/or end 18 and less pliable on or about end 16. In some embodiments, ends 14, 18 can be looped as shown, which is particularly advantageous to ensure that the braid 10 is atraumatic when in contact with the dome of aneurysm A.


The number of wires, braid angle, patterns, or the like, can be used to define the porosities of segments 12, 13. The wires of braid 10 can be made from nitinol with interwoven platinum filaments for radiopacity, or Drawn Filled Tube (DFT) Nitinol with 10 to 40% Platinum. The wires can be made from a nickel-titanium alloy, cobalt chromium alloys, Stainless Steel, Tantalum, and/or other alloys, and/or any other suitable biocompatible materials, or combination of these materials. Also, these materials can be absorbable or non-absorbable by the patient over time. In this respect, the first porosity associated with segment 12 can be less than the second porosity associated with segment 13. Arranging segments 12, 13 in the deployed state, varying the braid properties, and/or positioning segment 12 adjacent or in communication with a neck of the aneurysm can induce a flow diverting effect. Material properties of segments 12, 13 can differ in other respects as well, as needed or required, including heat treatment or covering.


The apertures in the mesh of braid 10 can also create a substantially unitary frame work or mesh. Thus, the apertures may be of any size, shape, or porosity, and may be uniformly or randomly spaced throughout the wall of the mesh of braid 10. The apertures can provide the tubular element of braid 10 with flexibility and also assist in the transformation of the mesh from the collapsed state to the expanded, deployed state, and vice versa.


As shown in FIGS. 1B through FIG. 2B, a delivery system 40 can include the microcatheter 20 with a delivery tube 30 slideably disposed therein. The microcatheter 20 can be pre-placed at the level of the aneurysm neck and used to track the device to the aneurysm. The microcatheter 20 size can be selected in consideration of the size, shape, and directionality of the aneurysm or features through which the microcatheter 20 must pass to get to the treatment site. The microcatheter 20 may have a total usable length anywhere from 80 centimeters to 170 centimeters. The microcatheter 20 may have an inner diameter ID of anywhere between 0.015 and 0.032 inches. The outer diameter OD may also range in size and may narrow at either its proximal end or distal end. At its proximal end 26, the microcatheter 20 may be attached to a surgical device, and at its distal end 24 may be operable to be positioned at the neck of the aneurysm A. While the distal end 24 of the microcatheter 20 as shown contains the braid 10, the end 24 may be varied in shape and may curve at an angle.


Delivery tube 30 can be substantially elongate and can extend from the proximal 26 to the distal end 24 of microcatheter 20. Tube 30 can generally run along the inner lumen of microcatheter 20 and may leave a space between its outer surface and the internal surface of microcatheter 20. In turn, delivery tube 30 and microcatheter 30 may be axially aligned. System 40 can deliver braid 10 to a location of interest (e.g. a lesion site) using microcatheter 20. In certain embodiments, microcatheter 20 can be pre-placed at a level of the aneurysm neck and used to track the device 1 to the lesion, for example by tracking marker band 44 that can have radiopaque material. Delivery tube 30 can be in mechanical connection with braid 10 at locking portion 54. As shown more particularly below, locking portion 54 can comprise or be a pusher ring. Braid 10 may be attached to locking portion 54 by slidable attachment, permanent attachment (e.g. crimped, laser, ultrasonic weld, or other sources of heat, adhesive, or the like) or other attachment approaches. When delivery tube 30 is mechanically attached to braid 10 at locking portion 54, distally translating, sliding, or otherwise moving tube 30 towards the aneurysm A can cause braid 10 to begin moving from the collapsed state within microcatheter 20 to its deployed state external to microcatheter 20 with segments 12 and 13.


In the deployed state, some or all of braid 10 is distal of microcatheter 20 so that segments 12, 13 can radially expand. Braid 10 is particularly advantageous as it is capable of being collapsed within microcatheter 20 and also can form multiple occlusive sacks in the deployed state. The mesh of braid 10 can be configured with or without mechanism 9 so that as braid 10 is distally translated and its end 14 exits from within microcatheter 20, mechanism 9 can urge segment 12 to radially expand to form an outer occlusive sack of the first porosity. The outer occlusive sack of segment 12 can be formed as portions of flexible support elements 7 of mechanism 9 are distal of end 24 and end 14 of braid 10 slides away from end 24 of microcatheter 20. When flexible support elements 7 of mechanism 9 are no longer contained completely within microcatheter 20, they can then release potential energy stored therein and facilitate formation of the occlusive sacks of segments 12 and/or 13.


As braid 10 is further distally translated, segment 13 can begin to radially expand internal to the outer occlusive sack of segment 12. By radially expanding inside segment 12, segment 13 can form an inner occlusive sack with a porosity greater than the porosity of segment 12. As shown in FIG. 2A, the respective sacks of segments 12, 13 are formed now deployed and segment 13 is disposed internal to segment 12 but still connected to delivery tube 30 via locking portion 54. In FIG. 2A, the distal end 14 can form the outer layer of the outer occlusive sack of segment 12 while the proximal end 16 can form the outer layer of the inner occlusive sack of segment 13.



FIG. 2B is a schematic bottom view of an exemplary expansion mechanism 9 and the outer occlusive sack of segment 12 in a deployed state and delivery system 40 removed for purposes of clarity only. As shown, flexible elements 7 of mechanism 9 can be radially spaced about a central axis of the expansion mechanism, including a central axis of expansion ring 5 and/or opening 3. The expansion mechanism 9 can include a plurality of expandable, flexible support elements 7 capable of urging portions on or adjacent end 16 of braid 10 from the collapsed state in microcatheter 20 to the deployed state distal of microcatheter 20. Each element 7 of mechanism 9 can include potential energy stored in the collapsed state (e.g. the support elements 7 may include biased bias elements or be memory shaped to expand a predetermined manner and release a predetermined amount of potential energy). The expandable support elements 7 of mechanism 9 can be configured to urge the proximal end of the first radially expandable segment from the collapsed to the deployed state by releasing the potential energy of the expandable support elements 7.


In certain embodiments, the expansion mechanism 9 can include at least four radially spaced flexible support elements 7 that extend from a central portion of mechanism 9, such as expansion ring 5. When collapsed, the expansion mechanism 9 can be sized to fit through the neck of the aneurysm. When expanded and delivered to the aneurysm, the expansion mechanism 9 can be larger and block the neck. As shown in FIG. 2B, one or more flexible support elements 7 of mechanism 9 can be a radially movable leaf that can move between collapsed to deployed conditions. However, mechanism 9 is not so limited and instead greater or fewer than four leaves, or other elongate flexible support elements 7 of different structure but similar function, can be included as needed or required. The expansion ring 5 and leaf or leaves of mechanism 9 can also be a monolithic structure formed from a memory alloy material such as nitinol. The central axis of the expansion mechanism 9 can be axially aligned with a central axis of segments 12 and/or 13. Locking portion 54 may also be attached to mechanism 9 and/or aligned therewith.


As shown in FIG. 1B and FIG. 2B, end 16 can be disposed on or adjacent mechanism 9, marker band 44, and/or locking portion 54. To form or assemble braid 10 as shown in FIGS. 1A-2B, end 14 and/or 18 of braid 10 can be inserted through the opening 3 of mechanism 9 and then the proximal end 16 of braid 10 can be folded over the opening 3. In certain embodiments, the end 14 and/or 18 can also be inserted through marker band 44 until proximal end 16 is disposed on or adjacent to band 44 at locking portion 54. Locking portion 54 can then be connected to and/or folded over end 16. Braid 10 is not so limited and instead of being folded over, proximal end 16 can be operatively connected to mechanism 9, locking portion 54, or any other component thereof by sonic weld, mechanical attachment, or adhesive. Regardless of connection, the proximal end 16 being operatively connected to mechanism 7, locking portion 54, and/or band 44, can cause formation of an outer layer of the braid 10 associated with segment 12.


In practice, as shown in FIGS. 3A to 4B, the braid 10 can be pushed into the aneurysm A by the delivery tube 30 and be deployed with the lower porosity outer layer of segment 12 laying across the neck of the aneurysm A, and the inner layer of segment 13 can be expanding inside of the outer layer while pushing the outer layer in position against the aneurysm wall and/or aneurysm neck. In particular, FIGS. 3A to 4B depict an enlarged schematic side view of the delivery system 40 and braid 10 as the braid 10 is being pushed into an example aneurysm A. Prior to the arrangement of FIG. 3A, the braid 10 can be assembled with a delivery tube 30 and/or a microcatheter 20 in a collapsed state and thus disposed inside delivery system 40. In this respect, the delivery system 40 and braid 10 can be packaged as a portable kit or system. The assembly between microcatheter 20, delivery tube 30, and/or braid 10 can take place before being introduced into the vasculature. The delivery system 40 used with braid 10, which can include microcatheter 20 and delivery tube 30, can be selectively positioned at the lesion site and delivery tube 30 can begin distally translating braid 10 towards the aneurysm.


Turning to FIG. 3A, sack 12 has radially expanded towards the outer walls of aneurysm A while unexpanded portions (e.g. segment 13, end 16) of braid 10 continue to be mostly collapsed within microcatheter 20 and translated by delivery tube 30. Portions of braid 10 distal of end 24 can expand as braid 10 distally moves away from end 24 of catheter 20. When expanding from the collapsed state of FIG. 1B to the intermediary deployed state of FIG. 3A, segments 12 and 13 begin to radially expand to form their respective occlusive sacks within aneurysm A. Mechanism 9 is also depicted in FIG. 3A in a collapsed state completely contained within microcatheter 20. Ring 5 of mechanism 9 is shown in communication with end 16 while portions of elements 7 extend about segment 13 and in communication with segment 12 on or about end 16. In this respect, as braid 10 distally translates, segment 12 and/or segment 13 can be urged by elements 7 of mechanism 9 to form the occlusive sacks of this disclosure.


As shown in the transitional state of FIG. 3A, the sack of segment 12 can be generally spherical shape internal to aneurysm A while segment 13 remains mostly collapsed and stored within microcatheter 20. However, the portion of segment 13 distal of end 24 begun to radially expand within segment 12.


In FIG. 3B, the delivery tube 30 has distally slid braid 10 deeper into aneurysm A so that the outer surface of segment 12 has moved closer to contacting dome D. Locking portion 54 is depicted proximate or adjacent end 24 of microcatheter 20 so that all portions of braid 10, including mechanism 9, are distal thereof and external of microcatheter 20. As a result, elements 7 of mechanism 9 are shown urging expansion of segment 12 on or about end 16 to radially expand and form the outer occlusive sack shown filing the aneurysm A. It is understood that the outer surface of braid 10 can be made from nitinol with interwoven platinum filaments for radiopacity. Delivery tube 30 may be driven between FIGS. 3A and 3B by a hypotube from its proximal end 36 by an operator or the like. Microcatheter 20 may remain relatively stationary or fixed while delivery tube 30 can be seen distally translating braid 10 towards and through the neck of aneurysm A.


Braid 10 can include a pre-weakened or transition portion 19 (e.g., depicted in FIGS. 1A-1B) so that as braid 10 and delivery tube 30 are distally translated away from microcatheter 20 and deeper into aneurysm A, elements 7 of mechanism can urge segments 12 to expand and portion 19 can facilitate initiation of the radial expansion of segment 13 inside segment 12. For example, translation of braid 10 a first predetermined distance can cause segment 12 to radially expand to form its outer occlusive sack. Further translating braid a second predetermined distance into aneurysm A, as is shown in FIG. 3B can cause the inner occlusive sack of segment 13 to form inside of the outer occlusive sack. In certain embodiments, portion 19 can initiate radial expansion of segment 13 inside segment 12.


In FIG. 4A, the delivery tube 30 is distally translated deeper into aneurysm A. Moving between FIGS. 3A to 4A, it is shown that distally translating the braid 10, by the delivery tube 30, deeper into aneurysm A can further cause elements 7 of mechanism 9 to expand more and urge segment 12 to also additionally radially expand and press against the aneurysm wall. Further distal translation also can essentially cause locking portion 54 to make greater the expansion angle of segment 7 and push ring 5 of mechanism 9 towards the aneurysm neck. In turn, mechanism 9 is essentially tucked into braid segment 13 thereby flattening or otherwise rendering more spherical the sack of segment 12. In certain embodiments, the widening of segment 12 between FIGS. 3A and 4A can cause end 14 to slide proximally back towards end 24 of microcatheter while segment 13 continues to expand radially.


As also seen moving between FIGS. 3A to 4A, the junction between end 16 of braid 10, locking portion 54, mechanism 9, and delivery tube 30 can move from within microcatheter 20 in the collapsed state to completely within aneurysm A in the deployed state. Once braid 10, including segments 12 and 13, are selectively positioned and arranged to the desired condition (e.g. braid 10 has been translated distally to expand segments 12, 13 to form the outer and inner sacks), braid 10 can be detached from the delivery tube 30 as shown in FIG. 4B. In other words, as the braid 10 is distally translated towards the dome of the aneurysm A, segments 12, 13 can expand and be used to radially expand to support the aneurysm wall in a manner that is easy, efficient, and avoids risks of rupture.


Once expanded and positioned, delivery tube 30 can be proximally translated back into microcatheter 20 and retracted from the braid 10 and aneurysm A. In particular, FIG. 4B shows an example arrangement of braid 10 in its expanded state and the inner and outer sacks of segments 13 and 12, respectively, completely formed with delivery tube 30 having detached from locking portion 54. Expanding segments 12, 13 and positioning mechanism 9 into the braid 10 is particularly advantageous as it can prevent braid 10 from creating a protrusion that would otherwise extend into the parent vessel. Instead, any such protrusion can now be tucked into segment 12 and/or 13 of braid 10. Arranging braid 10 in this manner across the neck of the aneurysm while also varying the porosity of segments 12, 13 can also create a flow diversion essentially inside of the sacks of braid 10. FIG. 4B merely shows example spherical sacks of segments 12, 13 fully formed in a manner sufficient to occlude aneurysm. However, if either sack of segments 12, 13 is not precisely positioned or needs to be reset or adjusted within aneurysm A for safe occlusion without risk of rupture, braid 10 can be retracted back into microcatheter 20 by proximally withdrawing delivery tube 30 while still attached to braid 10.



FIGS. 5A to 6B generally illustrate example attachment and delivery between delivery tube 30 and braid 10 for deploying and detaching braid 10 in aneurysm A. The embodiments of FIGS. 5A to 6B is merely one way that delivery tube 30 and braid 10 may be attached at end 34 and any number of attachment means are contemplated as needed or required. The delivery tube 30 as shown can have a lumen extending from a proximal end 36 to a distal, delivery end 34. FIG. 5A illustrates braid 10 engaged with the locking member 52 and loop wire 58 locked into the locking portion 54. The opening 60 of the loop wire 58 can be placed through the locking portion 54. The locking portion 54 preferably takes the form of a small diameter elongate filament, however, other forms such as wires or tubular structures are also suitable. While the locking portion 54 is preferably formed of nitinol, other metals and materials such as stainless steel, PTFE, nylon, ceramic or glass fiber and composites may also be suitable. Locking member 52, in one example, may be an elongated retractable fiber that may extend between ends 24 and 26 of the microcatheter 20. Locking member 52 preferably takes the form of a small diameter elongate filament, however, other forms such as wires or tubular structures are also suitable. While the locking member 52 is preferably formed of nitinol, other metals and materials such as stainless steel, PTFE, nylon, ceramic or glass fiber and composites may also be suitable. When the locking member 52 is put through the opening 60 the braid 10 is now secure. It is understood that delivery tube 30 may include a compressible portion 38 disposed between its ends 34 and 36.


The compressible portion 38 can allow the delivery tube 30 to bend and/or flex. Such flexibility can assist tracking the braid 10 through the microcatheter 20 and the tortuous path through the vasculature. The compressible portion 38 can be formed with interference spiral cuts that can allow for gaps to permit bending but in one example, do not act as a spiral-cut spring. Compressible portion 38 can be axially adjustable between an elongated condition and a compressed condition. However, any other arrangement allowing axial adjustment (e.g., a wound wire or spiral ribbon) can also be suitable for use with detachment systems according to the present disclosure). The compressible portion 38 can be in the elongated condition at rest and automatically or resiliently returns to the elongated condition from a compressed condition, unless otherwise constrained. The function of the compressible portion 38 is described in greater detail herein.


A force F was previously applied to place the delivery tube 30 in a compressed state. FIG. 5B illustrates the locking member 52 being drawn proximally to begin the release sequence for braid 10. FIG. 6A illustrates the instant the locking member 52 exits the opening 60 and is pulled free of the loop wire 58. The distal end 62 of the loop wire 58 falls away/returns to its preformed shape and exits the locking portion 54. As can be seen, there is now nothing holding the braid 10 to the delivery tube 30. FIG. 6B illustrates the end of the release sequence. Here, the compressible portion 38 of the delivery tube 30 has expanded/returned to its original shape and “sprung” forward. An elastic force E is imparted by the distal end 34 of the delivery tube 30 to the braid 10 to “push” it away to insure a clean separation and delivery of the braid 10 to the aneurysm A. It is to be understood that the delivery scheme described in FIGS. 6A-7B are merely example approaches to delivery of braid 10.



FIG. 7 depicts an example braid 10 of this disclosure deployed in an example aneurysm A.



FIGS. 8A-8D depict example prototype braids of this disclosure with varying braid properties. These prototypes are strictly for illustrative purposes.



FIG. 9 is a flow diagram for a method 900 of delivering an occlusive device to the aneurysm. Step 905 includes positioning a radially expandable braid within a microcatheter, the braid being in a collapsed state within the microcatheter and comprising a distal end and a proximal end. Step 910 includes attaching the proximal end of the braid to the distal end of a delivery tube. Step 915 includes distally sliding the braid from the microcatheter, by the delivery tube, towards an aneurysm. Step 920 includes urging a first radially expandable segment of the braid to form an outer occlusive sack by expanding an expansion mechanism of the braid expands, the expansion mechanism attached to the proximal end of the braid, the outer occlusive sack being operable to lay across a neck of the aneurysm. Step 925 further distally pushing the braid thereby expanding a second radially expandable segment inside of the outer occlusive sack while distally pushing the outer occlusive sack against the aneurysm wall and the neck of the aneurysm. Step 930 releasing the braid, including the outer and inner occlusive sacks, and withdrawing the delivery tube and the microcatheter from the aneurysm. The outer occlusive sack can form upon or as the distal end of the braid is moved distally from the microcatheter and in communication with a dome of the aneurysm.


In certain embodiments of method 900, the expansion mechanism can include a plurality of radially spaced flexible elements, each flexible element capable of expanding from a collapsed condition in the microcatheter to an expanded condition in the deployed state to support a proximal portion of the outer occlusive sack. In this respect, the method 900 can also include axially aligning the central axis of the expansion mechanism with a central axis of the first and second radially expandable segments; and radially spacing each flexible element about the central axis of the expansion mechanism.


The method 900 can also include providing an expansion ring with an opening on or with the expansion mechanism; inserting a distal end of the braid through the opening; and folding the proximal end of the braid over the opening. The method 900 can also include radially spacing, about the expansion mechanism, at least four flexible elements that extend from an expansion ring, each flexible element being a radially movable leaf capable of moving between collapsed to deployed conditions. The method 900 can also include forming a monolithic structure from the expansion ring and the at least four flexible elements. The method 900 can also include forming a plurality of expandable support elements on the expansion mechanism that comprise potential energy stored in the collapsed state; and urging, by the expandable support elements, the proximal end of the first radially expandable segment from the collapsed to the deployed state by releasing the potential energy. The method 900 can also include forming the first radially expandable segment with a porosity lower than a porosity of the second radially expandable segment; positioning the first radially expandable segment adjacent or in communication with a neck of the aneurysm; and inducing a flow diverting effect across the neck of the aneurysm when the inner occlusive sack is formed inside the outer occlusive sack.


It is understood that variations of the braid 10 can include various materials such as stainless steel, bio absorbable materials, and polymers. Braid 10, including any specific portions such as any breaks, varying regions of differing porosities, and occlusive sacks, can be heat set to various configurations such as spherical, oblong, saddle shaped, or the like, for the purpose of shaping the outer and/or inner sack to better match the aneurysm morphology. In addition, the braid 10 can be heat shaped to include weak points to facility the radial expansion of the occlusive sacks. Further, interstices of braid 10 that form the sacks can vary, or be selectively designed, in size or shape along its length depending on how much braid 10 is caused to radially expand as delivery tube 30 is distally moved.


It is understood that the braid 10 can also be included in a system or otherwise in communication with an imaging device capable of imaging the outer and/or inner occlusive sacks of segments 12 and 13 with respect to the aneurysm. An orientation of the outer and/or inner occlusive sacks can be adjustable by the braid 10 being distally or proximally moved with respect to the aneurysm and monitored precisely by the imaging device.


The specific configurations, choice of materials and the size and shape of various elements can be varied according to particular design specifications or constraints requiring a system or method constructed according to the principles of the disclosed technology. Such changes are intended to be embraced within the scope of the disclosed technology. The presently disclosed embodiments, therefore, are considered in all respects to be illustrative and not restrictive. It will therefore be apparent from the foregoing that while particular forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.

Claims
  • 1. A braid for treating an aneurysm, the braid comprising: a first radially expandable segment capable of radially expanding to form an outer occlusive sack in the aneurysm configured to seal a neck of the aneurysm as the braid is being moved distally toward the aneurysm;a second radially expandable segment capable of radially independently expanding inside the outer occlusive sack as the outer occlusive sack is forming to form an inner occlusive sack in the outer occlusive sack as the braid is being moved further distally in the aneurysm; wherein proximal ends of each segment are aligned with each other and distal ends of each segment are positioned opposite the proximal ends of each segment; anda plurality of radially flexible elements positioned at the proximal end of the first radially expandable segment, wherein each flexible element is capable of expanding from a collapsed condition to an expanded condition to support a proximal portion of the outer occlusive sack, and wherein each flexible element comprises a radially movable leaf.
  • 2. The braid of claim 1, the plurality of radially flexible elements arranged surrounding an opening between the radially flexible elements, wherein a distal end of the braid is insertable through the opening.
  • 3. The braid of claim 2, wherein a proximal end of the braid is foldable over the opening.
  • 4. The braid of claim 2, wherein each radially flexible element is evenly radially spaced about a central axis aligned with the opening, the central axis being axially aligned with a central axis of the first and second radially expandable segments.
  • 5. The braid of claim 1, wherein at least four radially flexible elements are comprised in the plurality of radially flexible elements that extend from an expansion ring, each flexible element capable of moving between collapsed to deployed conditions.
  • 6. The braid of claim 5, wherein the expansion ring is formed from a memory alloy material.
  • 7. The braid of claim 1, wherein the plurality of radially flexible elements is attached to and configured to urge the proximal end of the first radially expandable segment from a collapsed to a deployed state by releasing potential energy of the radially flexible elements.
  • 8. The braid of claim 1, the inner occlusive sack comprising a porosity greater than a porosity of the outer occlusive sack.
  • 9. The braid of claim 1, wherein the inner occlusive sack of the braid is capable of radially expanding inside the outer occlusive sack while the outer occlusive sack is pushed against the aneurysm wall.
  • 10. The braid of claim 1, further comprising a marker band in communication with a proximal end of the braid.
  • 11. The braid of claim 10, wherein the inner occlusive sack of the braid radially expands inside the outer occlusive sack by folding the proximal end of the braid over the marker band.
  • 12. The braid of claim 1, the braid being detachable from a delivery system in the aneurysm, the delivery system comprising a delivery tube comprising a distal end and a proximal end, the distal end of the delivery tube being detachably connected to a proximal end of the braid.
  • 13. A method of occluding an aneurysm, comprising: distally moving a braid towards the aneurysm to form an outer occlusive sack of a first radially expandable mesh segment of the braid by expanding a plurality of radially flexible elements attached to a proximal end of the braid; anddistally moving the braid in the aneurysm as the outer occlusive sack is forming thereby expanding a second radially expandable mesh segment inside of the outer occlusive sack to form an inner occlusive sack;wherein proximal ends of each segment are aligned with each other and distal ends of each segment are positioned opposite the proximal ends of each segment, andwherein each radially flexible element comprises a radially movable leaf.
  • 14. The method of claim 13, further comprising: supporting a proximal portion of the outer occlusive sack, by the plurality of radially flexible elements; andradially spacing each radially flexible element about a central axis of the braid.
  • 15. The method of claim 13, further comprising: inserting a distal end of the braid through an opening defined between the radially flexible elements; andfolding the proximal end of the braid over the opening.
  • 16. The method of claim 13, further comprising: extending the radially flexible elements from an expansion ring.
  • 17. The method of claim 13, further comprising: urging, by the plurality of radially spaced flexible elements attached to the proximal end of the first radially expandable mesh segment, the proximal end of the first radially expandable mesh segment to form the outer occlusive sack.
  • 18. The method of claim 13, further comprising: forming the first radially expandable mesh segment with a porosity lower than a porosity of the second radially expandable segment.
  • 19. The method of claim 13, further comprising: positioning the first radially expandable mesh segment adjacent or in communication with a neck of the aneurysm.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a continuation application of U.S. patent application Ser. No. 15/879,196 filed Jan. 24, 2018. The entire contents of which are hereby incorporated by reference.

US Referenced Citations (434)
Number Name Date Kind
2849002 Oddo Aug 1958 A
3480017 Shute Nov 1969 A
4085757 Pevsner Apr 1978 A
4282875 Serbinenko et al. Apr 1981 A
4364392 Strother et al. Dec 1982 A
4395806 Wonder et al. Aug 1983 A
4517979 Pecenka May 1985 A
4545367 Tucci Oct 1985 A
4836204 Landymore et al. Jun 1989 A
4991602 Amplatz et al. Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5025060 Yabuta et al. Jun 1991 A
5065772 Cox, Jr. Nov 1991 A
5067489 Lind Nov 1991 A
5122136 Guglielmi et al. Jun 1992 A
5192301 Kamiya et al. Mar 1993 A
5261916 Engelson Nov 1993 A
5304195 Twyford, Jr. et al. Apr 1994 A
5334210 Gianturco Aug 1994 A
5350397 Palermo Sep 1994 A
5423829 Pham et al. Jun 1995 A
5624449 Pham et al. Apr 1997 A
5645558 Horton Jul 1997 A
5733294 Forber et al. Mar 1998 A
5916235 Guglielmi Jun 1999 A
5891128 Chin et al. Jul 1999 A
5928260 Chin et al. Jul 1999 A
5935148 Villar Aug 1999 A
5941249 Maynard Aug 1999 A
5951599 McCrory Sep 1999 A
5964797 Ho Oct 1999 A
6007573 Wallace et al. Dec 1999 A
6024756 Pham Feb 2000 A
6036720 Abrams Mar 2000 A
6063070 Eder May 2000 A
6063100 Diaz et al. May 2000 A
6063104 Villar May 2000 A
6080191 Thaler Jun 2000 A
6086577 Ken et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6113609 Adams Sep 2000 A
6123714 Gia et al. Sep 2000 A
6168615 Ken Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6193708 Ken et al. Feb 2001 B1
6221086 Forber Apr 2001 B1
6270515 Linden et al. Aug 2001 B1
6315787 Tsugita et al. Nov 2001 B1
6331184 Abrams Dec 2001 B1
6334048 Edvardsson et al. Dec 2001 B1
6346117 Greenhalgh Feb 2002 B1
6350270 Roue Feb 2002 B1
6375606 Garbaldi et al. Apr 2002 B1
6375668 Gifford Apr 2002 B1
6379329 Naglreiter et al. Apr 2002 B1
6391037 Greenhalgh May 2002 B1
6419686 McLeod et al. Jul 2002 B1
6428558 Jones Aug 2002 B1
6454780 Wallace Sep 2002 B1
6463317 Kucharczyk et al. Oct 2002 B1
6506204 Mazzocchi et al. Jan 2003 B2
6527919 Roth Mar 2003 B1
6547804 Porter et al. Apr 2003 B2
6551303 Van Tassel et al. Apr 2003 B1
6569179 Teoh May 2003 B2
6569190 Whalen, II et al. May 2003 B2
6572628 Dominguez Jun 2003 B2
6589230 Gia et al. Jul 2003 B2
6589256 Forber Jul 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6620152 Guglielmi Sep 2003 B2
6669719 Wallace et al. Dec 2003 B2
6689159 Lau et al. Feb 2004 B2
6746468 Sepetka Jun 2004 B1
6780196 Chin et al. Aug 2004 B2
6802851 Jones Oct 2004 B2
6811560 Jones Nov 2004 B2
6833003 Jones et al. Dec 2004 B2
6846316 Abrams Jan 2005 B2
6849081 Sepetka et al. Feb 2005 B2
6855154 Abdel-Gawwad Feb 2005 B2
6949116 Solymar et al. Sep 2005 B2
6964657 Cragg et al. Nov 2005 B2
6964671 Cheng Nov 2005 B2
6994711 Hieshima et al. Feb 2006 B2
7044134 Khairkhahan et al. May 2006 B2
7083632 Avellanet Aug 2006 B2
7093527 Rapaport et al. Aug 2006 B2
7128736 Abrams et al. Oct 2006 B1
7152605 Khairkhahan et al. Dec 2006 B2
7153323 Teoh Dec 2006 B1
7195636 Avellanet et al. Mar 2007 B2
7229454 Tran et al. Jun 2007 B2
7229461 Chin et al. Jun 2007 B2
7309345 Wallace Dec 2007 B2
7371249 Douk et al. May 2008 B2
7377932 Mitelberg et al. May 2008 B2
7410482 Murphy et al. Aug 2008 B2
7572288 Cox Aug 2009 B2
7597704 Frazier et al. Oct 2009 B2
7608088 Jones Oct 2009 B2
7695488 Berenstein et al. Apr 2010 B2
7713264 Murphy May 2010 B2
7744652 Morsi Jun 2010 B2
7892248 Tran Feb 2011 B2
7985238 Balgobin et al. Jul 2011 B2
RE42758 Ken Sep 2011 E
8016852 Ho Sep 2011 B2
8021416 Abrams Sep 2011 B2
8025668 McCartney Sep 2011 B2
8034061 Amplatz et al. Oct 2011 B2
8048145 Evans et al. Nov 2011 B2
8062325 Mitelberg et al. Nov 2011 B2
8075585 Lee et al. Dec 2011 B2
8142456 Rosqueta et al. Mar 2012 B2
8221483 Ford et al. Jul 2012 B2
8261648 Marchand et al. Sep 2012 B1
8267923 Murphy Sep 2012 B2
8361106 Solar et al. Jan 2013 B2
8361138 Adams Jan 2013 B2
8372114 Hines Feb 2013 B2
8398671 Chen Mar 2013 B2
8430012 Marchand Apr 2013 B1
8454633 Amplatz et al. Jun 2013 B2
8523897 van der Burg et al. Sep 2013 B2
8523902 Heaven et al. Sep 2013 B2
8551132 Eskridge et al. Oct 2013 B2
8777974 Amplatz et al. Jul 2014 B2
8900304 Alobaid Dec 2014 B1
8974512 Aboytes et al. Mar 2015 B2
8992568 Duggal et al. Mar 2015 B2
8998947 Aboytes et al. Apr 2015 B2
9055948 Jaeger et al. Jun 2015 B2
9107670 Hannes et al. Aug 2015 B2
9161758 Figulla et al. Oct 2015 B2
9232992 Heidner et al. Jan 2016 B2
9259337 Cox et al. Feb 2016 B2
9314326 Wallace et al. Apr 2016 B2
9351715 Mach May 2016 B2
9414842 Glimsdale et al. Aug 2016 B2
9526813 Cohn et al. Dec 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Bowman Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561096 Kim et al. Feb 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579104 Beckham et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9585669 Becking et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9629635 Hewitt et al. Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9681861 Heisei et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9826980 Figulla et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
9918720 Marchand et al. Mar 2018 B2
9955976 Hewitt et al. May 2018 B2
10004510 Gerberding Jun 2018 B2
10130372 Griffin Nov 2018 B2
10307148 Heisel et al. Jun 2019 B2
10327781 Divino et al. Jun 2019 B2
10342546 Sepetka et al. Jul 2019 B2
10517604 Bowman et al. Dec 2019 B2
10653425 Gorochow et al. May 2020 B1
10716573 Connor Jul 2020 B2
10743884 Lorenzo Aug 2020 B2
10751066 Lorenzo Aug 2020 B2
10905430 Lorenzo Feb 2021 B2
11464518 Connor Oct 2022 B2
20020068974 Kuslich et al. Jun 2002 A1
20020082638 Porter et al. Jun 2002 A1
20020143349 Gifford, III et al. Oct 2002 A1
20020147497 Belef et al. Oct 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030028209 Teoh et al. Feb 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030171739 Murphy et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030181945 Opolski Sep 2003 A1
20030195553 Wallace Oct 2003 A1
20030216772 Konya Nov 2003 A1
20040034366 van der Burg et al. Feb 2004 A1
20040034386 Fulton et al. Feb 2004 A1
20040044391 Porter Mar 2004 A1
20040087998 Lee et al. May 2004 A1
20040093014 Ho et al. May 2004 A1
20040098027 Teoh et al. May 2004 A1
20040127935 Van Tassel et al. Jul 2004 A1
20040133222 Tran et al. Jul 2004 A1
20040153120 Seifert et al. Aug 2004 A1
20040210297 Lin et al. Oct 2004 A1
20040254594 Alfaro Dec 2004 A1
20050021016 Malecki et al. Jan 2005 A1
20050021072 Wallace Jan 2005 A1
20050159771 Petersen Jul 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050251200 Porter Nov 2005 A1
20060052816 Bates et al. Mar 2006 A1
20060058735 Lesh Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060106421 Teoh May 2006 A1
20060155323 Porter et al. Jul 2006 A1
20060155367 Hines Jul 2006 A1
20060167494 Suddaby Jul 2006 A1
20060247572 McCartney Nov 2006 A1
20070088387 Eskridge et al. Apr 2007 A1
20070106311 Wallace et al. May 2007 A1
20070208376 Meng Jun 2007 A1
20070162071 Burkett et al. Jul 2007 A1
20070167876 Euteneuer et al. Jul 2007 A1
20070173928 Morsi Jul 2007 A1
20070186933 Domingo Aug 2007 A1
20070191884 Eskridge et al. Aug 2007 A1
20070233188 Hunt et al. Oct 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070288083 Hines Dec 2007 A1
20080097495 Feller, III et al. Apr 2008 A1
20080103505 Fransen May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080281350 Sepetka et al. Nov 2008 A1
20090036877 Nardone et al. Feb 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090099647 Glimsdale Apr 2009 A1
20090227983 Griffin et al. Sep 2009 A1
20090281557 Sander et al. Nov 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090287294 Rosqueta et al. Nov 2009 A1
20090287297 Cox Nov 2009 A1
20090318941 Sepetka Dec 2009 A1
20100023046 Heidner et al. Jan 2010 A1
20100023048 Mach Jan 2010 A1
20100063573 Hijlkema Mar 2010 A1
20100063582 Rudakov Mar 2010 A1
20100069948 Veznedaroglu et al. Mar 2010 A1
20100168781 Berenstein Jul 2010 A1
20100211156 Linder et al. Aug 2010 A1
20100324649 Mattsson et al. Dec 2010 A1
20110046658 Conner et al. Feb 2011 A1
20110054519 Neuss Mar 2011 A1
20110112588 Linderman et al. May 2011 A1
20110137317 O'Halloran et al. Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110196413 Wallace Aug 2011 A1
20110319978 Schaffer Dec 2011 A1
20120010644 Sideris et al. Jan 2012 A1
20120071911 Sadasivan Mar 2012 A1
20120165732 Müller Jun 2012 A1
20120191123 Brister et al. Jul 2012 A1
20120283768 Cox Nov 2012 A1
20120310270 Murphy Dec 2012 A1
20120323267 Ren Dec 2012 A1
20120330341 Becking et al. Dec 2012 A1
20130035665 Chu Feb 2013 A1
20130035712 Theobald et al. Feb 2013 A1
20130066357 Aboytes et al. Mar 2013 A1
20130079864 Boden Mar 2013 A1
20130110066 Sharma et al. May 2013 A1
20130204351 Cox et al. Aug 2013 A1
20130211495 Halden Aug 2013 A1
20130261658 Lorenzo et al. Oct 2013 A1
20130261730 Bose et al. Oct 2013 A1
20130274863 Cox et al. Oct 2013 A1
20130345738 Eskridge Dec 2013 A1
20140005714 Quick et al. Jan 2014 A1
20140012307 Franano et al. Jan 2014 A1
20140012363 Franano et al. Jan 2014 A1
20140018838 Franano et al. Jan 2014 A1
20140135812 Divino et al. May 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140257360 Keillor Sep 2014 A1
20140257361 Prom Sep 2014 A1
20140277013 Sepetka et al. Sep 2014 A1
20140358178 Hewitt et al. Dec 2014 A1
20150057703 Ryan et al. Feb 2015 A1
20150209050 Aboytes et al. Jul 2015 A1
20150272589 Lorenzo Oct 2015 A1
20150313605 Griffin Nov 2015 A1
20150342613 Aboytes et al. Dec 2015 A1
20150374483 Janardhan et al. Dec 2015 A1
20160022445 Ruvalcaba et al. Jan 2016 A1
20160030050 Franano et al. Feb 2016 A1
20160192912 Kassab et al. Jul 2016 A1
20160249934 Hewitt et al. Sep 2016 A1
20160249935 Hewitt et al. Sep 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079661 Bardsley et al. Mar 2017 A1
20170079662 Rhee Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079717 Walsh et al. Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170114350 dos Santos et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170258473 Plaza et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340333 Badruddin et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180140305 Connor May 2018 A1
20180206850 Wang et al. Jul 2018 A1
20180242979 Lorenzo Aug 2018 A1
20180303531 Sanders et al. Oct 2018 A1
20180338767 Dasnurkar et al. Nov 2018 A1
20190008522 Lorenzo Jan 2019 A1
20190223878 Lorenzo et al. Jan 2019 A1
20190110796 Jayaraman Apr 2019 A1
20190142567 Janardhan et al. May 2019 A1
20190192162 Lorenzo Jun 2019 A1
20190192167 Lorenzo Jun 2019 A1
20190192168 Lorenzo Jun 2019 A1
20190223879 Jayaraman Jul 2019 A1
20190223881 Hewitt et al. Sep 2019 A1
20190328398 Lorenzo Oct 2019 A1
20190357914 Gorochow et al. Nov 2019 A1
20190365385 Gorochow et al. Dec 2019 A1
20200000477 Nita et al. Jan 2020 A1
20200069313 Xu et al. Mar 2020 A1
20200268365 Hebert et al. Aug 2020 A1
20200375606 Lorenzo Dec 2020 A1
20210007755 Lorenzo et al. Jan 2021 A1
20210177429 Lorenzo Jun 2021 A1
Foreign Referenced Citations (100)
Number Date Country
2395796 Jul 2001 CA
2 431 594 Sep 2002 CA
2598048 May 2008 CA
204 683 687 Jul 2015 CN
107374688 Nov 2017 CN
102008015781 Oct 2009 DE
102010053111 Jun 2012 DE
102009058132 Jul 2014 DE
10 2013 106031 Dec 2014 DE
202008018523 Apr 2015 DE
102011102955 May 2018 DE
902704 Mar 1999 EP
1054635 Nov 2000 EP
1295563 Mar 2003 EP
1441649 Aug 2004 EP
1483009 Dec 2004 EP
1527753 May 2005 EP
1569565 Sep 2005 EP
1574169 Sep 2005 EP
1494619 Jan 2006 EP
1633275 Mar 2006 EP
1659988 May 2006 EP
1725185 Nov 2006 EP
1862122 Dec 2007 EP
1923005 May 2008 EP
2063791 Jun 2009 EP
2134263 Dec 2009 EP
2157937 Mar 2010 EP
2266456 Dec 2010 EP
2324775 May 2011 EP
2367482 Sep 2011 EP
2387951 Nov 2011 EP
2460476 Jun 2012 EP
2468349 Jun 2012 EP
2543345 Jan 2013 EP
2567663 Mar 2013 EP
2617386 Jul 2013 EP
2623039 Aug 2013 EP
2647343 Oct 2013 EP
2848211 Mar 2015 EP
2854704 Apr 2015 EP
2923674 Sep 2015 EP
2926744 Oct 2015 EP
3146916 Mar 2017 EP
3501429 Jun 2019 EP
3517055 Jul 2019 EP
3 636 173 Oct 2019 EP
H04-47415 Apr 1992 JP
H07-37200 Jul 1995 JP
2006-509578 Mar 2006 JP
2013-509972 Mar 2013 JP
2013537069 Sep 2013 JP
2014-522268 Sep 2014 JP
2016-502925 Feb 2015 JP
WO 9641589 Dec 1996 WO
WO 9905977 Feb 1999 WO
WO 9908607 Feb 1999 WO
WO 9930640 Jun 1999 WO
WO 2003073961 Sep 2003 WO
WO 03086240 Oct 2003 WO
WO 2005020822 Mar 2005 WO
WO 2005074814 Aug 2005 WO
2005117718 Dec 2005 WO
WO 2006034149 Mar 2006 WO
WO 2006052322 May 2006 WO
2007076480 Jul 2007 WO
2008150346 Dec 2008 WO
WO 2008151204 Dec 2008 WO
WO 2009048700 Apr 2009 WO
WO 2009105365 Aug 2009 WO
WO 2009132045 Oct 2009 WO
WO 2009135166 Nov 2009 WO
WO 2010030991 Mar 2010 WO
WO 2011057002 May 2011 WO
WO 2012032030 Mar 2012 WO
WO 2012099704 Jul 2012 WO
WO 2012099909 Jul 2012 WO
WO 2012113554 Aug 2012 WO
WO 2013016618 Jan 2013 WO
WO 2013025711 Feb 2013 WO
WO 2013109309 Jul 2013 WO
2013159065 Oct 2013 WO
WO 2013162817 Oct 2013 WO
WO 2014029835 Feb 2014 WO
WO 2014078286 May 2014 WO
WO 2014110589 Jul 2014 WO
WO 2014137467 Sep 2014 WO
WO 2015073704 May 2015 WO
2015160721 Oct 2015 WO
2015171268 Nov 2015 WO
WO 2015166013 Nov 2015 WO
WO 2015184075 Dec 2015 WO
WO 2015187196 Dec 2015 WO
WO 2016044647 Mar 2016 WO
WO 2016107357 Jul 2016 WO
WO 2016137997 Sep 2016 WO
WO 2017161283 Sep 2017 WO
WO 2018051187 Mar 2018 WO
WO 2019038293 Feb 2019 WO
WO 2012034135 Mar 2021 WO
Non-Patent Literature Citations (4)
Entry
Extended European Search Report dated Jun. 5, 2019 in corresponding European Application No. 19153590.5.
Extended European Search Report issued in corresponding European Patent Application No. 19 21 5277 dated May 12, 2020.
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices AJR 2000; 174: 349-354.
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54.
Related Publications (1)
Number Date Country
20200397447 A1 Dec 2020 US
Continuations (1)
Number Date Country
Parent 15879196 Jan 2018 US
Child 17007272 US