This disclosure relates to medical instruments, and more particularly, delivery systems for a device for aneurysm therapy.
Aneurysms can be complicated and difficult to treat. For example, treatment access may be limited or unavailable when an aneurysm is located proximate critical tissues. Such factors are of particular concern with cranial aneurysms due to the presence of brain tissue surrounding cranial vessels.
Prior solutions have included endovascular treatment access whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow.
Alternative to endovascular or other surgical approaches can include occlusion devices. Such devices have typically incorporated multiple embolic coils that are delivered to the vasculature using microcatheter delivery systems. For example, when treating cranial aneurysms, a delivery catheter with embolic coils is typically first inserted into non-cranial vasculature through a femoral artery in the hip or groin area. Thereafter, the catheter is guided to a location of interest within the cranium. The sac of the aneurysm can then be filled with the embolic material to create a thrombotic mass that protects the arterial walls from blood flow and related pressure. One particular type of occlusive approach endeavors to deliver and treat the entrance or “neck” of the aneurysm as opposed to the volume of the aneurysm. In such “neck” approaches, by minimizing blood flow across the neck, then a venostasis in the aneurysm may be achieved. In turn, a thrombotic mass may naturally form without having to deliver embolic materials, as previously described. This is preferable to masses formed from embolic material since a natural mass can improve healing by reducing possible distention from arterial walls and permits reintegration into the original parent vessel shape along the neck plane of the aneurysm. It is understood that the neck plane is an imaginary surface where the inner most layer of the parent wall would be but for the aneurysm. However, neck-occlusive approaches are not without drawbacks. It is typical for neck-occlusive approaches to fail to impede flow into blood vessels while also blocking the aneurysm neck in the parent vessel. This can unintentionally lead to severe damage if the openings of the vessels are blocked. Furthermore, embolic coils do not always effectively treat aneurysms as re-canalization of the aneurysm and/or coil compaction can occur over time.
Several embodiments of an occlusion device are described in U.S. Pat. No. 8,998,947. However, this approach relies upon the use of embolic coils or mimics the coil approach to obtain a safe packing density and therefore unnecessarily risks rupture of the aneurysm. Furthermore, this approach fails to teach a delivery system whereby an occlusion device can be re-positioned after initial positioning of its aneurysm occlusion structure to ensure patient safety associated with precise positioning.
It is therefore desirable to have a device which easily, accurately, and safely occludes a neck of an aneurysm or other arterio-venous malformation in a parent vessel without blocking flow into perforator vessels communicating with the parent vessel.
In some aspects, the present disclosure relates to a medical device for treating an aneurysm. The device can include a self-expanding braided tubular implant (hereinafter “braid”) with a lumen that has a distal implant end and a proximal implant end. The distal implant end can be opposite the proximal implant end. Distal translation of the braid from within a tubular delivery member can cause the distal implant end to invert and fold into itself thereby forming an occlusive sack for occluding an aneurysm.
In certain embodiments, the tubular delivery member can be disposed about the implant and have a distal end that is releasably connected to the distal implant end of the braid. The braid can have a longitudinal axis between the distal implant end and the proximal implant end. The braid can be invertible about the longitudinal axis by distally translating the braid about the axis.
In certain embodiments, the lumen of the braid can include a pre-fabricated break that is disposed between the distal and implant ends. The break can be formed from localized heat treatment zone that is kink-preventative and configured to induce gradual folding and/or inversion of the braid. The break can be disposed between the distal and implant ends. The break can be configured for the occlusive sack to form when the distal implant end is translated toward or contacts a dome of the aneurysm. In some embodiments, one or more regions or areas of the distal end of the distal implant end are substantially atraumatic or rounded and configured to minimize kinking of the braid during inversion. In certain embodiments, continuing to translate the braid upon formation of the occlusive sack can lead to formation of a second sack within the occlusive sack. Additional sacks can be formed within the first and second sacks as needed or required (e.g. to achieve a desired packing density or to further support the first and second sacks). It is understood that each sack can be formed from a respective portion of the braid inverting and folding into itself.
In certain embodiments, the proximal implant end is operable to mechanically attach to a delivery system. The delivery system can include a catheter and a pushing mechanism disposed in the catheter and/or including a hypotube, the pushing mechanism operable to translate the braid toward the aneurysm. In certain embodiments, the occlusive sack can be substantially spherical, ellipsoidal, or otherwise conformable to an asymmetric aneurysm, for example, an aneurysm with multiple sacs, irregular dome or walls. The proximal implant end can also be less pliable and/or can have less material strength than the distal implant end. An outer surface of the braid can also include a plurality of interstices (e.g. a mesh surface).
The invertibility, pliability, and/or porosity of the braid can be selectively designed for treatment of an aneurysm having a particular shape, by varying properties of the interstices among different portions of the braid.
In other embodiments, a method of delivering an occlusion device to an aneurysm in a blood vessel in a patient is disclosed. The method can include positioning an occlusion device within a delivery tube (e.g. a tube that can be pushed or caused to translate the occlusion device), the occlusion device comprising any self-expanding braid of this disclosure; distally sliding the braid towards the aneurysm from within the delivery tube; expanding a distal implant end of the braid from a collapsed condition to a deployed condition; and inverting the distal implant end of the braid to form a sack for occluding the aneurysm.
In certain embodiments, the distal implant end of the braid begins expanding immediately as the braid exits a distal end of the delivery tube. In certain embodiments, when the sack is formed, it can include a predetermined packing density or density range. In certain embodiments, the method can include positioning a microcatheter within the vasculature and then positioning the occlusion device assembled with the delivery tube inside the microcatheter; and delivering the occlusion device and the delivery tube assembled with the microcatheter to the aneurysm. In certain embodiments, the method can also include: imaging the sack with respect to the aneurysm; determining whether the aneurysm is occluded by the sack; and distally or proximally sliding the braid to adjust the sack and to occlude the aneurysm.
In certain embodiments, imaging the sack with respect to the aneurysm includes determining whether a necessary packing setting for the sack to occlude the aneurysm and moving the braid (e.g. by distally or proximally sliding the braid) to adjust the sack.
In other embodiments, a method of delivering an occlusion device to an aneurysm in a blood vessel in a patient is disclosed. The method can include: positioning the occlusion device within a delivery tube, the occlusion device comprising a self-expanding braid; distally sliding a braid toward the aneurysm; expanding (e.g. radially expanding) a distal implant end of the braid from a collapsed condition to a deployed condition as the braid approaches a dome of the aneurysm; and inverting the distal implant end of the braid to form an occlusive sack that packs the aneurysm to a predetermined packing density and occludes the aneurysm.
In certain embodiments, the braid includes a first break that is defined by a size of the sack for occluding the aneurysm. The braid can also include a second break proximal of the first break. In this respect, the method can also include distally sliding the braid toward the aneurysm after formation of the first sack; and inverting the braid at the second break to form a second sack internal to the first sack.
In certain embodiments, the method can also include: distally sliding the braid toward the aneurysm after formation of the first sack; and inverting the braid to form a second sack internal to the first sack.
In certain embodiments, the method can also include: continuing to distally slide the braid toward the aneurysm after formation of the first sack thereby packing the sack with one or more unexpanded portions of the braid.
In certain embodiments, the method can also include: determining a position of the sack relative to the aneurysm and if the position fails to fit or conform to the sack, then the braid may be proximally translated thereby causing the sack to collapse back into the braid; and withdrawing the braid from the aneurysm.
In other embodiments, this disclosure relates to a delivery system for an occlusive device for treating an aneurysm. In some embodiments, the delivery system can include a delivery tube that includes a distal end and a proximal end. The delivery tube can be slidably disposed within a microcatheter. A pushing mechanism can be slidably disposed within the delivery tube. The occlusive device can be slidably disposed within the delivery tube and mechanically attached to the pushing mechanism. The occlusive device can include a braid having a lumen with a distal implant end opposite a proximal implant end. The pushing mechanism can be operable to distally translate the occlusive device to a deployed condition within the aneurysm, wherein distally translating the braid to the deployed condition causes the distal implant end to invert and fold into itself thereby forming an occlusive sack for the aneurysm.
In certain embodiments, the proximal implant end of the braid may be capable of mechanical attachment, detachable or otherwise, to the distal end of the pushing mechanism.
In other embodiments, at least a portion of the braid defines a plurality of interstices with openings for occlusion of the aneurysm. In other embodiments, the proximal implant end of the braid can be attached to and foldable over an inner portion of the pushing mechanism.
In other embodiments, the braid can be attached to and foldable over an inner portion of the pushing mechanism. The braid may also be fillable as the braid is folded. In certain embodiments, the braid can be invertible as the braid distally slides and exits the delivery tube. The sack may be a collapsible cage-like vaso-occlusive structure.
In other embodiments, the distal end of the delivery member can include opposed gripping arms (e.g., upper and lower). One or both gripping arms can be pivotable toward the other gripping arm to release the braid from the delivery tube when the braid forms a sack about the. In other embodiments, the pushing mechanism can also include an inner passage through which at least one embolic coil is insertable into the braid when the braid forms a sack within the aneurysm.
In other embodiments, the pushing mechanism can include radiopaque material (e.g. the distal end, the proximal end, etc.).
In other embodiments, a method is disclosed for delivering an occlusion device to an aneurysm in a blood vessel in a patient. The method includes: positioning a delivery system of the occlusion device within a microcatheter in the vasculature, the delivery system including a delivery tube having a distal end and a proximal end. The delivery system may also include a pushing mechanism that is slidably disposed within the delivery tube, the pushing mechanism comprising a distal end and a proximal end. The method may include slidably positioning a self-expanding braid of the occlusion device within the delivery tube, the braid comprising a distal end and a proximal end; detachably attaching the proximal end of the braid to the distal end of the pushing mechanism; selectively inserting the microcatheter with the delivery system and the occlusion device into vasculature of the patient to reach the aneurysm; distally sliding the braid, by the pushing mechanism, in the delivery tube toward the aneurysm thereby causing the braid to radially expand and move from a collapsed condition within the delivery tube to a deployed condition within the aneurysm as the distal end of the braid is moved outside and away from the distal end of the delivery tube; and releasing the occlusion device and withdrawing the microcatheter and the delivery system from the patient.
In other embodiments, the method can also include: forming, by the braid, a sack within the aneurysm by distally sliding the braid to the deployed condition; distally sliding the pushing mechanism to the distal end of delivery tube until the braid folds; and folding the braid thereby filling the sack and securing the occlusion device within the aneurysm to occlude flow into the aneurysm.
In other embodiments, the method can also include: forming the sack within the aneurysm by inverting the braid as the braid distally slides and exits the delivery tube and/or bulges against a wall of the aneurysm.
In other embodiments, the method can also include: deflecting the pushing mechanism as the braid is inverted and reaches a dome of the aneurysm; filling the sack as the braid is inverted; and/or continuing to distally translate, by the pushing mechanism, the braid into the aneurysm until the proximal end of the braid reaches the distal end tip of the pushing mechanism.
In other embodiments, the method can also include: attaching the proximal end of the braid to an inner portion of the pushing mechanism; and/or filling the sack by folding the braid until the braid is at least level with a neck of the aneurysm.
In other embodiments, the method can also include: forming, by the braid, a sack within the aneurysm by distally sliding the braid to the deployed condition; forming a gripping mechanism for detaching the sack from the delivery system, the gripping mechanism being formed by a pair of opposed gripping arms formed at a distal end of the delivery tube, one or both gripping arms being pivotable toward the other gripping arm; and/or detaching, by the grabbing mechanism of the delivery system, the sack from the delivery system by pivoting one or both arms away from the other.
In other embodiments, the method can also include: inserting at least one embolic coil through an inner passage of the pushing mechanism and into the sack to adjust the packing density.
In other embodiments, the method can include forming, by inverting the braid, a first occlusive sack within the aneurysm by distally sliding the braid from the delivery tube toward the aneurysm; distally sliding the braid toward the aneurysm after formation of the first sack; and inverting the braid to form a second sack within the first sack. Forming the first and/or second sack can cause flow into the aneurysm to be deflected, diverted, and/or slowed.
In other embodiments, the method can include forming, by inverting the braid, a first occlusive sack within the aneurysm by distally sliding the braid from the delivery tube toward the aneurysm; distally sliding the braid toward the aneurysm after formation of the first sack; inverting the braid to form a second sack within the first sack; distally sliding the braid toward the aneurysm after formation of the second sack; and inverting the braid to form a third sack within the first and second sacks. Forming the first, second and/or third sack can cause flow into the aneurysm to be deflected, diverted, and/or slowed. It is contemplated that only one sack could be used or more than three sacks could be formed and used for purposes of deflecting, diverting, and/or slowing flow into the aneurysm.
Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.
Although example embodiments of the disclosed technology are explained in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the disclosed technology be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or carried out in various ways.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. By “comprising” or “containing” or “including” it is meant that at least the named compound, element, particle, or method step is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, even if the other such compounds, material, particles, method steps have the same function as what is named.
In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the disclosed technology. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
As discussed herein, vasculature of a “subject” or “patient” may be vasculature of a human or any animal. It should be appreciated that an animal may be a variety of any applicable type, including, but not limited thereto, mammal, veterinarian animal, livestock animal or pet type animal, etc. As an example, the animal may be a laboratory animal specifically selected to have certain characteristics similar to a human (e.g., rat, dog, pig, monkey, or the like). It should be appreciated that the subject may be any applicable human patient, for example.
As discussed herein, “operator” may include a doctor, surgeon, or any other individual or delivery instrumentation associated with delivery of a braid body to the vasculature of a subject.
Cerebrovascular aneurysms are known to be treated using embolic coils, which are delivered to the aneurysm sack via a microcatheter and detached in situ. It is understood that “packing density” is the volume of the aneurysm sack occupied by the coil mass. In previous coil approaches, multiple coils (e.g. five coils) have been used to pack the aneurysms and the packing density can typically range between 15-25%, depending on the aneurysm size. The herein disclosed device improves on use of embolic coils by using a single device without a need for even a single coil to pack the device. Instead, the disclosed device is operable to seal the aneurysm neck and pack the aneurysm to a higher packing density than using coils. In practice, the packing density can be as increased 25-50% depending on the length of braid in the aneurysm, or double what can be achieved with conventional coils. However, the multiple braid layers formed as the braid packs the aneurysm may mean that a lower packing density may achieve blood flow alteration and coagulation in a way that a lower packing density may achieve the same level of occlusion. This allows for the aneurysm neck to heal.
In contrast, in previous embolic-based approaches, packing the aneurysm required in placement of coils into the aneurysm sack until the aneurysm obtained the desired packing density to occlude the aneurysm. However, obtaining such a packing density was difficult, time consuming, and aneurysm morphology (e.g. wide neck, bifurcation, etc.), and the like required ancillary devices such a stents or balloons to support the coil mass and obtain the desired packing density. Furthermore, aneurysms treated with multiple coils often reanalyze or compact as a result of poor coiling, lack of coverage across the aneurysm neck, as a result of flow, or even aneurysm size.
The occlusion device 1 and corresponding delivery system 30 disclosed herein addresses the drawbacks of previous approaches, including low packing density, compaction and recanalization of aneurysms.
Turning to
In this respect, mechanism 38 may be slidably disposed within delivery tube 34, wherein mechanism 38 can be in mechanical connection with braid 10 at attachment 36. When braid 10 is mechanically attached to pushing mechanism 38 at attachment 36, distally translating, sliding, or otherwise moving mechanism 38 toward the aneurysm can cause a distal implant end 16 of braid 10 to begin moving from a collapsed condition to a deployed condition, as discussed below. Both delivery tube 34 and mechanism 38 can extend from the proximal 24 to the distal end 26 of microcatheter 20.
It is understood that braid 10 can include a self-expanding braid for treating an aneurysm. The inner lumen of braid 10 can form a self-expanding multi-filament outer surface that can include a mesh. It can be seen that mechanism 38 is disposed proximal of braid 10 and braid 10 is in communication with mechanism 38 across attachment 36 at proximal implant end 14. Braid 10 may be attached to attachment 36 by being crimped thereon or by a detachable connection. In certain embodiments, proximal implant end 14 may be inserted within the distal end of mechanism 38 at attachment 36 wherein mechanism 38 can then be attached therewith or thereon. However, attachment 36 is not so limited and instead braid 10 may be slidably, detachably inserted over or otherwise with attachment 36.
Prior to deployment within an aneurysm A, distal implant end 16 of braid 10 is adjacent or in contact with distal end 46 of delivery tube 34. Delivery tube 34 may also include one or more fasteners 32 operable to securely fasten braid 10 in place prior to deployment. The area of braid 10 of distal implant end 16 adjacent or in communication with fastener 32 may be substantially atraumatic and/or rounded so to minimize kinking or other damage to the adjacent area of braid 10. Fastener 32 may include a crimping, soldering, bracing, adhesive, pressure cuff, welding, or other fastener means, including clamps, or the like, so that delivery tube 34 is secured therewith but translation of mechanism 38 and braid 10 is still permitted when actuation is desired.
Braid 10 may be operable to expand over the neck of the aneurysm A during delivery which can substantially reduce and/or prevent further blood flow from the parent vessel into the aneurysm sac. Portions of braid 10 on or proximate end 16 may be more pliable than portions of braid 10 on or proximate end 14 in order to induce self-expansion during delivery and inversion as braid 10 forms its predetermined, sack-like shape within aneurysm A (see, e.g.,
Turning to
In certain embodiments, sack 12 begins being formed as braid 10 is advanced to the vicinity of the neck or dome of the aneurysm such that mechanism 38, attachment 36, and/or portions of delivery tube 34 are at the level of the neck as seen under fluoroscopy. However, device 1 is not so limited and instead braid 10 can begin inverting and folding into itself to form sack 12 as distal implant end 16 simply distally slides away from delivery tube 34 and/or catheter 20. As shown in step 415, sack 12 is now taking a generally spherical shape as braid 10 is translated distally deeper into aneurysm A and/or further away from catheter 20 and tube 34. In moving between steps 405 to 415, the outer diameter of the braid 10 radially expands to a diameter greater than the microcatheter 20 as sack 12 is formed. The braid wire count of interstices of braid 10 that may form the outer surface can vary depending of the diameter of the sack 12 or sacks needed to occlude the aneurysm. For example, in order to induce formation of the predetermined shape and strength of sack 12, distal implant end 16 of braid 10 may be more pliable than proximal implant end 14 and portions of braid 10 may vary from most pliable on or about end 16 and less pliable on or about end 14. Interstices of braid 10 may also form openings for occlusion of the aneurysm.
Such distal movement of mechanism 38 and initial formation of sack 12 of braid 10 is more clearly shown in
In step 420, mechanism 38 may continue to be distally translated while distal implant end 16 of braid 10 continues inverting as it approaches or contacts the dome of aneurysm A. Braid 10 can also begin inverting immediately as it exits catheter 20 (see, e.g., step 410 of
Between steps 420 to 425, mechanism 38 continues to distally slide until unexpanded, braid portion(s) 17 proximal of sack 12 folds and randomly fills sack 12, as shown more particularly in
In step 430, with the sack 12 fully formed in a manner sufficient to occlude aneurysm A, braid 10 can be detached from attachment 36. However, if sack 12 is not precisely positioned or if needs to be reset within aneurysm A for safe occlusion without risk of rupture, braid 10, including sack 12, can be retracted back into delivery tube 34 by proximally moving mechanism 38. It is understood that when sack 12 is fully formed, it is capable of packing aneurysm A with a 15-25% packing density without the need for any embolic coils. However, braid 10 can be designed to achieve a packing density of 40%, 50%, or less than 15-25%, as needed or required. The change in packing density can be affected by changing the length or diameter of the braid 10. A longer or shorter braid 10 in the same aneurysm A can change the amount of braid deployed, which in turn can dictate the number of sacks 12 formed and the amount of unexpanded, braid portion 17 filling the sack 12. The same can hold true for the diameter of the braid 10, a larger diameter filling more of the aneurysm A in less length, but at a lower density. The operator can then choose between the differing parameters of a braid 10 for each particular aneurysm A.
In step 435, because sack 12 has been properly positioned and formed within aneurysm A, braid 10 has been detached from mechanism 38 and mechanism 38 can now be retracted therefrom. As shown, opposing grasper arms 42a, 42b can be formed with the microcatheter 20 or delivery tube 34 and withdrawn proximally so arms 42a, 42b can release sack 12 formed by expanding braid 10. It is understood that some or all of arms 42a, 42b can be radiopaque so that positioning and detachment can be monitored and/or driven under fluoroscopy.
One example of attachment 36 is shown in
Another example of how system 30 may release braid 10 is shown in
Protrusions 41′ may be members or extensions of tube 34′ that inwardly protrude to reduce the inner diameter thereabout to be less than a diameter of base 33′. In this regard, only one protrusion 41′ may be provided integrally formed with tube 34′ or detachably connected and positioned therewith. However, method 600B is not so limited and more than one protrusion 41′ can be provided as well as a cylindrical protrusion 41′, or any other protrusion shaped and designed to reduce the inner diameter to prevent base 33′ from moving passed.
Another example of how system 30 may release braid 10 is shown in
Attachment 36″ is more clearly shown in
The apertures 104 in the mesh 100 create a substantially unitary frame work or mesh in the wall 106. Thus, the apertures 104 may be of any size, shape, or porosity, and may be uniformly or randomly spaced throughout the wall 106 of the mesh 100. The apertures 104 provide the tubular element with flexibility and also assist in the transformation of the mesh 100 from the collapsed state to the expanded state, and vice versa.
As discussed above, the mesh 100 inverts as it forms. This means that the inside 108 of the mesh 100 when the mesh is formed, becomes the “outside” on deployment or is in contact with the aneurysm A wall, as illustrated in
Note that the mesh 100 has a length L and that length L forms both the sack 112 and the unexpanded mesh 110 (or “tail”) that forms within the sack 112. Controlling the length L can provide differing diameters of the sack 112, the number of internal sacks and/or the length of the tail 110 that fills the sack 112 and affects packing density.
In one example, the inversion of the mesh 100 can be formed when the proximal end 114 of the mesh 100 is pushed forward while the distal end 116 remains fixed. The proximal end 114 is pushed inside 108 forcing the proximal end 114 to exit the delivery tube first while end 116 remains fixed. Once the entire length L is deployed out of the delivery tube, the distal end 116 is detached and is thus the last end to be deployed. As above, the proximal end 114 engages the proximal implant end 14 and the distal end 116 engages the distal implant end 16. The mesh 100 can be formed akin to a tube sock.
Another example fixes the distal end 116 as above, and as the proximal end 114 is pushed, the mesh 110 just behind the distal end 116 is deployed, still causing the mesh 100 to deploy “inside out.” Here, once the mesh 100 is fully deployed, both the proximal and distal ends 114, 116 are next to each other.
In certain embodiments, sack 12 can be sized for only a specific sized aneurysm A. However, in other embodiments, sack 12 can be conformable or adjusted by the operator to sufficiently pack aneurysms across multiple sizes (e.g. across approximately 6 mm to approximately 10 mm) by continuing to advance portion 17 so that sack 12 is adjusted, as needed. For example, translating portion 17 distally from first to second positions can adjust from a first occlusion setting to a second setting. This is particularly advantageous in a clinical setting since it means that accurate measuring of aneurysm A is unnecessary and instead, sack 12 can be precisely and safely adjusted to fit aneurysm A in a manner that occludes without risk of rupture.
In
It is understood that variations of the braid 10 can include various materials such as stainless steel, bio absorbable materials, and polymers. Braid 10, including any specific portions such as any breaks and corresponding sacks, can be heat set to various configurations such as spherical, oblong, saddle shaped, etc. for the purpose of shaping the initial sack to better match the aneurysm morphology. In addition, the braid 10 can be heat shaped to include weak points to facility the braid buckling once it reaches the dome of the aneurysm.
It is also understood that any sack formed by the herein discussed braids 10 can be in a spherical shape as depicted or any other shape, as needed or required, such as ellipsoidal, heart-shaped, ovoid, cylindrical, hemispherical, or the like. Further, interstices of braid 10 that form the sack can vary, or be selectively designed, in size or shape along its length depending on how much braid 10 is caused to radially expand as pushing mechanism 38 is distally moved.
The specific configurations, choice of materials and the size and shape of various elements can be varied according to particular design specifications or constraints requiring a system or method constructed according to the principles of the disclosed technology. Such changes are intended to be embraced within the scope of the disclosed technology. The presently disclosed embodiments, therefore, are considered in all respects to be illustrative and not restrictive. It will therefore be apparent from the foregoing that while particular forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
1. A system for treating an aneurysm comprising:
a braid having a distal implant end opposite a proximal implant end, the braid having a lumen;
wherein the braid is configured such that distal translation of the proximal implant end toward the distal implant end causes the distal implant end to invert and fold into itself, thereby forming an occlusive sack for occluding an aneurysm.
2. The medical device of aspect 1, wherein the braid is a self-expanding braid.
3. The medical device of aspect 1 or aspect 2, wherein the outer surface of the braid is self-expanding.
4. The medical device of any preceding aspect, wherein the braid is configured to assume a predetermined occlusive sack shape.
5. The medical device of any preceding aspect, wherein the occlusive sack is configured to be substantially spherical in shape.
6. The medical device of any of aspects 1 to 5, wherein the occlusive sack is configured to conform in shape to an asymmetric aneurysm or an aneurysm with multiple sacs.
7. The medical device of any of aspects 1 to 5, wherein the occlusive sack is a collapsible cage-like vaso-occlusive structure.
8. The medical device of any preceding aspect, wherein an outer surface of the braid is comprised of a plurality of interstices.
9. The medical device of aspect 8, wherein dimensions of the interstices vary at the distal implant end versus the proximal implant end.
10. The medical device of any of aspects 1 to 7, wherein at least a portion of the braid defines a plurality of interstices with openings for occlusion of the aneurysm.
11. The medical device of any preceding aspect, wherein the braid is configured to be of a length sufficient that non-inverted portions of the braid not forming the occlusive sack fold into the occlusive sack, as distal translation continues, to increase packing density of the occlusive sack.
12. The medical device of any preceding aspect, wherein the proximal implant end is less pliable and/or has less material strength than the distal implant end.
13. The medical device of any preceding aspect, wherein the braid is further configured to form, upon continued distal translation, a second sack within the occlusive sack, each sack being formed from the braid inverting and folding into itself.
14. The medical device of any preceding aspect, wherein the braid further comprises a break disposed between the distal and proximal implant ends, the break configured to cause the occlusive sack to form when the distal implant end is distally translated toward the aneurysm.
15. The medical device of aspect 14 when dependent upon aspect 13, wherein the braid further comprises a second break disposed between the first break and the proximal implant end, the second break configured to cause the second sack to form upon continued distal translation.
16. The medical device of any preceding aspect, further comprising an embolic coil at the end of the proximal implant end.
17. The medical device of any preceding aspect, further comprising a delivery system; wherein the proximal implant end or embolic coil is operable to attach mechanically to the delivery system, the delivery system comprising a catheter and a pushing mechanism disposed in the catheter, the pushing mechanism operable to translate the braid.
18. A delivery system for an occlusive device for treating an aneurysm, comprising:
a delivery tube comprising a distal end and a proximal end, the delivery tube being slidably disposable within a microcatheter; and
a pushing mechanism slidably disposed with or within the delivery tube, the pushing mechanism comprising a distal end and a proximal end;
the medical device of any of aspects 1 to 16 slidably disposed within the delivery tube and mechanically attached to the pushing mechanism,
wherein the pushing mechanism is operable to distally translate the medical device to a deployed condition for occluding the aneurysm;
wherein the translation is in a distal direction thereby forming the occlusive sack for the aneurysm.
19. The system of aspect 18, wherein the distal implant end of the braid is detachably attached adjacent the distal end of the delivery tube such that the braid begins inverting to form the occlusive sack immediately as the braid exits the distal end of the delivery tube.
20. The system of any of aspects 18 and 19, further comprising:
an imaging device operatively connected to the occlusive device, wherein the imaging device is capable of imaging the sack with respect to the aneurysm; and
wherein an orientation and/or packing density of the occlusive sack is adjustable by the braid being distally or proximally moved.
21. The system of any of aspects 18 to 20, wherein the proximal implant end of the braid is detachably attached to the distal end of the pushing mechanism.
22. The system of any of aspects 18 to 21, wherein the proximal implant end of the braid is attached to and foldable over an inner portion of the pushing mechanism.
23. The system of any of aspects 18 to 22, wherein the distal end of the delivery tube comprises opposed gripping arms, one or both gripping arms being pivotable away from the other gripping arm to release the braid from the delivery tube.
24. The system of any of aspects 18 to 23, wherein the pushing mechanism further comprises an inner passage through which at least one embolic coil is insertable into the braid when the braid forms a sack within the aneurysm.
25. The system of any of aspects 18 to 24, wherein the distal end of the pushing mechanism comprises radiopaque material.
This application is a continuation of U.S. non-provisional patent application Ser. No. 15/903,860, which claims priority to U.S. provisional patent application No. 62/462,685 entitled “ANEURYSM DEVICE AND DELIVERY SYSTEM” and filed Feb. 23, 2017, the contents which are incorporated herein by reference as if set forth verbatim.
Number | Name | Date | Kind |
---|---|---|---|
2849002 | Oddo | Aug 1958 | A |
3480017 | Shute | Nov 1969 | A |
4085757 | Pevsner | Apr 1978 | A |
4282875 | Serbinenko et al. | Apr 1981 | A |
4364392 | Strother et al. | Dec 1982 | A |
4395806 | Wonder et al. | Aug 1983 | A |
4517979 | Pecenka | May 1985 | A |
4545367 | Tucci | Oct 1985 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4991602 | Amplatz et al. | Feb 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5025060 | Yabuta et al. | Jun 1991 | A |
5065772 | Cox, Jr. | Nov 1991 | A |
5067489 | Lind | Nov 1991 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo | Sep 1994 | A |
5423829 | Pham et al. | Jun 1995 | A |
5624449 | Pham et al. | Apr 1997 | A |
5645558 | Horton | Jul 1997 | A |
5733294 | Forber et al. | Mar 1998 | A |
5916235 | Guglielmi | Jun 1999 | A |
5891128 | Fen et al. | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5964797 | Ho | Oct 1999 | A |
6007573 | Wallace et al. | Dec 1999 | A |
6024756 | Pham | Feb 2000 | A |
6036720 | Abrams | Mar 2000 | A |
6063070 | Eder | May 2000 | A |
6063100 | Diaz et al. | May 2000 | A |
6063104 | Villar | May 2000 | A |
6080191 | Thaler | Jun 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6123714 | Gia et al. | Sep 2000 | A |
6168615 | Ken | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6315787 | Tsugita et al. | Nov 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6334048 | Edvardsson et al. | Dec 2001 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6375606 | Garbaldi et al. | Apr 2002 | B1 |
6375668 | Gifford | Apr 2002 | B1 |
6379329 | Naglreiter et al. | Apr 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6419686 | McLeod et al. | Jul 2002 | B1 |
6428558 | Jones | Aug 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6463317 | Kucharczyk et al. | Oct 2002 | B1 |
6506204 | Mazzocchi et al. | Jan 2003 | B2 |
6527919 | Roth | Mar 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6569179 | Teoh | May 2003 | B2 |
6569190 | Whalen, II et al. | May 2003 | B2 |
6572628 | Dominguez | Jun 2003 | B2 |
6589230 | Gia et al. | Jul 2003 | B2 |
6589256 | Forber | Jul 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6620152 | Guglielmi | Sep 2003 | B2 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6689159 | Lilip et al. | Feb 2004 | B2 |
6746468 | Sepetka | Jun 2004 | B1 |
6780196 | Chin et al. | Aug 2004 | B2 |
6802851 | Jones | Oct 2004 | B2 |
6811560 | Jones | Nov 2004 | B2 |
6833003 | Jones et al. | Dec 2004 | B2 |
6846316 | Abrams | Jan 2005 | B2 |
6849081 | Sepetka et al. | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6949116 | Solymar et al. | Sep 2005 | B2 |
6964657 | Cragg et al. | Nov 2005 | B2 |
6964671 | Cheng | Nov 2005 | B2 |
6994711 | Hieshima et al. | Feb 2006 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7083632 | Avellanet | Aug 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7153323 | Teoh | Dec 2006 | B1 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7229454 | Tran et al. | Jun 2007 | B2 |
7229461 | Chin et al. | Jun 2007 | B2 |
7309345 | Wallace | Dec 2007 | B2 |
7371249 | Douk et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7410482 | Murphy | Aug 2008 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7608088 | Jones | Oct 2009 | B2 |
7695488 | Berenstein et al. | Apr 2010 | B2 |
7713264 | Murphy | May 2010 | B2 |
7744652 | Morsi | Jun 2010 | B2 |
7892248 | Tran | Feb 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
RE42758 | Ken | Sep 2011 | E |
8016852 | Ho | Sep 2011 | B2 |
8021416 | Abrams | Sep 2011 | B2 |
8025668 | McCartney | Sep 2011 | B2 |
3034061 | Amplatz et al. | Oct 2011 | A1 |
3048145 | Evans et al. | Nov 2011 | A1 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8075585 | Lee et al. | Dec 2011 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8221483 | Ford et al. | Jul 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267923 | Murphy | Sep 2012 | B2 |
8361106 | Solar et al. | Jan 2013 | B2 |
8361138 | Adams | Jan 2013 | B2 |
8372114 | Hines | Feb 2013 | B2 |
8398671 | Chen | Mar 2013 | B2 |
8430012 | Marchand | Apr 2013 | B1 |
8454633 | Amplatz et al. | Jun 2013 | B2 |
8523897 | van der Burg et al. | Sep 2013 | B2 |
8523902 | Heaven et al. | Sep 2013 | B2 |
8551132 | Eskridge et al. | Oct 2013 | B2 |
8777974 | Amplatz et al. | Jul 2014 | B2 |
8900304 | Alobaid | Dec 2014 | B1 |
8974512 | Aboytes et al. | Mar 2015 | B2 |
8992568 | Duggal et al. | Mar 2015 | B2 |
8998947 | Aboytes et al. | Apr 2015 | B2 |
9055948 | Jaeger et al. | Jun 2015 | B2 |
9107670 | Hannes et al. | Aug 2015 | B2 |
9161758 | Figulla et al. | Oct 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9259337 | Cox et al. | Feb 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9351715 | Mach | May 2016 | B2 |
9414842 | Glimsdale | Aug 2016 | B2 |
9526813 | Cohn et al. | Dec 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561096 | Kim et al. | Feb 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579104 | Beckham et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9585669 | Becking et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9629635 | Hewitt et al. | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9681861 | Heisel | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Peterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9826980 | Figulla et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918720 | Marchand et al. | Mar 2018 | B2 |
9955976 | Hewitt | May 2018 | B2 |
10004510 | Gerberding | Jun 2018 | B2 |
10130372 | Griffin | Nov 2018 | B2 |
10307148 | Heisel | Jun 2019 | B2 |
10327781 | Divina | Jun 2019 | B2 |
10342546 | Sepetka | Jul 2019 | B2 |
10517604 | Bowman et al. | Dec 2019 | B2 |
10653425 | Gorochow et al. | May 2020 | B1 |
10716573 | Connor | Jul 2020 | B2 |
10743884 | Lorenzo | Aug 2020 | B2 |
10751066 | Lorenzo | Aug 2020 | B2 |
11464518 | Connor | Oct 2022 | B2 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020082638 | Porter et al. | Jun 2002 | A1 |
20020143349 | Gifford, III et al. | Oct 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20030028209 | Feoh et al. | Feb 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030181945 | Opolski | Sep 2003 | A1 |
20030195553 | Wallace | Oct 2003 | A1 |
20030216772 | Konya | Nov 2003 | A1 |
20040034366 | van der Burg et al. | Feb 2004 | A1 |
20040034386 | Fulton et al. | Feb 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040093014 | Ho et al. | May 2004 | A1 |
20040098027 | Teoh et al. | May 2004 | A1 |
20040127935 | Van Tassel et al. | Jul 2004 | A1 |
20040133222 | Tran et al. | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040210297 | Lin et al. | Oct 2004 | A1 |
20040254594 | Alfaro | Dec 2004 | A1 |
20050021016 | Malecki et al. | Jan 2005 | A1 |
20050021072 | Wallace | Jan 2005 | A1 |
20050159771 | Petersen | Jul 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050251200 | Porter | Nov 2005 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060058735 | Lesh | Mar 2006 | A1 |
20060064151 | Guterman | Mar 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060155367 | Hines | Jul 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060247572 | McCartney | Nov 2006 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070106311 | Wallace | May 2007 | A1 |
20070208376 | Meng | Jun 2007 | A1 |
20070162071 | Burkett et al. | Jul 2007 | A1 |
20070167876 | Euteneuer et al. | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070186933 | Domingo | Aug 2007 | A1 |
20070191884 | Eskridge et al. | Aug 2007 | A1 |
20070233188 | Hunt et al. | Oct 2007 | A1 |
20070265656 | Amplatz | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20080097495 | Feller, III et al. | Apr 2008 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20090036877 | Nardone et al. | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090099647 | Glimsdale | Apr 2009 | A1 |
20090227983 | Griffin et al. | Sep 2009 | A1 |
20090281557 | Sander et al. | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287294 | Rosqueta et al. | Nov 2009 | A1 |
20090287297 | Cox | Nov 2009 | A1 |
20090318941 | Sepetka | Dec 2009 | A1 |
20100023046 | Heidner | Jan 2010 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100063573 | Hijlkema | Mar 2010 | A1 |
20100063582 | Rudakov | Mar 2010 | A1 |
20100069948 | Veznedaroglu | Mar 2010 | A1 |
20100168781 | Berenstein | Jul 2010 | A1 |
20100211156 | Linder et al. | Aug 2010 | A1 |
20100324649 | Mattsson et al. | Dec 2010 | A1 |
20110046658 | Conner et al. | Feb 2011 | A1 |
20110054519 | Neuss | Mar 2011 | A1 |
20110112588 | Linderman et al. | May 2011 | A1 |
20110137317 | O'Halloran et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110196413 | Wallace | Aug 2011 | A1 |
20110319978 | Schaffer | Dec 2011 | A1 |
20120010644 | Sideris et al. | Jan 2012 | A1 |
20120071911 | Sadasivan | Mar 2012 | A1 |
20120165732 | Müller | Jun 2012 | A1 |
20120191123 | Brister et al. | Jul 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120310270 | Murphy | Dec 2012 | A1 |
20120323267 | Ren | Dec 2012 | A1 |
20120330341 | Becking et al. | Dec 2012 | A1 |
20130035665 | Chu | Feb 2013 | A1 |
20130035712 | Theobald et al. | Feb 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130079864 | Boden | Mar 2013 | A1 |
20130110066 | Sharma et al. | May 2013 | A1 |
20130204351 | Cox et al. | Aug 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130261658 | Lorenzo et al. | Oct 2013 | A1 |
20130261730 | Bose et al. | Oct 2013 | A1 |
20130274863 | Cox et al. | Oct 2013 | A1 |
20130345738 | Eskridge | Dec 2013 | A1 |
20140005714 | Quick et al. | Jan 2014 | A1 |
20140012307 | Franano et al. | Jan 2014 | A1 |
20140012363 | Franano et al. | Jan 2014 | A1 |
20140018838 | Franano et al. | Jan 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka | Jul 2014 | A1 |
20140257360 | Keillor | Sep 2014 | A1 |
20140257361 | Prom | Sep 2014 | A1 |
20140277013 | Sepetka et al. | Sep 2014 | A1 |
20140358178 | Hewitt et al. | Dec 2014 | A1 |
20150057703 | Ryan et al. | Feb 2015 | A1 |
20150209050 | Aboytes et al. | Jul 2015 | A1 |
20150272589 | Lorenzo | Oct 2015 | A1 |
20150313605 | Griffin | Nov 2015 | A1 |
20150342613 | Aboytes et al. | Dec 2015 | A1 |
20150374483 | Janardhan et al. | Dec 2015 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160030050 | Franano et al. | Feb 2016 | A1 |
20160192912 | Kassab et al. | Jul 2016 | A1 |
20160249934 | Hewitt et al. | Sep 2016 | A1 |
20160249935 | Hewitt et al. | Sep 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079661 | Bardsley et al. | Mar 2017 | A1 |
20170079662 | Rhee et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079717 | Walsh et al. | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170114350 | dos Santos et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170258473 | Plaza et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340333 | Badruddin et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180140305 | Connor | May 2018 | A1 |
20180206850 | Wang et al. | Jul 2018 | A1 |
20180242979 | Lorenzo | Aug 2018 | A1 |
20180303531 | Sanders et al. | Oct 2018 | A1 |
20180338767 | Dasnurkar et al. | Nov 2018 | A1 |
20190008522 | Lorenzo | Jan 2019 | A1 |
20190110796 | Jayaraman | Apr 2019 | A1 |
20190142567 | Janardhan et al. | May 2019 | A1 |
20190192162 | Lorenzo | Jun 2019 | A1 |
20190192167 | Lorenzo | Jun 2019 | A1 |
20190192168 | Lorenzo | Jun 2019 | A1 |
20190223878 | Lorenzo | Jul 2019 | A1 |
20190223879 | Jayaraman | Jul 2019 | A1 |
20190223881 | Hewitt et al. | Sep 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20190357914 | Gorochow et al. | Nov 2019 | A1 |
20190365385 | Gorochow et al. | Dec 2019 | A1 |
20200000477 | Nita et al. | Jan 2020 | A1 |
20200069313 | Xu et al. | Mar 2020 | A1 |
20200268365 | Hebert et al. | Aug 2020 | A1 |
20200375606 | Lorenzo | Dec 2020 | A1 |
20210007755 | Lorenzo | Jan 2021 | A1 |
20210177429 | Lorenzo | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2395796 | Jul 2001 | CA |
2 431 594 | Sep 2002 | CA |
2598048 | May 2008 | CA |
204 683 687 | Jul 2015 | CN |
107374688 | Nov 2017 | CN |
102008015781 | Oct 2009 | DE |
102010053111 | Jun 2012 | DE |
102009058132 | Jul 2014 | DE |
102013106031 | Dec 2014 | DE |
202008018523 | Apr 2015 | DE |
102011102955 | May 2018 | DE |
902704 | Mar 1999 | EP |
1054635 | Nov 2000 | EP |
1295563 | Mar 2003 | EP |
1441649 | Aug 2004 | EP |
1483009 | Dec 2004 | EP |
1527753 | May 2005 | EP |
1569565 | Sep 2005 | EP |
1574169 | Sep 2005 | EP |
1494619 | Jan 2006 | EP |
1633275 | Mar 2006 | EP |
1659988 | May 2006 | EP |
1725185 | Nov 2006 | EP |
1862122 | Dec 2007 | EP |
1923005 | May 2008 | EP |
2063791 | Jun 2009 | EP |
2134263 | Dec 2009 | EP |
2157937 | Mar 2010 | EP |
2266456 | Dec 2010 | EP |
2324775 | May 2011 | EP |
2367482 | Sep 2011 | EP |
2387951 | Nov 2011 | EP |
2460476 | Jun 2012 | EP |
2468349 | Jun 2012 | EP |
2543345 | Jan 2013 | EP |
2567663 | Mar 2013 | EP |
2617386 | Jul 2013 | EP |
2623039 | Aug 2013 | EP |
2647343 | Oct 2013 | EP |
2848211 | Mar 2015 | EP |
2854704 | Apr 2015 | EP |
2923674 | Sep 2015 | EP |
2926744 | Oct 2015 | EP |
3146916 | Mar 2017 | EP |
3501429 | Jun 2019 | EP |
3517055 | Jul 2019 | EP |
3 636 173 | Oct 2019 | EP |
H04-47415 | Apr 1992 | JP |
H07-37200 | Jul 1995 | JP |
2006-509578 | Mar 2006 | JP |
2013-509972 | Mar 2013 | JP |
2013537069 | Sep 2013 | JP |
2014-522268 | Sep 2014 | JP |
2016-502925 | Feb 2015 | JP |
WO 9641589 | Dec 1996 | WO |
WO 9905977 | Feb 1999 | WO |
WO 9908607 | Feb 1999 | WO |
WO 9930640 | Jun 1999 | WO |
WO 2003073961 | Sep 2003 | WO |
WO 03086240 | Oct 2003 | WO |
WO 2005020822 | Mar 2005 | WO |
WO 2005074814 | Aug 2005 | WO |
2005117718 | Dec 2005 | WO |
WO 2005117718 | Dec 2005 | WO |
WO 2006034149 | Mar 2006 | WO |
WO 2006052322 | May 2006 | WO |
WO 2007076480 | Jul 2007 | WO |
WO 2008150346 | Dec 2008 | WO |
WO 2008151204 | Dec 2008 | WO |
WO 2009048700 | Apr 2009 | WO |
WO 2009105365 | Aug 2009 | WO |
WO 2009132045 | Oct 2009 | WO |
WO 2009135166 | Nov 2009 | WO |
WO 2010030991 | Mar 2010 | WO |
WO 2011057002 | May 2011 | WO |
WO 2012032030 | Mar 2012 | WO |
WO 2012099704 | Jul 2012 | WO |
WO 2012099909 | Jul 2012 | WO |
WO 2012113554 | Aug 2012 | WO |
WO 2013016618 | Jan 2013 | WO |
WO 2013025711 | Feb 2013 | WO |
WO 2013109309 | Jul 2013 | WO |
WO 2013159065 | Oct 2013 | WO |
WO 2013162817 | Oct 2013 | WO |
WO 2014029835 | Feb 2014 | WO |
WO 2014078286 | May 2014 | WO |
WO 2014110589 | Jul 2014 | WO |
WO 2014137467 | Sep 2014 | WO |
WO 2015073704 | May 2015 | WO |
WO 2015160721 | Oct 2015 | WO |
2015171268 | Nov 2015 | WO |
WO 2015166013 | Nov 2015 | WO |
WO 2015171268 | Nov 2015 | WO |
WO 2015184075 | Dec 2015 | WO |
WO 2015187196 | Dec 2015 | WO |
WO 2016044647 | Mar 2016 | WO |
WO 2016107357 | Jul 2016 | WO |
WO 2016137997 | Sep 2016 | WO |
WO 2017161283 | Sep 2017 | WO |
WO 2018051187 | Mar 2018 | WO |
2015160721 | Oct 2018 | WO |
WO 2019038293 | Feb 2019 | WO |
WO 2012034135 | Mar 2021 | WO |
Entry |
---|
Notification of Reasons for Refusal issued in Japanese Patent Application No. 2019-546246 dated Dec. 14, 2021, English translation only. |
International Search Report dated May 25, 2018 during the prosecution of PCT/US2018/019330. |
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices. AJR 2000; 174: 349-354. |
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54. |
Number | Date | Country | |
---|---|---|---|
20200375606 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62462685 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15903860 | Feb 2018 | US |
Child | 16997543 | US |