This disclosure relates to medical instruments, and more particularly, delivery systems for aneurysm therapy.
Aneurysms can be complicated and difficult to treat. For example, treatment access may be limited or unavailable when an aneurysm is located proximate critical tissues. Such factors are of particular concern with cranial aneurysms due to the brain tissue surrounding cranial vessels the corresponding limited treatment access.
Prior solutions have included endovascular treatment access whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow. In this respect, because the interior walls of the aneurysm may continue being subjected to flow of blood and related pressure, aneurysm rupture remains possible.
Alternative to endovascular or other surgical approaches can include occlusive devices. Such devices have typically incorporated multiple embolic coils that are delivered to the vasculature using microcatheter delivery systems. For example, when treating cranial aneurysms, a delivery catheter with embolic coils is typically first inserted into non-cranial vasculature through a femoral artery in the hip or groin area. Thereafter, the catheter is guided to a location of interest within the cranium. The sac of the aneurysm can then be filled with the embolic material to create a thrombotic mass that protects the arterial walls from blood flow and related pressure. However, such occlusive devices do have certain shortcomings, including mass effect, which can cause compression on the braid and its nerves. Furthermore, embolic coils do not always effectively treat aneurysms as re-canalization of the aneurysm and/or coil compaction can occur over time.
One particular type of occlusive approach endeavors to deliver and treat the entrance or “neck” of the aneurysm as opposed to the volume of the aneurysm by implanting a device in the parent vessel of the aneurysm. In such “neck” approaches, by minimizing blood flow across the neck, a cessation of flow into the aneurysm may be achieved. In turn, a thrombotic mass may naturally form without having to deliver embolic materials into the aneurysm sac, as previously described. This approach is preferable to masses formed from embolic material since a natural mass can improve healing by reducing possible distention from arterial walls and permits reintegration into the original parent vessel shape along the neck plane of the aneurysm. It is understood that the neck plane is an imaginary surface where the inner most layer of the parent wall would be but for the aneurysm. However, neck-occlusive approaches, such as implanting a flow impeding device in the parent vessel, are not without drawbacks. This type of approach may impede blood flow into peripheral blood vessels while blocking the aneurysm neck in the parent vessel. Impeding flow to the peripheral blood vessel can unintentionally lead to severe damage if the openings of the vessels are blocked.
The solution of this disclosure resolves these and other issues of the art.
In some embodiments, the present disclosure relates to a braid for treating an aneurysm. The braid can include a proximal end and a distal end. The braid can also include a distal segment disposed about the distal end. The distal segment can be configured to transition from a collapsed state within a microcatheter to a deployed state distal of the microcatheter whereby the distal segment has radially expanded to form a distal sack. A central segment can be disposed in communication with the distal segment. The central segment can be capable of inverting into the distal sack A proximal segment can be disposed in communication with the central segment and disposed about the proximal end. The proximal segment can be capable of being tucked into the central segment in the deployed state. Each of the proximal, distal, and central segments can have a different porosity and/or a different flexibility.
In some embodiments, the distal, central, and proximal segments are formed from a single monolithic structure.
In some embodiments, the distal, central, and proximal segments are discrete connected components of a single mesh.
In some embodiments, an inflection point is disposed between the central segment and the distal segment. The proximal end of the braid can be configured to be tucked inside the distal sack in the deployed state until the central segment is inverted so the inflection point is disposed adjacent the neck of the aneurysm to induce a flow diverting effect.
In some embodiments, a braid for treating an aneurysm is disclosed. The braid can include a proximal end and a distal end. The braid can also include a distal segment disposed about the distal end, the distal segment operable to transition from a collapsed state within a microcatheter to a deployed state distal of the microcatheter whereby the distal segment radially expands to form a distal sack. A proximal segment can be disposed about the proximal end, wherein the proximal segment is capable of inverting and being tucked into the distal sack.
In some embodiments, the proximal segment includes a porosity greater than a porosity of the distal segment, or vice versa. The proximal end can be configured to be tucked inside the distal sack in the deployed state until a proximal end of the distal segment is disposed adjacent the neck of the aneurysm to induce a flow diverting effect. The distal sack can also be spherical, though the braid is not so limited and its distal sack can take any shape as needed or required. The distal segment can include a flexibility greater than a flexibility of the proximal segment, or vice versa.
In some embodiments, the braid can also include an inflection point disposed between the proximal and distal segments. The proximal segment can also be configured to be inverted when the inflection point is distal of the microcatheter. The proximal segment can be configured to be inverted by the inflection point when the braid has been translated distally a predetermined distance with respect to the microcatheter and/or the aneurysm.
In some embodiments, the proximal segment is configured to be inverted into the distal segment as the braid is distally pushed deeper into the aneurysm. The proximal segment can be configured to be inverted into the distal segment in a “tube-sock” manner.
In some embodiments, the distal sack has a diameter at least two times greater than the microcatheter. However, the diameter of the distal sack in the deployed state can be larger or smaller, as needed or required according to the particular aneurysm being occluded.
In some embodiments, the braid can include a central segment disposed between the proximal and distal segments. Each of the proximal, distal, and central segments can include a different flexibility. The central segment can include a flexibility greater than a flexibility of the proximal and distal segments. The flexibility of the distal segment can be greater than the flexibility of the proximal segment. In some embodiments, in the deployed state, at least some of the central segment can be tapered where the central segment communicates with the distal segment.
In some embodiments, each of the proximal, distal, and central segments comprise a different porosity. The central segment can include a porosity greater than a porosity of the proximal and distal segments. The porosity of the distal segment can be greater than the porosity of the proximal segment. The central segment can be configured for positioning on or adjacent the neck of the aneurysm in the deployed state to induce a flow diverting effect.
In some embodiments, a first inflection point can be disposed between the distal segment and the central segment and a second inflection point can be disposed between the central segment and the proximal segment. In the deployed state, the first inflection point is configured to cause the proximal end of the distal segment to buckle when the braid is distally translated a first distance. In the deployed state, the second inflection point is configured to cause the central segment to invert into the distal segment when the braid is distally translated a second distance. In other embodiments, in the deployed state, the first inflection point is configured to cause the proximal end of the distal segment to buckle about the neck of the aneurysm and the second inflection point is configured to cause the central segment to invert into the distal segment. In other embodiments, when the first inflection point is distal of the microcatheter (e.g. inside the aneurysm), the first inflection point is configured to cause the proximal end of the distal segment to buckle about the neck of the aneurysm and when the second inflection point is distal of the microcatheter, the second inflection point is configured to cause the central segment to invert into to the distal segment and the proximal segment tuck into the central segment.
In some embodiments, the proximal and/or central segment are/is configured to be tucked inside the distal sack in the deployed state until the first inflection point is disposed adjacent the neck of the aneurysm to induce a flow diverting effect. The proximal segment and the central segment can also be configured to be inverted into the distal segment in a “tube-sock” manner.
In some embodiments, an occlusive system for treating an aneurysm is disclosed. The system can include a microcatheter and a delivery tube translatably disposed in the microcatheter. A braid can also be included and connected the braid being detachably connected to the delivery tube (e.g. a locking portion disposed at the proximal end of the braid detachably connected to the distal end of the delivery tube) and slideably disposed within the microcatheter in a collapsed state and distally translatable from within the microcatheter to a deployed state distal of the microcatheter in the aneurysm. The braid can expand, including the distal, central and/or proximal expandable segments, to the deployed state as the distal end of the braid distally exits the microcatheter, contacts the aneurysm wall, and/or is otherwise disposed inside the aneurysm, distal of the microcatheter.
In some embodiments, translating the braid distally away from the microcatheter causes the central segment to invert into the distal sack and the proximal segment to tuck in the central segment. In some embodiments, the central segment can include a porosity greater than a porosity of the proximal and distal segments. The porosity of the distal segment can be greater than the porosity of the proximal segment. The central segment can be configured for positioning on or adjacent the neck of the aneurysm in the deployed state to induce a flow diverting effect.
In some embodiments, in the deployed state, the braid is detachable from the microcatheter and/or the delivery tube in the aneurysm.
In some embodiments, the system can also include radiopaque entities such as platinum wires woven into the braid, or drawn filled tube wires with platinum so that the device can be imaged under fluoroscopy. Including these entities will allow the user to understand and visualize the location of the distal sack with respect to the aneurysm. The orientation and/or a position of the distal sack or any other feature of the braid, is adjustable by the braid being distally or proximally moved by the delivery tube.
In some embodiments, the system can also include an imaging device operatively connected to the occlusive device. The imaging device is capable of imaging the distal sack with respect to the aneurysm so that an orientation and/or a position of the distal sack, or any other feature of the braid, is adjustable by the braid being distally or proximally moved by the delivery tube.
In some embodiments, a method of occluding an aneurysm is disclosed. The method can include selectively positioning a braid at or adjacent a neck of the aneurysm; distally sliding the braid into the aneurysm; radially expanding a distal segment of the braid to form a distal sack inside the aneurysm, the distal sack configured to occlude the aneurysm; further distally sliding the braid into the aneurysm thereby buckling the distal segment buckle about the neck of the aneurysm; further distally sliding the braid into the aneurysm thereby inverting a central segment of the braid into the distal segment; tucking a proximal segment of the braid into the central segment; and releasing the braid within the aneurysm.
In some embodiments, the method can include tucking the proximal segment into the central segment until an inflection point between the distal segment and the central segment is adjacent or in communication with the neck of the aneurysm; and inducing a flow diverting effect across the neck of the aneurysm. In some embodiments, during said tucking, the distal segment does not move relative to the distal segment.
In some embodiments, the method can include positioning a first inflection point between the distal segment and the central segment; positioning a second inflection point between the central segment and the proximal segment; buckling the distal segment about the neck of the aneurysm, by the first inflection point, when distally translating a proximal end of the braid a first distance with respect to the neck of the aneurysm; and inverting the central segment into the distal segment, by the second inflection point, by distally translating the proximal end of the braid a second distance with respect to the neck of the aneurysm. In some embodiments, inverting the central segment into the distal segment, by the second inflection point, causes the central segment to taper into the distal segment. The tapered portion between the central and distal segments can also be disposed on or adjacent the neck of the aneurysm in the deployed state.
In some embodiments, the method can include forming the central segment with a porosity greater than a porosity of the proximal and distal segments; and forming the porosity of the distal segment greater than the porosity of the proximal segment.
In some embodiments, a method of occluding an aneurysm is disclosed. The method can include positioning a braid with the delivery tube, the braid being in a collapsed state with the microcatheter; selectively positioning the microcatheter, the delivery tube, and the braid at or adjacent the neck of the aneurysm; distally sliding the braid, by the delivery tube, from the microcatheter into the aneurysm; radially expanding a distal segment of the braid to form a distal sack inside the aneurysm, the distal sack configured to occlude the aneurysm; further distally sliding the braid, by the delivery tube, thereby buckling the distal segment about the neck of the aneurysm; further distally sliding the braid, by the delivery tube, thereby inverting a central segment of the braid proximal the distal segment into the distal sack; tucking a proximal segment proximal the central segment into the central segment; and releasing the braid within the aneurysm and withdrawing the delivery tube and the microcatheter from the aneurysm.
In some embodiments, the method can include positioning a first inflection point between the distal segment and the central segment; positioning a second inflection point between the central segment and the proximal segment; buckling the distal segment about the neck of the aneurysm, by the first inflection point, when distally translating a proximal end of the braid a first distance with respect to the neck of the aneurysm; and inverting the central segment into the distal segment, by the second inflection point, by distally translating the proximal end of the braid a second distance with respect to the neck of the aneurysm.
In some embodiments, inverting the central segment into the distal sack creates a flow diverting effect across the neck of the aneurysm.
In some embodiments, the method can include forming each of the proximal, distal, and central segments with a different porosity.
In some embodiments, the method can include forming the central segment with a porosity greater than a porosity of the proximal and distal segments; and forming the porosity of the distal segment greater than the porosity of the proximal segment.
In some embodiments, the method can include tucking the proximal segment into the central segment until the central segment is adjacent or in communication with the neck of the aneurysm; and inducing a flow diverting effect across the neck of the aneurysm.
Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.
Although example embodiments of the disclosed technology are explained in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or carried out in various ways.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. By “comprising” or “containing” or “including” it is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.
In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
As discussed herein, vasculature of a “subject” or “patient” may be vasculature of a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.
As discussed herein, “operator” may include a doctor, surgeon, or any other individual or delivery instrumentation associated with delivery of a braid body to the vasculature of a subject.
Turning to
The size of the microcatheter 20 shown in
Turning to
Braid 10 can include an open distal end 14 and a proximal end 16. Braid 10 can be formed from a self-expanding and invertible multi-filament structure that includes a tubular mesh or braid. The distal sack of braid 10 can be formed during deployment as distal end 14 of braid 10 slides out of microcatheter 20 and enters the aneurysm A. The mesh of braid 10 can be defined by one or more mesh patterns with mesh openings defined by braided filaments. The mesh of braid 10 can be made of several materials such as deposited thin films. The mesh of braid 10 can include multiple wires, for example, from 4 to 96 wires. The number of wires, angle of wires, and diameter of the wires, can all be factors in controlling material properties of the braid 10, including porosity and flexibility.
The deployed state of braid 10, including the distal sack of segment 12, can be formed by braid 10 being distally translated from a collapsed state within microcatheter 20 and attached to delivery tube 30 and then being deployed into the aneurysm A, distal of the microcatheter 20. The mesh of braid 10 is configured so that as braid 10 is distally translated and end 14 exits from within microcatheter 20, portions of braid 10, including distal segment 12, can begin to radially expand. As braid 10 is further translated, the segments of braid 10 proximal of segment 12, including central segment 11 and/or proximal segment 13, can also begin expanding, buckling, and/or be caused to invert into braid 10, when inside aneurysm A. The wires can be made from multiple alloys such as a nickel-titanium alloy, cobalt chromium alloys, platinum, nitinol, stainless steel, tantalum, or other alloys, or any other suitable biocompatible materials, or combination of these materials. Also, these materials can be absorbable or non-absorbable by the patient over time. In some embodiments, some or all of braid 10 can be a multi-filament cylindrical mesh made preferably of nitinol with interwoven platinum filaments for radiopacity, or Drawn Filled Tube (DFT) Nitinol with 10 to 40% platinum. The apertures in the mesh of braid 10 can also create a substantially unitary frame work or mesh. Thus, the apertures may be of any size, shape, or porosity, and may be uniformly or randomly spaced throughout the wall of the mesh of braid 10. The apertures can provide the tubular element of braid 10 with flexibility and also assist in the transformation of the mesh from the collapsed state to the expanded, deployed state, and vice versa.
Turning to
Segment 11 of the braid 10 can have porosity less than the porosity of segment 13 and/or the segment of sack 12. The porosities associated with segments 11, 12, 13 and/or any other region or segment of braid 10 can include filaments having a different shape than the filaments in the other porosity regions. Segment 13 of the braid 10 similarly can have a porosity or flexibility that differs with those of segments 11 and 13. For example, the porosity of segment 13 can be less than porosities of segment 11 and/or 12. Segment 13 may also be less flexible than segment 11 and/or segment 12 in order to induce braid 10 inversion during delivery and inversion as braid 10 deploys and expands within aneurysm A. Braid 10 can also be made from nitinol with interwoven platinum filaments for radiopacity. Varying properties of segments 11, 12, and 13 can allow the braid 10 to invert on itself (like a sock) as braid 10 is deployed in the aneurysm A.
To facilitate inversion of the braid 10, including inversion of segment 11 into segment 12, the braid 10 can be modified to weaken segment 12 (e.g. by facilitating buckling of segment 12 after formation of the distal sack inside aneurysm A) or otherwise make segment 11 more likely to invert. For example, braid 10 can include an inflection point 9a and/or 9b disposed between segments 11 and 12 (9b) and/or between segments 11 and 13 (9a) communicate with each other. Inflection points 9a and/or 9b can be a localized region or can function as a border or separation between each adjoining segment. Inflection point 9a and/or 9b can be a pre-weakened area that induces buckling or inversion of braid 10, as needed or required. Braid 10 is not so limited, however, and other properties can be modified to induce inversion, including a localized braid angle change, removal of wire segments over the tapered area of segment 11, and/or a localize heat treatment to change braid properties. As illustrated, segments 11, 12, and 13 can be configured so that segment 12 can be caused to buckle about the neck of the aneurysm during deployment so that segment 11 can be inverted into segment 12. This novel braid 10 is particularly advantageous as buckling of segment 12 serves as a safety mechanism that prevents segment 12 from expanding too much and risking rupture of aneurysm A. Inverting segment 11 on or adjacent the neck of the aneurysm A can in turn induce a flow diverting effect across the neck of the aneurysm A. This is because segment 13 can be in communication with the neck of the aneurysm when braid 10 is inverted and deployed in the aneurysm, since end 16 can be tucked into segment 12 (e.g., see
In certain embodiments, a braid angle of one or some of the segments 11, 12, 13 of braid 10 can vary with respect to a longitudinal axis of the braid 10. The wire diameter, pick count (i.e. the number of wire crossovers per lineal measurement) of braid 10 can also vary or otherwise be modified between segments of braid 10 to change the device characteristics as well as the heat set shape. The diameter of the braid 10 in the deployed state, including the expanded diameter of the distal sack of segment 12, and the braid wire count can vary depending of the distal sack diameter needed to treat the aneurysm A. However, braid 10 is not so limited and it can have a braid angle, pitch count, wire diameter, porosity or any other property of braid 10 that is substantially similar throughout. The fibers of braid 10 can be formed by being fastened at their free ends at end 16 by heat bonding by laser or ultrasonic weld, solvent or adhesive binding, crimping, or any other attachment means. The fibers of each segment of braid 10 may be bonded at their internal crossover points by solvent, adhesive, or heat bonding like laser, ultrasonic weld, or any other source of heat to decrease the flexibility in certain segments of braid 10.
In
In
In certain embodiments, segment 13 may only be structurally capably of tucking into segment 11 a predetermined distance and thus prevented from being tucked any deeper into the aneurysm A. For example, segment 13 may be capable of being tucked until the inflection point 9b of segments 11 and 12 is disposed on or adjacent the neck of the aneurysm. This serves as an additional safety feature of braid 10 since the distal sack of segment 12 would be prevented from expanding beyond a predetermined diameter. As illustrated in
Microcatheter 20 may remain relatively stationary or fixed during the example delivery shown in
It is understood that inflection points 9a, 9b may be formed into the interstices of braid 10 between segments 11, 12, 13 so that buckling of segment 12 and/or inversion of segment 11 occurs after braid 10 has distally translated a predetermined distance outside of microcatheter 20. For example, distally translating braid 10 a first distance, with respect to the aneurysm A, can cause segment 12 to buckle about the neck of the aneurysm. Distally translating the braid a second distance, with respect to the aneurysm A, can cause segment 11 to invert into segment 12. Points 9a, 9b may be one or more weakened regions, areas, or buckling points pre-set for a particular sized distal sack. Alternatively, no inflection points 9a, 9b may be included and instead braid 10 may buckle, invert and fold into itself upon end 14 of braid contacting the dome of aneurism A (e.g. based on pre-selected flexibility of braid 10 and/or heat setting the braid in a particular manner).
Once segments 11, 12, and 13 are selectively positioned and arranged to the desired condition (e.g. braid 10 has been translated distally into aneurysm A to expand segment 12 to form its sack, buckle, segment 11 has been inverted, and segment 13 tucked therein), braid 10 can be detached from the delivery tube 30 as shown in
The compressible portion 38 can allow the delivery tube 30 to bend and/or flex. Such flexibility can assist tracking the braid 10 through the microcatheter 20 and the tortuous path through the vasculature. The compressible portion 38 can be formed with interference spiral cuts that can allow for gaps to permit bending but in one example, do not act as a spiral-cut spring. Compressible portion 38 can be axially adjustable between an elongated condition and a compressed condition. However, any other arrangement allowing axial adjustment (e.g., a wound wire or spiral ribbon) can also be suitable for use with detachment systems according to the present disclosure). The compressible portion 38 can be in the elongated condition at rest and automatically or resiliently returns to the elongated condition from a compressed condition, unless otherwise constrained. The function of the compressible portion 38 is described in greater detail herein.
A force F was previously applied to place the delivery tube 30 in a compressed state.
Method 800 can also include tucking the proximal segment into the central segment until the proximal segment is adjacent or in communication with the neck of the aneurysm; and inducing a flow diverting effect across the neck of the aneurysm. Method 800 can also include positioning a first inflection point between the distal segment and the central segment; positioning a second inflection point between the central segment and the proximal segment; buckling the distal segment about the neck of the aneurysm, by the first inflection point, when distally translating a proximal end of the braid a first distance with respect to the neck of the aneurysm; and inverting the central segment into the distal segment, by the second inflection point, by distally translating the proximal end of the braid a second distance with respect to the neck of the aneurysm.
Method 800 can also include forming the central segment with a porosity greater than a porosity of the proximal and distal segments; and forming the porosity of the distal segment greater than the porosity of the proximal segment, or vice versa. Method 800 can also include inverting the central segment into the distal segment, by the second inflection point, which causes the central segment to tuck into the distal segment.
The method 900 can also include positioning a first inflection point between the distal segment and the central segment; positioning a second inflection point between the central segment and the proximal segment; buckling the distal segment about the neck of the aneurysm, by the first inflection point, by distally translating a proximal end of the braid a first distance with respect to microcatheter; and inverting the central segment into the distal segment, by the second inflection point, by distally translating the proximal end of the braid a second distance with respect to the microcatheter.
The method 900 can also include inverting the central segment into the distal sack which creates a flow diverting effect across the neck of the aneurysm. The method 900 can also include forming each of the proximal, distal, and central segments with a different porosity. The method 900 can also include forming the central segment with a porosity greater than a porosity of the proximal and distal segments; and forming the porosity of the distal segment greater than the porosity of the proximal segment, or vice versa. The method 900 can also include tucking the proximal segment into the central segment until the proximal segment is adjacent or in communication with the neck of the aneurysm; and inducing a flow diverting effect across the neck of the aneurysm.
It is understood that variations of the braid 10 can include various materials such as nitinol. stainless steel, bio absorbable materials, and polymers. The braid wire count of interstices of braid 10 that may form the expandable and invertible mesh can vary depending of the diameter of the sack of segment 12 and/or segments proximal thereof and/or inverted internal thereto. For example, to induce formation of the predetermined shape and strength of the distal sack of braid 10, end 14 can be opened and/or be capable of allowing for sizing or conforming to the aneurysm A. For example, if the aneurysm is relatively small, distal end 14 may close in on itself, whereas in a larger aneurysm the same braid 10 would remain open. Other segments of braid 10, including segments 11 and 13, may vary from most pliable on or about end 14 and less pliable on or about end 16. Interstices of braid 10 may also form small openings for occlusion of the aneurysm.
Braid 10, including any specific portions such as any breaks, inflection points, porosities, flexibilities, and/or corresponding sack(s), can be heat set to various configurations such as spherical, oblong, saddle shaped, etc. for the purpose of shaping the initial sack to better match the aneurysm morphology. It is also understood that any sack formed by the herein discussed braid 10 can be in a spherical shape as depicted or any other shape, as needed or required, such as ellipsoidal, heart-shaped, ovoid, cylindrical, hemispherical, or the like. Further, interstices of braid 10 that form the sack can vary, or be selectively designed, in size or shape along its length depending on how much braid 10 is caused to radially expand as delivery tube 30 is distally moved.
The specific configurations, choice of materials and the size and shape of various elements can be varied according to particular design specifications or constraints requiring a system or method constructed according to the principles of the disclosed technology. Such changes are intended to be embraced within the scope of the disclosed technology. The presently disclosed embodiments, therefore, are considered in all respects to be illustrative and not restrictive. It will therefore be apparent from the foregoing that while particular forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
2849002 | Oddo | Aug 1958 | A |
3480017 | Shute | Nov 1969 | A |
4085757 | Pevsner | Apr 1978 | A |
4282875 | Serbinenko et al. | Apr 1981 | A |
4364392 | Strother et al. | Dec 1982 | A |
4395806 | Wonder et al. | Aug 1983 | A |
4517979 | Pecenka | May 1985 | A |
4545367 | Tucci | Oct 1985 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4991602 | Amplatz et al. | Feb 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5025060 | Yabuta et al. | Jun 1991 | A |
5065772 | Cox, Jr. | Nov 1991 | A |
5067489 | Lind | Nov 1991 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo | Sep 1994 | A |
5423829 | Pham et al. | Jun 1995 | A |
5624449 | Pham et al. | Apr 1997 | A |
5645558 | Horton | Jul 1997 | A |
5733294 | Forber et al. | Mar 1998 | A |
5916235 | Guglielmi | Jun 1999 | A |
5891128 | Chin et al. | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
6007573 | Wallace et al. | Dec 1999 | A |
6024756 | Pham | Feb 2000 | A |
6036720 | Abrams | Mar 2000 | A |
6063070 | Eder | May 2000 | A |
6063100 | Diaz et al. | May 2000 | A |
6063104 | Villar | May 2000 | A |
6080191 | Thaler | Jun 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6123714 | Gia et al. | Sep 2000 | A |
6168615 | Ken | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6315787 | Tsugita et al. | Nov 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6334048 | Edvardsson et al. | Dec 2001 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6375606 | Garbaldi et al. | Apr 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6379329 | Naglreiter et al. | Apr 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6419686 | McLeod et al. | Jul 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6463317 | Kucharczyk et al. | Oct 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6527919 | Roth | Mar 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6569179 | Teoh | May 2003 | B2 |
6569190 | Whalen, II et al. | May 2003 | B2 |
6572628 | Dominguez | Jun 2003 | B2 |
6589230 | Gia et al. | Jul 2003 | B2 |
6589256 | Forber | Jul 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6620152 | Guglielmi | Sep 2003 | B2 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6689159 | Lau et al. | Feb 2004 | B2 |
6746468 | Sepetka | Jun 2004 | B1 |
6780196 | Chin et al. | Aug 2004 | B2 |
6802851 | Jones | Oct 2004 | B2 |
6811560 | Jones | Nov 2004 | B2 |
6833003 | Jones et al. | Dec 2004 | B2 |
6846316 | Abrams | Jan 2005 | B2 |
6849081 | Sepetka et al. | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6949116 | Solymar et al. | Sep 2005 | B2 |
6964657 | Cragg et al. | Nov 2005 | B2 |
6964671 | Cheng | Nov 2005 | B2 |
6994711 | Hieshima et al. | Feb 2006 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7083632 | Avellanet | Aug 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7153323 | Teoh | Dec 2006 | B1 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7229454 | Tran et al. | Jun 2007 | B2 |
7229461 | Chin et al. | Jun 2007 | B2 |
7309345 | Wallace | Dec 2007 | B2 |
7371249 | Douk et al. | May 2008 | B2 |
7410482 | Murphy et al. | Aug 2008 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7608088 | Jones | Oct 2009 | B2 |
7695488 | Berenstein et al. | Apr 2010 | B2 |
7713264 | Murphy | May 2010 | B2 |
7744652 | Morsi | Jun 2010 | B2 |
7892248 | Tran | Feb 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
RE42758 | Ken | Sep 2011 | E |
8016852 | Ho | Sep 2011 | B2 |
8021416 | Abrams | Sep 2011 | B2 |
8025668 | McCartney | Sep 2011 | B2 |
8034061 | Amplatz et al. | Oct 2011 | B2 |
8048145 | Evans et al. | Nov 2011 | B2 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8075585 | Lee et al. | Dec 2011 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8221483 | Ford et al. | Jul 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267923 | Murphy | Sep 2012 | B2 |
8361106 | Solar et al. | Jan 2013 | B2 |
8361138 | Adams | Jan 2013 | B2 |
8372114 | Hines | Feb 2013 | B2 |
8398671 | Chen | Mar 2013 | B2 |
8430012 | Marchand | Apr 2013 | B1 |
8454633 | Amplatz et al. | Jun 2013 | B2 |
8523897 | van der Burg et al. | Sep 2013 | B2 |
8523902 | Heaven et al. | Sep 2013 | B2 |
8551132 | Eskridge et al. | Oct 2013 | B2 |
8777974 | Amplatz et al. | Jul 2014 | B2 |
8900304 | Alobaid | Dec 2014 | B1 |
8974512 | Aboytes et al. | Mar 2015 | B2 |
8992568 | Duggal et al. | Mar 2015 | B2 |
8998947 | Aboytes et al. | Apr 2015 | B2 |
9055948 | Jaeger et al. | Jun 2015 | B2 |
9107670 | Hannes | Aug 2015 | B2 |
9161758 | Figulla et al. | Oct 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9259337 | Cox et al. | Feb 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9351715 | Mach | May 2016 | B2 |
9414842 | Glimsdale et al. | Aug 2016 | B2 |
9526813 | Cohn et al. | Dec 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561096 | Kim et al. | Feb 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579104 | Beckham et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9585669 | Becking et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign | Jun 2017 | B2 |
9681861 | Heisel et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman | Sep 2017 | B2 |
9770577 | Li | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Paterson | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman | Nov 2017 | B2 |
9833252 | Sepetka | Dec 2017 | B2 |
9833604 | Lam | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918720 | Marchand | Mar 2018 | B2 |
9955976 | Hewitt et al. | May 2018 | B2 |
10130372 | Griffin | Nov 2018 | B2 |
10307148 | Helsel et al. | Jun 2019 | B2 |
10327781 | Divino et al. | Jun 2019 | B2 |
10342546 | Sepetka et al. | Jul 2019 | B2 |
10716573 | Connor | Jul 2020 | B2 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020082638 | Porter et al. | Jun 2002 | A1 |
20020143349 | Gifford, III et al. | Oct 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030181945 | Opolski | Sep 2003 | A1 |
20030195553 | Wallace | Oct 2003 | A1 |
20030216772 | Konya | Nov 2003 | A1 |
20040034366 | van der Burg et al. | Feb 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040098027 | Teoh et al. | May 2004 | A1 |
20040127935 | Van Tassel et al. | Jul 2004 | A1 |
20040133222 | Tran et al. | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040210297 | Lin et al. | Oct 2004 | A1 |
20040254594 | Alfaro | Dec 2004 | A1 |
20050021016 | Malecki et al. | Jan 2005 | A1 |
20050159771 | Petersen | Jul 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050251200 | Porter | Nov 2005 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060058735 | Lesh | Mar 2006 | A1 |
20060064151 | Guterman | Mar 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060155367 | Hines | Jul 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060247572 | McCartney | Nov 2006 | A1 |
20070106311 | Wallace et al. | May 2007 | A1 |
20070208376 | Meng | Jun 2007 | A1 |
20070162071 | Burkett et al. | Jul 2007 | A1 |
20070167876 | Euteneuer et al. | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070186933 | Domingo | Aug 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20080097495 | Feller, III et al. | Apr 2008 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090099647 | Glimsdale | Apr 2009 | A1 |
20090227983 | Griffin et al. | Sep 2009 | A1 |
20090281557 | Sander et al. | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287297 | Cox | Nov 2009 | A1 |
20090318941 | Sepetka | Dec 2009 | A1 |
20100023046 | Heidner et al. | Jan 2010 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100063573 | Hijlkema | Mar 2010 | A1 |
20100063582 | Rudakov | Mar 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100168781 | Berenstein | Jul 2010 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20110046658 | Connor et al. | Feb 2011 | A1 |
20110054519 | Neuss | Mar 2011 | A1 |
20110112588 | Linderman et al. | May 2011 | A1 |
20110137317 | O'Halloran et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110196413 | Wallace | Aug 2011 | A1 |
20110319978 | Schaffer | Dec 2011 | A1 |
20120010644 | Sideris et al. | Jan 2012 | A1 |
20120071911 | Sadasivan | Mar 2012 | A1 |
20120165732 | Müller | Jun 2012 | A1 |
20120191123 | Brister et al. | Jul 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120310270 | Murphy | Dec 2012 | A1 |
20120323267 | Ren | Dec 2012 | A1 |
20120330341 | Becking et al. | Dec 2012 | A1 |
20130035665 | Chu | Feb 2013 | A1 |
20130035712 | Theobald et al. | Feb 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130079864 | Boden | Mar 2013 | A1 |
20130110066 | Sharma et al. | May 2013 | A1 |
20130204351 | Cox et al. | Aug 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130261658 | Lorenzo et al. | Oct 2013 | A1 |
20130261730 | Bose et al. | Oct 2013 | A1 |
20130345738 | Eskridge | Dec 2013 | A1 |
20140012307 | Franano et al. | Jan 2014 | A1 |
20140012363 | Franano et al. | Jan 2014 | A1 |
20140018838 | Franano et al. | Jan 2014 | A1 |
20140135812 | Divino | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140257360 | Keillor | Sep 2014 | A1 |
20140277013 | Sepetka et al. | Sep 2014 | A1 |
20150209050 | Aboytes et al. | Jul 2015 | A1 |
20150272589 | Lorenzo | Oct 2015 | A1 |
20150313605 | Griffin | Nov 2015 | A1 |
20150342613 | Aboytes et al. | Dec 2015 | A1 |
20150374483 | Janardhan et al. | Dec 2015 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160030050 | Franano et al. | Feb 2016 | A1 |
20160192912 | Kassab et al. | Jul 2016 | A1 |
20160249934 | Hewitt et al. | Sep 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079661 | Bardsley et al. | Mar 2017 | A1 |
20170079662 | Rhee | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079717 | Walsh et al. | Mar 2017 | A1 |
20170079766 | Wang | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170114350 | dos Santos et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein | Jun 2017 | A1 |
20170165454 | Tuohy | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180140305 | Connor | May 2018 | A1 |
20180242979 | Lorenzo | Aug 2018 | A1 |
20180338767 | Dasnurkar et al. | Nov 2018 | A1 |
20190008522 | Lorenzo | Jan 2019 | A1 |
20190223878 | Lorenzo et al. | Jan 2019 | A1 |
20190192162 | Lorenzo | Jun 2019 | A1 |
20190192167 | Lorenzo | Jun 2019 | A1 |
20190192168 | Lorenzo | Jun 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20190365385 | Gorochow et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2395796 | Jul 2001 | CA |
2598048 | May 2008 | CA |
2 431 594 | Sep 2009 | CA |
204 683 687 | Jul 2015 | CN |
102008015781 | Oct 2009 | DE |
102010053111 | Jun 2012 | DE |
102009058132 | Jul 2014 | DE |
10 2013 106031 | Dec 2014 | DE |
202008018523 | Apr 2015 | DE |
102011102955 | May 2018 | DE |
902704 | Mar 1999 | EP |
1054635 | Nov 2000 | EP |
1295563 | Mar 2003 | EP |
1441649 | Aug 2004 | EP |
1483009 | Dec 2004 | EP |
1527753 | May 2005 | EP |
1569565 | Sep 2005 | EP |
1574169 | Sep 2005 | EP |
1494619 | Jan 2006 | EP |
1633275 | Mar 2006 | EP |
1659988 | May 2006 | EP |
1725185 | Nov 2006 | EP |
1862122 | Dec 2007 | EP |
1923005 | May 2008 | EP |
2063791 | Jun 2009 | EP |
2134263 | Dec 2009 | EP |
2157937 | Mar 2010 | EP |
2266456 | Dec 2010 | EP |
2324775 | May 2011 | EP |
2367482 | Sep 2011 | EP |
2387951 | Nov 2011 | EP |
2460476 | Jun 2012 | EP |
2468349 | Jun 2012 | EP |
2543345 | Jan 2013 | EP |
2567663 | Mar 2013 | EP |
2617386 | Jul 2013 | EP |
2647343 | Oct 2013 | EP |
2848211 | Mar 2015 | EP |
2854704 | Apr 2015 | EP |
2923674 | Sep 2015 | EP |
2926744 | Oct 2015 | EP |
3146916 | Mar 2017 | EP |
3501429 | Jun 2019 | EP |
3517055 | Jul 2019 | EP |
H04-47415 | Apr 1992 | JP |
H07-37200 | Jul 1995 | JP |
2006-509578 | Mar 2006 | JP |
2013-509972 | Mar 2013 | JP |
2013537069 | Sep 2013 | JP |
2016-502925 | Feb 2015 | JP |
9641589 | Dec 1996 | WO |
9905977 | Feb 1999 | WO |
9908607 | Feb 1999 | WO |
9930640 | Jun 1999 | WO |
2003073961 | Sep 2003 | WO |
2005020822 | Mar 2005 | WO |
2005074814 | Aug 2005 | WO |
2005117718 | Dec 2005 | WO |
2006034149 | Mar 2006 | WO |
2006052322 | May 2006 | WO |
2007076480 | Jul 2007 | WO |
2008150346 | Dec 2008 | WO |
WO 2008151204 | Dec 2008 | WO |
2009048700 | Apr 2009 | WO |
2009105365 | Aug 2009 | WO |
2009132045 | Oct 2009 | WO |
2009135166 | Nov 2009 | WO |
2010030991 | Mar 2010 | WO |
2011057002 | May 2011 | WO |
2012032030 | Mar 2012 | WO |
2012099704 | Jul 2012 | WO |
2012099909 | Jul 2012 | WO |
2012113554 | Aug 2012 | WO |
2013016618 | Jan 2013 | WO |
2013025711 | Feb 2013 | WO |
2013109309 | Jul 2013 | WO |
2013159065 | Oct 2013 | WO |
2014029835 | Feb 2014 | WO |
2014110589 | Jul 2014 | WO |
2014137467 | Sep 2014 | WO |
2015073704 | May 2015 | WO |
2015160721 | Oct 2015 | WO |
2015166013 | Nov 2015 | WO |
2015171268 | Nov 2015 | WO |
2015184075 | Dec 2015 | WO |
2015187196 | Dec 2015 | WO |
2016044647 | Mar 2016 | WO |
2016107357 | Jul 2016 | WO |
2016137997 | Sep 2016 | WO |
2018051187 | Mar 2018 | WO |
Entry |
---|
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices. AJR 2000; 174: 349-354. |
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54. |
Extended European Search Report issued in corresponding European Patent Application No. 19 21 5277 dated May 12, 2020. |
Number | Date | Country | |
---|---|---|---|
20190365385 A1 | Dec 2019 | US |