The present invention relates generally to implantable structures for placement in proximity to an opening or cavity in a physiological structure, such as the neck of an aneurysm, using minimally invasive techniques, and to methods of making and deploying such structures. In one aspect, the implantable structures described herein contact and support tissue in proximity to the opening or cavity.
Aneurysms are bulges in an artery wall, generally caused by a weakening in the artery wall, that form an opening or cavity and are often the site of internal bleeding and stroke. In general, the minimally invasive therapeutic objective is to prevent material that collects or forms in the cavity from entering the bloodstream, and to prevent blood from entering and collecting in the aneurysm. This is often accomplished by introducing various materials and devices into the aneurysm. One type of aneurysm, commonly known as a “wide neck aneurysm” is known to present particular difficulty in the placement and retention of vaso-occlusive coils. Wide neck aneurysms are generally referred to as aneurysms of vessel walls having a neck or an entrance zone from the adjacent vessel that is large compared to the diameter of the aneurysm or that is clinically observed to be too wide to effectively retain vaso-occlusive coils deployed using the techniques discussed above. When treating sidewall aneurysms, stents can be placed across the neck of the aneurysm to prevent embolic material from exiting the aneurysm neck. Known stents include the Enterprise® line of self-expanding stents, which are described in numerous patents and published patent applications including U.S. Pat. No. 6,673,106 which is hereby incorporated by reference hereinto. Treating a “wide neck aneurysm” at a bifurcation is further complicated as a stent placed across an aneurysm at a bifurcation can block one or more of the blood vessel passageways.
An example method for treating an aneurysm at a bifurcation can include some or all of the following steps executed in a variety of orders and can include fewer or additional steps as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The bifurcation being treated by the example method can include a first passageway from a stem blood vessel to a first branch blood vessel and a second passageway from the stem blood vessel to a second branch blood vessel. The aneurysm being treated by the example method can be positioned opposite the stem blood vessel and between the first and second passageways.
The method can include delivering an implant comprising a tubular lattice and an interior support structure through a catheter to the aneurysm.
The method can include expanding a distal portion of the tubular lattice within the sac of the aneurysm.
The method can include extending the interior support structure within the distal portion of the tubular lattice and across the aneurysm neck.
The method can include positioning a first opening in the tubular lattice across the first passageway. The first opening can have a first cross sectional area defined by the perimeter of the first opening. The first cross sectional area can extend across a majority of the first passageway.
The method can include positioning a second opening in the tubular lattice across the second passageway. The second opening can have a second cross sectional area defined by the perimeter of the second opening. The second cross sectional area can extend across a majority of the second passageway.
The method can include expanding a proximal portion of the tubular lattice within the stem blood vessel.
The method can include delivering an embolic implant through the tubular lattice and into the aneurysm sac.
The method can include supporting the embolic implant at the aneurysm neck with the interior support structure.
An example embolic implant support device including a proximal end, a distal end, a lower body section, an upper body section, and a mid body section. The lower body section extends distally from the proximal end. The upper body section extends proximally from the distal end. The mid body section extends between the lower body section and the upper body section.
The lower body section, the upper body section, and the mid body section can include a tubular lattice extending longitudinally between the proximal end and the distal end. The tubular lattice can include a first large cell opening and a second large cell opening each positioned in the mid body section. The first and second large cell openings can be positioned opposite each other.
The upper body section can have a first diameter measured near the proximal end of the device. A majority of the tubular lattice can have a second diameter. The lower body section can have a third diameter measured near the distal end of the device. The first diameter can be greater than the second diameter. The third diameter can be greater than the second diameter.
The majority of the tubular lattice can have cells of substantially uniform cell size. Each of the first and second large cell openings respectively can have a cell opening that is larger than the uniform cell size. Specifically, the large cell openings can be about ten times the substantially uniform cell size, at least three times the substantially uniform cell size, or between about three times and about one hundred times the substantially uniform cell size. The tubular lattice can have at least three cells with the substantially uniform cell size. The tubular lattice can have between three and about twenty-six cells with the substantially uniform cell size.
The tubular lattice can have two narrow sections separating the first and second large cell openings. Each of the two narrow sections can extend longitudinally across the mid body section to connect the upper body section and the lower body section.
The device can further include one or more proximal radiopaque markers attached to the tubular lattice approximate the proximal end.
The device can further include one or more mid radiopaque markers attached to the tubular lattice within the mid body section.
The device can further include one or more distal radiopaque markers attached to the tubular lattice approximate the distal end.
The device can further include a support member extending across a lumen through the tubular lattice and within the upper body section.
The device can further include two arcuate struts extending across a lumen through the tubular lattice and affixed to the upper body section, each of the two arcuate struts comprising a curvature extending proximally toward the mid body section and crossing each other at approximately a 90 degree angle. The aforementioned support member can include one or both of the two arcuate struts.
The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.
The support device 100 can have radiopaque markers 126, 116, 114 attached to the body 106, and support elements 128, 130 extending across the interior of the body 106. The body 106 can include a tubular lattice formed by laser cutting a hypotube or formed by other means appropriate for manufacturing a stent. The tubular lattice can include materials that allow the lattice to self-expand upon exiting a delivery catheter or delivery tube near the treatment site. For instance, the tubular lattice can include nickel titanium. The tubular lattice can extend from a proximal end 102 of the device 100 to a distal end 104 of the device.
When implanted as illustrated, an upper body section 112 of the device 100 can be positioned within an aneurysm 10 (i.e. within the aneurysm sac), the support elements 128, 130 can extend across the aneurysm sac near the neck 16, a mid body section 110 of the device 100 can be positioned across passageways from a stem blood vessel 20 to a first branch vessel 22 and a second branch vessel 24, and a lower body section 108 can be positioned within the stem blood vessel 20. Each of the upper body section 112, mid body section 110, and lower body section 108 can have different cell geometry and strut configuration.
The upper body can be positioned such that the distal end of the upper body is near, or distal to, the aneurysm neck 16. The upper body section 112 can be shaped to conform to an inner surface of a substantially spherical cavity such as the inner walls of the aneurysm 10 as illustrated. The device 100 can include distal radiopaque markers 126 attached to the upper body section 112 near the distal end 104 of the device 100. The distal radiopaque markers 126 can aid in the visualization of the distal end 104 of the device 100 during treatment. The supporting elements 128, 130 can be attached to the upper body section 112. Ends of the supporting elements 128, 130 can be attached to the distal markers 126. The distal markers 126 can serve as fasteners for attaching supporting elements 128, 130 to the upper body section 112 (e.g. bands crimping struts of the tubular lattice of the upper body section 112 to the supporting elements 128, 130). The supporting elements 128, 130 can bow in the proximal direction in relation to the distal end 104 of the device to form a cup or bowl shaped frame near the aneurysm neck 16. The supporting elements 128, 130 cross the aneurysm neck 16. The supporting elements can be positioned, constructed, and otherwise configured to support embolic coils or other embolic implants subsequently inserted in the aneurysm sac.
The mid body section 110 can include first and second large cell openings 118, 120. The first and second large cell openings 118, 120 can be positioned opposite each other. The first large cell opening 118 can be positioned in a first passageway from the stem blood vessel 20 to the first branch vessel 22. The second large cell opening 120 can be positioned in a second passageway from the stem blood vessel 20 to the second branch vessel 24. The large cell openings 118, 120 can be designed to allow uninterrupted blood flow through the passageways to the branch vessels 22, 24.
Each of the first and second large cell openings 118, 120 can each respectively have a cross sectional area defined by the perimeter of each respective opening. As used herein, “perimeter” extends along the surface of structures of the device (e.g. lattice struts and radiopaque markers) and does not cross structures of the device. In other words, structures of the device 100 do not extend within or through the cross sectional area. The cross sectional areas of each of the first and second large cell openings 118, 120 can extend across a majority of the first and second passageways, respectively. As illustrated, each of the first and second openings 118, 120 area sized and positioned such that passageways from the stem blood vessel 20 to each branch blood vessel 22, 24 are unobstructed by the device 100. In other words, no struts of the tubular lattice of the body 106 extend across the passageways.
The mid body section 110 can further include narrow sections 119, 121 connecting the upper body section 112 to the lower body section 108 and separating the first large cell opening 118 from the second large cell opening 120. The device 100 can include radiopaque markers 116 attached to one or both of the narrow sections 119, 121. The radiopaque markers in the mid body section 110 can aid in orienting the large cell openings 118, 120 across the branch vessel passageways during treatment.
The lower body section 108, when implanted can apply a radial force to vascular walls of the stem blood vessel 20. The lower body section 108 can include proximal radiopaque markers 114. The proximal radiopaque markers 114 can be positioned near the proximal end 102 of the device 100 to aid visualization of the position of the proximal end 102 of the device 100 during a treatment.
Some or all of the proximal radiopaque markers 114, mid body radiopaque markers 116, and proximal radiopaque markers 114 can include marker bands attached to the tubular lattice. Additionally, or alternatively, some or all of the radiopaque markers can have a form and be attached to the body 106 of the device 100 by means known to a person of ordinary skill in the art according to the teachings herein.
Referring again to
The delivery wire 150 can include a proximal bump 152 and a distal bump 154 thereon. The notch 156 can be defined by the space between the proximal and distal bumps 152, 154. When the delivery wire 150 is moved distally through the catheter 160, the proximal bump 152 can engage the proximal end 102 of the device 100 to push the device 100 distally. When the delivery wire 150 is moved proximally through the catheter 160, the distal bump 154 can engage the proximal markers 114 to move the device 100 proximally. In some treatments, a partially deployed device 100 can be retracted into the distal end of the catheter 160 by moving the delivery wire 150 proximally.
The device 100 can be self-expanding such that when the device 100 exits the delivery tube 170 at a treatment site, the device 100 tends to expand to the expanded configuration as illustrated in
Near the distal end 104 of the device 100, the upper body section 112 can be flared to a distal diameter D1. Near the proximal end 102 of the device, the lower body section 108 can be flared to a proximal diameter D3. Along a majority of the body 106 between the proximal and distal ends 102, 104, the device can have a primary diameter D2. The proximal diameter D3 can be greater than the primary diameter D2. The proximal diameter D3 can be sized to anchor the device to the stem blood vessel 20. The distal diameter D1 can be greater than the primary diameter D2. The distal diameter D1 can be sized to anchor the device 100 within the aneurysm 10. The distal diameter D1 can be about the same, greater than, or less than the proximal diameter D3. The distal diameter D1 can be sized to be appropriate for treating aneurysms having a sac diameter within a predetermined range. The distal diameter D1 can be about equal to or greater than the predetermined range of sac diameters for which the device 100 is configured to treat. The proximal diameter D3 and primary diameter D2 can be sized to be appropriate for placement within a stem blood vessel having a vascular diameter within a predetermined range. The proximal diameter D3 can be larger than the predetermined range of vascular diameters for which the device 100 is configured to treat. The primary diameter D2 can be sized to appose the lower body section 108 to walls of the stem blood vessel 20. The primary diameter D2 can be about equal to or larger than the predetermined range of vascular diameters for which the device 100 is configured to treat.
Referring to
The size of the large cell openings 118, 120 can be sized to treat a certain treatment site geometry. Specifically, the large cell openings 118, 120 can be a factor determining whether or not the device 100 is suitable for treating an aneurysm adjacent branch vessels 22, 24 having a measured entrance size. The large cell opening 118, 120 can be large enough so that each entrance to the branch vessels 22, 24 is unobstructed by the device 100 when implanted. Overly large cell openings 118, 120 may impact structural integrity of the device, making the device 100 more difficult to position and/or anchor.
The size and number of the smaller cells having substantially uniform cell size can impact the structural integrity of the device 100 as understood by a person of ordinary skill in the art. The device 100 can include larger cells of uniform size over a majority of the tubular body than as illustrated, such that the large cell opening is about three times the uniform cell size and still main structural integrity of the device 100 suitable for some aneurysm and treatment site geometries. The device 100 can include smaller cells of uniform size over a majority of the tubular body than as illustrated, such that the large cell opening is more than ten times the uniform cell size and still main structural integrity of the device 100 suitable for some aneurysm and treatment site geometries. Smaller uniform cell size may increase the stiffness and bulk of the device 100, thereby making the device 100 more difficult to position, together with material selection and strut thickness, such factors can determine the minimum practical uniform cell size. Other factors may also affect minimum uniform cell size as appreciated and understood by a person of ordinary skill in the art according to the teachings of the present disclosure. With current materials and fabrication technology, the large cell opening size is preferably between about one hundred times and about three times the size of the uniform cell size. Depending on the specific design factors, the large cell openings may be up about to one thousand times the uniform cell size.
At step 202, deliver an implant having a tubular lattice and an interior support structure through a catheter to the aneurysm. The implant can be or include the device 100 illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The be the body 106 (or at least part of the body 106) illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The interior support structure can include the supporting elements 128, 130 illustrated and described herein, alternatives thereto, or variations thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The implant can be delivered through a catheter such as the catheter 160 illustrated in
At step 204, expand a distal portion of the tubular lattice within the sac of the aneurysm. the distal portion of the tubular lattice can be included in the upper body section 112 of the body 106 of the device 100 illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The distal portion can be self-expandable upon exiting the distal end of the catheter through which the implant is delivered at step 202. The distal end of the catheter can be positioned at the aneurysm neck and directed toward the aneurysm sac when the distal portion is pushed out of the distal end of the catheter.
At step 206, extend the interior support structure within the distal portion of the tubular lattice and across the aneurysm neck. The support structure can be positioned as the supporting elements 128, 130 are illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure.
At step 208, position a first opening in the tubular lattice across a first passageway from a stem vessel to a first branch vessel. The first opening can have a first cross sectional area defined by the perimeter of the first opening. The first cross sectional area can extend across a majority of the first passageway. Positioned as such, blood flow through the first passageway can be unobstructed by the implant.
At step 210, position a second opening in the tubular lattice across a second passageway from the stem vessel to a second branch vessel. The second opening can have a second cross sectional area defined by the perimeter of the second opening. The second cross sectional area can extend across a majority of the second passageway. Positioned as such, blood flow through the second passageway can be unobstructed by the implant.
Regarding steps 208 and 210, the first and second openings can be positioned as the large cell openings 118, 120 of the device 100 are illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The first and second openings can be positioned on a mid body section of the implant such as the large cell openings 118, 120 are positioned on the mid body section 110 of the device as illustrated and described herein.
At step 212, expand a proximal portion of the tubular lattice within the stem blood vessel. The proximal portion of the tubular lattice can be included in the lower body section 108 of the device 100 as illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The proximal portion can be expanded to appose walls of the stem blood vessel. The proximal portion can be expanded to allow blood to flow freely through the stem blood vessel.
At step 214, deliver an embolic implant through the tubular lattice and into the aneurysm sac. The embolic implant can include the embolic implant 172 illustrated and described herein, an alternative thereto, or variation thereof as understood by a person of ordinary skill in the art according to the teachings of the present disclosure. The embolic implant can be positioned as illustrated in
At step 216, support the embolic implant at the aneurysm neck with the interior support structure. The embolic implant can be supported as illustrated and described in relation to
The descriptions contained herein are examples of embodiments of the invention and are not intended in any way to limit the scope of the invention. As described herein, the invention contemplates many variations and modifications of the stent, including alternative shapes for the longitudinal elements, interconnecting members having more or fewer branches, interconnecting members having different geometries, additional or fewer struts, or utilizing any of numerous materials or manufacturing means for the stent, for example. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
This application claims the benefit of priority under the Paris Convention as well as 35 U.S.C. §§ 119 and 120 to prior filed U.S. Provisional Patent Application No. 62/972,427 filed on Feb. 10, 2020 which is hereby incorporated by reference as set forth in full herein.
Number | Name | Date | Kind |
---|---|---|---|
6391037 | Greenhalgh | May 2002 | B1 |
6673106 | Mitelberg et al. | Jan 2004 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Paterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
20060064151 | Guterman | Mar 2006 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20110184452 | Huynh | Jul 2011 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20140121752 | Losordo | May 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20150250628 | Monstadt | Sep 2015 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
10 2008 028308 | Apr 2009 | DE |
WO 2011130579 | Oct 2011 | WO |
Entry |
---|
European Search Report issued in European Patent Application No. 21 15 5926 dated May 25, 2021. |
Number | Date | Country | |
---|---|---|---|
20210244419 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62972427 | Feb 2020 | US |