The present invention generally relates to medical instruments, and more particularly, to embolic implants for aneurysm therapy.
Aneurysms can be complicated and difficult to treat. For example, treatment access may be limited or unavailable when an aneurysm is located proximate critical tissues. Such factors are of particular concern with cranial aneurysms due to the brain tissue surrounding cranial vessels and the corresponding limited treatment access.
Prior solutions have included endovascular treatment access whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow. In this respect, because the interior walls of the aneurysm may continue being subjected to flow of blood and related pressure, aneurysm rupture remains possible.
Alternative to endovascular or other surgical approaches can include occlusive devices. Such devices have typically incorporated multiple embolic coils that are delivered to the vasculature using microcatheter delivery systems. For example, when treating cranial aneurysms, a delivery catheter with embolic coils is typically first inserted into non-cranial vasculature through a femoral artery in the hip or groin area. Thereafter, the catheter is guided to a location of interest within the cranium. The sac of the aneurysm can then be filled with the embolic material to create a thrombotic mass that protects the arterial walls from blood flow and related pressure. However, such occlusive devices do have certain shortcomings, including mass effect, which can cause compression on the brain and its nerves.
For example, embolic coils delivered to the neck of the aneurysm can potentially have the adverse effect of impeding the flow of blood in the adjoining blood vessel, particularly if the entrance is overpacked. Conversely, if the entrance is insufficiently packed, blood flow can persist into the aneurysm. Treating certain aneurysm morphology (e.g. wide neck, bifurcation, etc.) can require ancillary devices such a stents or balloons to support the coil mass and obtain the desired packing density. Once implanted, the coils cannot easily be retracted or repositioned. Furthermore, embolic coils do not always effectively treat aneurysms as aneurysms treated with multiple coils often recanalize or compact because of poor coiling, lack of coverage across the aneurysm neck, blood flow, or large aneurysm size.
Another particular type of occlusive approach endeavors to deliver and treat the entrance or “neck” of the aneurysm. In such “neck” approaches, by minimizing blood flow across the neck, a cessation of flow into the aneurysm may be achieved. It is understood that the neck plane is an imaginary surface where the inner most layer of the parent wall would be but for the aneurysm. However, neck-occlusive approaches, such as implanting a flow impeding device in the parent vessel, are not without drawbacks. Such an approach may impede blood flow into peripheral blood vessels while blocking the aneurysm neck in the parent vessel. Impeding flow to the peripheral blood vessel can unintentionally lead to severe damage if the openings of the vessels are blocked.
Alternatives to embolic coils are being explored, such as tubular braided implants. Tubular braided implants have the potential to easily, accurately, and safely treat an aneurysm or other arterio-venous malformation in a parent vessel without blocking flow into perforator vessels communicating with the parent vessel. Compared to embolic coils, however, tubular braided implants are a newer technology, and there is therefore capacity for improved geometries, configurations, delivery systems, etc. for the tubular braided implants. For instance, delivery of tubular braided implants can require unique delivery systems to prevent the braid from inverting or abrading when pushed through a microcatheter, and some simple delivery systems that push embolic coils through microcatheters from their proximal end may not be effective to deliver tubular braids.
There is therefore a need for improved methods, devices, and systems for implants for aneurysm treatment.
It is an object of the present invention to provide systems, devices, and methods to meet the above-stated needs. Generally, it is an object of the present invention to provide a braided implant with a retractable dual proximal layer. The implant can secure within an aneurysm sac and occlude at least a majority of the aneurysm's neck. The implant can include a tubular braid that can be set into a predetermined shape, compressed for delivery through a microcatheter, and implanted in at least one implanted position that is based on the predetermined shape and the geometry of the aneurysm in which the braid is implanted. The implant can also have a retractable dual layer at the proximal end of the device made of the same braid to provide additional coverage at the neck of the aneurysm.
In some examples presented herein, the dual layer can be shaped by expanding it radially, and the dual layer can be pressed distally into a first portion of the tubular braid already within the aneurysm. By pressing the dual layer distally into the first portion of the tubular braid, the first portion of the tubular braid can be moved towards the distal portion of an aneurysm wall so that the implant can partially or completely occlude an aneurysm neck. Pushing the dual layer into the first portion of the braid can help conform the implant to the shape of the aneurysm and resist compaction. The dual layer when expanded radially and pressed into the first portion of the braid also can provide additional coverage at the neck of the aneurysm to increase thrombosis. In some examples, the dual layer can also be placed within the aneurysm sac with only a detachment point external to the sac.
In some examples, the tubular braid can include memory shape material that can be heat set to a predetermined shape, can be deformed for delivery through a catheter, and can self-expand to an implanted shape that is based on the predetermined shape and confined by the anatomy of the aneurysm in which it is implanted.
In some examples the tubular braid can be shaped to a delivery shape that is extended to a single layer of tubular braid having a compressed circumference/diameter sized to be delivered through the microcatheter.
In some examples, before the implant is released from the delivery system, the implant can be partially or fully retracted into the microcatheter and repositioned.
An example method for forming an occlusive device to treat an aneurysm can include one or more of the following steps presented in no particular order, and the method can include additional steps not included here. An implant with a tubular braid, an open end, and a pinched end can be selected. The tubular braid can be shaped to a predetermined shape. Shaping the tubular braid to a predetermined shape can also include further steps. These steps can include inverting the tubular braid to form a distal inversion. The tubular braid can also be inverted to form a proximal inversion by moving the open end over at least a portion of the braid. A first segment of the tubular braid extending between the open end and the proximal inversion can be shaped. A second segment of the tubular braid extending between the proximal inversion and the distal inversion can be shaped. The open end can be positioned to encircle the second segment. A third segment extending from the distal inversion to the proximal inversion can be shaped. The second segment can be positioned to surround the third segment. A fourth segment of the tubular braid extending from the third segment radially outward from a central axis to cross the proximal inversion can be shaped and can fold and converge at the pinched end. The fourth segment can be positioned near the neck of an aneurysm.
An example method for treating an aneurysm can include one or more of the following steps presented in no particular order, and the method can include additional steps not included here. A first portion of a tubular braided implant, which can have a tubular braid, an open end, and a pinched end, can be positioned within a sac of the aneurysm such that the first portion circumferentially apposes walls within the sac. The first portion can have one or more inversions. A second portion of the tubular braided implant can be expanded radially to occlude a majority of a neck of the aneurysm. The second portion can be pressed distally into the first portion. The first portion of the tubular braided implant can be moved toward a distal portion of the aneurysm wall as a result of pressing the second portion distally into the first portion.
In some examples, expanding the second portion of the tubular braided implant can include positioning a fold in the second segment to define a substantially circular perimeter of the second portion and compressing the second portion along a central axis of the tubular braided implant such that the second portion can have a substantially circular shape having an area and two layers of braid over a majority of the area of the substantially circular shape.
In some examples, positioning the first portion of the tubular braided implant can further include shaping the tubular braided implant to form a columnar post encircling a central axis of the tubular braided implant and extending a majority of a height of the first portion. In another example, positioning the first portion of the tubular braided implant can further involve positioning a proximal inversion near the neck of the aneurysm and positioning a distal inversion approximate the distal portion of the aneurysm wall. In another example, positioning the first portion of the tubular braided implant can further involve positioning the open end of the tubular braided implant to circumferentially appose the aneurysm wall, shaping a first segment of the tubular braid extending between the open end and the proximal inversion to appose at least a portion of a wall of the aneurysm within the aneurysm's sac, and shaping a second segment of the tubular braid such that the first segment provides an outwardly radial force in a plane defining a boundary between the aneurysm and blood vessel branches, the force sufficient to appose the first segment to walls of the aneurysm.
In some examples, pressing the second portion distally into the first portion can further involve pressing the second portion of the tubular braided implant against the proximal inversion in the first portion of the tubular braided implant.
The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.
Examples presented herein generally include a braided implant that can secure within an aneurysm sac and occlude a majority of the aneurysm's neck. The implant can include a tubular braid that can be set into a predetermined shape, compressed for delivery through a microcatheter, and implanted in at least one implanted position that is based on the predetermined shape and the geometry of the aneurysm in which the braid is implanted. The implant can include a single layer of braid (e.g. a braid that can be extended to form a single layer tube) heat treated into multiple layers with retractable dual layer at the proximal end of the tubular braid. When compressed, the implant can be sufficiently short to mitigate friction forces produced when the implant is delivered unsheathed through the microcatheter.
A first portion of the tubular braid can be positioned in an aneurysm, after which the retractable dual layer can be deployed from the microcatheter and pushed onto the first portion of the tubular braid. This configuration provides three layers of braid at the neck of the aneurysm. The dual layer can potentially cover any gap between the first portion of implanted tubular braid and the aneurysm neck, and can potentially increase metal coverage, decrease porosity of the implant, and increase stasis and blood flow diversion at the neck of the aneurysm to promote the sealing and healing of the aneurysm compared a similarly shaped braided implant lacking the dual layer. The entire implant can be retractable until a desired position is achieved.
Referring to
When in the predetermined shape, the tubular braid 110 can be substantially radially symmetrical about a central vertical axis. The detachment feature 150 is illustrated in
The tubular braid 110 can include memory shape material that can be heat set to a predetermined shape, can be deformed for delivery through a catheter, and can self-expand to an implanted shape that is based on the predetermined shape and confined by the anatomy of the aneurysm in which it is implanted. When the tubular braid 110 is in the predetermined shape as depicted in
The tubular braid 110 in the implanted shape (
By pressing the fourth segment 152a distally into the first portion of the tubular braid 110, the first portion 142a, 144a, 146a of the tubular braid 110 can be moved towards the distal portion of an aneurysm wall 15 to occlude a portion of the neck 16 of the aneurysm 10. Pushing the fourth segment 152a into the first portion of the braid 110 can help conform the implant 100 to the shape of the aneurysm 10 and resist compaction. The fourth segment 152a when expanded radially and pressed into the first portion of the braid 110 also can provide additional coverage at the neck 16 of the aneurysm 10 to increase thrombosis and seal the aneurysm 10. When the fourth segment 152a is pressed into the first portion of the braid 110, three layers of braid are present at the neck of the aneurysm. The fourth segment 152a can cover spatial gaps between the first portion of implanted tubular braid 110 and the aneurysm neck 16, and can potentially increase metal coverage, decrease porosity of the implant 100, and increase stasis and blood flow diversion at the neck 16 of the aneurysm 10 to promote the sealing and thrombosis of the aneurysm 10. The fourth segment 152a can be shaped to occlude the majority of an aneurysm neck 16 when the device 100 is implanted. The fourth segment 152a can be shaped to completely occlude an aneurysm neck 16 when the device 100 is implanted.
When the tubular braid 110 is in the implanted shape (
During delivery through the microcatheter 600, the detachment feature 150 can be attached to a delivery system at a proximal end of the implant 100, the pinched end 112 can be positioned near the proximal end of the implant 100, and the open end 114 can define the distal end of the implant 100. Collapsing the braid 110 to a single layer tube can result in a braid 110 that has a sufficiently small diameter and a sufficiently short length L to mitigate effects of friction force on the braid 110 when it is delivered through the microcatheter, allowing the braid 110 to be delivered unsheathed in some applications
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Finally, as illustrated in
Before the implant 100 is released from the delivery system, the implant 100 can be partially or fully retracted into the microcatheter 600 and repositioned.
In method 300, step 320 of shaping the tubular braid to the predetermined shape can further include shaping the fourth segment to comprise a diameter greater than or approximately equal to a maximum diameter of the first segment. In method 300, the step 320 of shaping the tubular braid to the predetermined shape can further include shaping the fourth segment to a diameter lesser than a maximum diameter of the first segment. The method 300 can further include shaping the tubular braided implant to a delivery shape sized to traverse a lumen of a microcatheter.
As illustrated in
Step 410 can further include shaping the tubular braided implant to form a columnar post encircling a central axis of the tubular braided implant and extending a majority of a height of the first portion. Step 410 can further include positioning a proximal inversion in the first portion of the tubular braided implant approximate the neck of an aneurysm and positioning a distal inversion in the first portion of the tubular braided implant approximate the distal portion of the aneurysm wall. Step 410 can further include positioning the open end of the tubular braided implant to circumferentially appose the aneurysm wall, shaping a first segment of the tubular braid extending between the open end and the proximal inversion to appose an at least a portion of a wall of the aneurysm within the aneurysm's sac, and shaping a second segment of the tubular braid such that the first segment provides an outwardly radial force in a plane defining a boundary between the aneurysm and blood vessel branches, the force sufficient to appose the first segment to walls of the aneurysm.
Step 430 can further include pressing the second portion of the tubular braided implant against the proximal inversion in the first portion of the tubular braided implant. Step 440 can further include moving the distal inversion in the first portion of the tubular braided implant toward the distal portion of the aneurysm wall.
The method 400 can further include shaping the tubular braided implant to form a columnar post encircling a central axis of the tubular braided implant and extending a majority of a height of the first portion. The method 400 can further include retracting the tubular braid until a desired position is achieved relative to the aneurysm. The method 400 can further comprise shaping the tubular braided implant to a delivery shape sized to traverse a lumen of a microcatheter.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein.
The descriptions contained herein are examples of embodiments of the invention and are not intended in any way to limit the scope of the invention. The invention contemplates many variations and modifications of the implant, including: alternative delivery methods, alternative braid materials, alternative means for achieving a desired stiffness/flexibility of braid material, additional structures affixed to the implant (e.g. to aid in anchoring the implant, blood flow diversion, embolism formation, etc.), alternative predetermined braid shapes (e.g. one inversion, three inversions, four inversions, five or more inversions, non-radially symmetric shapes, alternative segment shapes, etc.), alternative implanted shapes, etc. The invention contemplates many variations and modifications to constructing the implant to include combinations of the aforementioned variations and modifications of the implant. The invention contemplates many variations and modifications of implanting the implant to accommodate combinations of the aforementioned variations and modifications of the implant. Modifications apparent to one of ordinary skill in the art following the teachings of this disclosure are intended to be within the scope of the claims which follow.
This application is a Continuation-In-Part to U.S. application Ser. No. 16/418,199 filed May 21, 2019, and this application in incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2849002 | Oddo | Aug 1958 | A |
3480017 | Shute | Nov 1969 | A |
4085757 | Pevsner | Apr 1978 | A |
4282875 | Serbinenko et al. | Apr 1981 | A |
4364392 | Strother et al. | Dec 1982 | A |
4395806 | Wonder et al. | Aug 1983 | A |
4517979 | Pecenka | May 1985 | A |
4545367 | Tucci | Oct 1985 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4991602 | Amplatz et al. | Feb 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5025060 | Yabuta et al. | Jun 1991 | A |
5065772 | Cox, Jr. | Nov 1991 | A |
5067489 | Lind | Nov 1991 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo | Sep 1994 | A |
5423829 | Pham et al. | Jun 1995 | A |
5624449 | Pham et al. | Apr 1997 | A |
5645558 | Horton | Jul 1997 | A |
5733294 | Forber et al. | Mar 1998 | A |
5891128 | Gia et al. | Apr 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5964797 | Ho | Oct 1999 | A |
6007573 | Wallace et al. | Dec 1999 | A |
6024756 | Pham | Feb 2000 | A |
6036720 | Abrams | Mar 2000 | A |
6063070 | Eder | May 2000 | A |
6063100 | Diaz et al. | May 2000 | A |
6063104 | Villar | May 2000 | A |
6080191 | Thaler | Jun 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6123714 | Gia et al. | Sep 2000 | A |
6168615 | Ken | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6315787 | Tsugita et al. | Nov 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6334048 | Edvardsson et al. | Dec 2001 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6375606 | Garbaldi et al. | Apr 2002 | B1 |
6375668 | Gifford | Apr 2002 | B1 |
6379329 | Naglreiter et al. | Apr 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6419686 | McLeod et al. | Jul 2002 | B1 |
6428558 | Jones | Aug 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6463317 | Kucharczyk et al. | Oct 2002 | B1 |
6506204 | Mazzocchi et al. | Jan 2003 | B2 |
6527919 | Roth | Mar 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6569179 | Teoh | May 2003 | B2 |
6569190 | Whalen, II et al. | May 2003 | B2 |
6572628 | Dominguez | Jun 2003 | B2 |
6589230 | Gia et al. | Jul 2003 | B2 |
6589256 | Forber | Jul 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6620152 | Guglielmi | Sep 2003 | B2 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6689159 | Lau et al. | Feb 2004 | B2 |
6746468 | Sepetka | Jun 2004 | B1 |
6780196 | Chin et al. | Aug 2004 | B2 |
6802851 | Jones | Oct 2004 | B2 |
6811560 | Jones | Nov 2004 | B2 |
6833003 | Jones et al. | Dec 2004 | B2 |
6846316 | Abrams | Jan 2005 | B2 |
6849081 | Sepetka et al. | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6949116 | Solymar et al. | Sep 2005 | B2 |
6964657 | Cragg et al. | Nov 2005 | B2 |
6964671 | Cheng | Nov 2005 | B2 |
6994711 | Hieshima et al. | Feb 2006 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7083632 | Avellanet | Aug 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7153323 | Teoh | Dec 2006 | B1 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7229454 | Tran et al. | Jun 2007 | B2 |
7229461 | Chin et al. | Jun 2007 | B2 |
7309345 | Wallace | Dec 2007 | B2 |
7371249 | Douk et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7410482 | Murphy et al. | Aug 2008 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7608088 | Jones | Oct 2009 | B2 |
7695488 | Berenstein et al. | Apr 2010 | B2 |
7713264 | Murphy | May 2010 | B2 |
7744652 | Morsi | Jun 2010 | B2 |
7892248 | Tran | Feb 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
RE42758 | Ken | Sep 2011 | E |
8016852 | Ho | Sep 2011 | B2 |
8021416 | Abrams | Sep 2011 | B2 |
8025668 | McCartney | Sep 2011 | B2 |
8034061 | Amplatz et al. | Oct 2011 | B2 |
3048145 | Evans et al. | Nov 2011 | A1 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8075585 | Lee et al. | Dec 2011 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8221483 | Ford et al. | Jul 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267923 | Murphy | Sep 2012 | B2 |
8361106 | Solar et al. | Jan 2013 | B2 |
8361138 | Adams | Jan 2013 | B2 |
8372114 | Hines | Feb 2013 | B2 |
8398671 | Chen | Mar 2013 | B2 |
8430012 | Marchand | Apr 2013 | B1 |
8454633 | Amplatz et al. | Jun 2013 | B2 |
8523897 | Van Der Burg et al. | Sep 2013 | B2 |
8523902 | Heaven et al. | Sep 2013 | B2 |
8551132 | Eskridge et al. | Oct 2013 | B2 |
8777974 | Amplatz et al. | Jul 2014 | B2 |
8900304 | Alobaid | Dec 2014 | B1 |
8974512 | Aboytes et al. | Mar 2015 | B2 |
8992568 | Duggal et al. | Mar 2015 | B2 |
8998947 | Aboytes et al. | Apr 2015 | B2 |
9055948 | Jaeger et al. | Jun 2015 | B2 |
9107670 | Hannes | Aug 2015 | B2 |
9161758 | Figulla et al. | Oct 2015 | B2 |
9232992 | Heidner et al. | Jan 2016 | B2 |
9259337 | Cox et al. | Feb 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9351715 | Mach | May 2016 | B2 |
9414842 | Glimsdale et al. | Aug 2016 | B2 |
9526813 | Cohn et al. | Dec 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561096 | Kim et al. | Feb 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579104 | Beckham et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9585669 | Becking et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9629635 | Hewitt et al. | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign | Jun 2017 | B2 |
9681861 | Heisel et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Paterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918720 | Marchand et al. | Mar 2018 | B2 |
9955976 | Hewitt et al. | May 2018 | B2 |
10004510 | Gerberding | Jun 2018 | B2 |
10130372 | Griffin | Nov 2018 | B2 |
10307148 | Heisel et al. | Jun 2019 | B2 |
10327781 | Divino et al. | Jun 2019 | B2 |
10342546 | Sepetka et al. | Jul 2019 | B2 |
10517604 | Bowman et al. | Dec 2019 | B2 |
10653425 | Gorochow et al. | May 2020 | B1 |
10716573 | Connor | Jul 2020 | B2 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020082638 | Porter et al. | Jun 2002 | A1 |
20020143349 | Gifford, III et al. | Oct 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030181945 | Opolski | Sep 2003 | A1 |
20030195553 | Wallace et al. | Oct 2003 | A1 |
20030216772 | Konya | Nov 2003 | A1 |
20040034366 | van der Burg et al. | Feb 2004 | A1 |
20040034386 | Fulton et al. | Feb 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040098027 | Teoh et al. | May 2004 | A1 |
20040127935 | Van Tassel et al. | Jul 2004 | A1 |
20040133222 | Tran et al. | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040210297 | Lin et al. | Oct 2004 | A1 |
20040254594 | Alfaro | Dec 2004 | A1 |
20050021016 | Malecki et al. | Jan 2005 | A1 |
20050021072 | Wallace | Jan 2005 | A1 |
20050159771 | Petersen | Jul 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050251200 | Porter | Nov 2005 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060058735 | Lesh | Mar 2006 | A1 |
20060064151 | Guterman et al. | Mar 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060155367 | Hines | Jul 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060247572 | McCartney | Nov 2006 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070106311 | Wallace et al. | May 2007 | A1 |
20070208376 | Meng | Jun 2007 | A1 |
20070162071 | Burkett et al. | Jul 2007 | A1 |
20070167876 | Euteneuer et al. | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070186933 | Domingo | Aug 2007 | A1 |
20070191884 | Eskridge et al. | Aug 2007 | A1 |
20070233188 | Hunt et al. | Oct 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20080097495 | Feller, III et al. | Apr 2008 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080281350 | Sepetka et al. | Nov 2008 | A1 |
20090036877 | Nardone et al. | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090099647 | Glimsdale | Apr 2009 | A1 |
20090227983 | Griffin et al. | Sep 2009 | A1 |
20090281557 | Sander et al. | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287294 | Rosqueta et al. | Nov 2009 | A1 |
20090287297 | Cox | Nov 2009 | A1 |
20090318941 | Sepetka | Dec 2009 | A1 |
20100023046 | Heidner et al. | Jan 2010 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100063573 | Hijlkema | Mar 2010 | A1 |
20100063582 | Rudakov | Mar 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100168781 | Berenstein | Jul 2010 | A1 |
20100211156 | Linder et al. | Aug 2010 | A1 |
20100324649 | Mattsson et al. | Dec 2010 | A1 |
20110046658 | Conner et al. | Feb 2011 | A1 |
20110054519 | Neuss | Mar 2011 | A1 |
20110112588 | Linderman et al. | May 2011 | A1 |
20110137317 | O'Halloran et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110196413 | Wallace | Aug 2011 | A1 |
20110319978 | Schaffer | Dec 2011 | A1 |
20120010644 | Sideris et al. | Jan 2012 | A1 |
20120071911 | Sadasivan | Mar 2012 | A1 |
20120165732 | Müller | Jun 2012 | A1 |
20120191123 | Brister et al. | Jul 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120310270 | Murphy | Dec 2012 | A1 |
20120323267 | Ren | Dec 2012 | A1 |
20120330341 | Becking et al. | Dec 2012 | A1 |
20130035665 | Chu | Feb 2013 | A1 |
20130035712 | Theobald et al. | Feb 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130079864 | Boden | Mar 2013 | A1 |
20130110066 | Sharma et al. | May 2013 | A1 |
20130204351 | Cox et al. | Aug 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130261658 | Lorenzo et al. | Oct 2013 | A1 |
20130261730 | Bose et al. | Oct 2013 | A1 |
20130274863 | Cox et al. | Oct 2013 | A1 |
20130345738 | Eskridge | Dec 2013 | A1 |
20140005714 | Quick et al. | Jan 2014 | A1 |
20140012307 | Franano et al. | Jan 2014 | A1 |
20140012363 | Franano et al. | Jan 2014 | A1 |
20140018838 | Franano et al. | Jan 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140257360 | Keillor | Sep 2014 | A1 |
20140257361 | Prom | Sep 2014 | A1 |
20140277013 | Sepetka et al. | Sep 2014 | A1 |
20140358178 | Hewitt et al. | Dec 2014 | A1 |
20150057703 | Ryan et al. | Feb 2015 | A1 |
20150209050 | Aboytes et al. | Jul 2015 | A1 |
20150272589 | Lorenzo | Oct 2015 | A1 |
20150313605 | Griffin | Nov 2015 | A1 |
20150342613 | Aboytes et al. | Dec 2015 | A1 |
20150374483 | Janardhan et al. | Dec 2015 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160030050 | Franano et al. | Feb 2016 | A1 |
20160192912 | Kassab et al. | Jul 2016 | A1 |
20160249934 | Hewitt et al. | Sep 2016 | A1 |
20160249935 | Hewitt et al. | Sep 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079661 | Bardsley et al. | Mar 2017 | A1 |
20170079662 | Rhee et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079717 | Walsh et al. | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170114350 | dos Santos et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340333 | Badruddin et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180140305 | Connor | May 2018 | A1 |
20180206850 | Wang et al. | Jul 2018 | A1 |
20180242979 | Lorenzo | Aug 2018 | A1 |
20180303531 | Sanders et al. | Oct 2018 | A1 |
20180338767 | Dasnurkar et al. | Nov 2018 | A1 |
20190008522 | Lorenzo | Jan 2019 | A1 |
20190223878 | Lorenzo et al. | Jan 2019 | A1 |
20190110796 | Jayaraman | Apr 2019 | A1 |
20190142567 | Janardhan et al. | May 2019 | A1 |
20190192162 | Lorenzo | Jun 2019 | A1 |
20190192167 | Lorenzo | Jun 2019 | A1 |
20190192168 | Lorenzo | Jun 2019 | A1 |
20190223879 | Jayaraman | Jul 2019 | A1 |
20190223881 | Hewitt et al. | Sep 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20190357914 | Gorochow et al. | Nov 2019 | A1 |
20190365385 | Gorochow | Dec 2019 | A1 |
20200000477 | Nita et al. | Jan 2020 | A1 |
20200069313 | Xu et al. | Mar 2020 | A1 |
20200268365 | Hebert et al. | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
2395796 | Jul 2001 | CA |
2 431 594 | Sep 2002 | CA |
2598048 | May 2008 | CA |
204 683 687 | Jul 2015 | CN |
102008015781 | Oct 2009 | DE |
102010053111 | Jun 2012 | DE |
102009058132 | Jul 2014 | DE |
10 2013 106031 | Dec 2014 | DE |
202008018523 | Apr 2015 | DE |
102011102955 | May 2018 | DE |
902704 | Mar 1999 | EP |
1054635 | Nov 2000 | EP |
1295563 | Mar 2003 | EP |
1441649 | Aug 2004 | EP |
1483009 | Dec 2004 | EP |
1527753 | May 2005 | EP |
1569565 | Sep 2005 | EP |
1574169 | Sep 2005 | EP |
1494619 | Jan 2006 | EP |
1633275 | Mar 2006 | EP |
1659988 | May 2006 | EP |
1725185 | Nov 2006 | EP |
1862122 | Dec 2007 | EP |
1923005 | May 2008 | EP |
2063791 | Jun 2009 | EP |
2134263 | Dec 2009 | EP |
2157937 | Mar 2010 | EP |
2266456 | Dec 2010 | EP |
2324775 | May 2011 | EP |
2367482 | Sep 2011 | EP |
2387951 | Nov 2011 | EP |
2460476 | Jun 2012 | EP |
2468349 | Jun 2012 | EP |
2543345 | Jan 2013 | EP |
2567663 | Mar 2013 | EP |
2617386 | Jul 2013 | EP |
2623039 | Aug 2013 | EP |
2647343 | Oct 2013 | EP |
2848211 | Mar 2015 | EP |
2854704 | Apr 2015 | EP |
2923674 | Sep 2015 | EP |
2926744 | Oct 2015 | EP |
3146916 | Mar 2017 | EP |
3501429 | Jun 2019 | EP |
3517055 | Jul 2019 | EP |
H04-47415 | Apr 1992 | JP |
H07-37200 | Jul 1995 | JP |
2006-509578 | Mar 2006 | JP |
2013-509972 | Mar 2013 | JP |
2013537069 | Sep 2013 | JP |
2014-522268 | Sep 2014 | JP |
2016-502925 | Feb 2016 | JP |
WO 9641589 | Dec 1996 | WO |
WO 9905977 | Feb 1999 | WO |
WO 9908607 | Feb 1999 | WO |
WO 9930640 | Jun 1999 | WO |
WO 2003073961 | Sep 2003 | WO |
WO 03086240 | Oct 2003 | WO |
WO 2005020822 | Mar 2005 | WO |
WO 2005074814 | Aug 2005 | WO |
2005117718 | Dec 2005 | WO |
WO 2006034149 | Mar 2006 | WO |
WO 2006052322 | May 2006 | WO |
2007076480 | Jul 2007 | WO |
WO 2008150346 | Dec 2008 | WO |
WO 2008151204 | Dec 2008 | WO |
WO 2009048700 | Apr 2009 | WO |
WO 2009105365 | Aug 2009 | WO |
WO 2009132045 | Oct 2009 | WO |
WO 2009135166 | Nov 2009 | WO |
WO 2010030991 | Mar 2010 | WO |
WO 2011057002 | May 2011 | WO |
WO 2012032030 | Mar 2012 | WO |
WO 2012099704 | Jul 2012 | WO |
WO 2012099909 | Jul 2012 | WO |
WO 2012113554 | Aug 2012 | WO |
WO 2013016618 | Jan 2013 | WO |
WO 2013025711 | Feb 2013 | WO |
WO 2013109309 | Jul 2013 | WO |
WO 2013159065 | Oct 2013 | WO |
WO 2013162817 | Oct 2013 | WO |
WO 2014029835 | Feb 2014 | WO |
WO 2014078286 | May 2014 | WO |
WO 2014110589 | Jul 2014 | WO |
WO 2014137467 | Sep 2014 | WO |
WO 2015073704 | May 2015 | WO |
2015160721 | Oct 2015 | WO |
2015171268 | Nov 2015 | WO |
WO 2015166013 | Nov 2015 | WO |
WO 2015184075 | Dec 2015 | WO |
WO 2015187196 | Dec 2015 | WO |
WO 2016044647 | Mar 2016 | WO |
WO 2016107357 | Jul 2016 | WO |
WO 2016137997 | Sep 2016 | WO |
WO 2017161283 | Sep 2017 | WO |
WO 2018051187 | Mar 2018 | WO |
WO 2019038293 | Feb 2019 | WO |
WO 2012034135 | Mar 2021 | WO |
Entry |
---|
Extended European Search Report issued in corresponding European Patent Application No. 20 21 2968 dated May 11, 2021. |
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices AJR 2000; 174: 349-354. |
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54. |
Extended European Search Report issued in corresponding European Patent Application No. 19 21 5277 dated May 12, 2020. |
File History for corresponding U.S. Appl. No. 15/430,141, filed Feb. 10, 2017 cited by Applicant in parent U.S. Appl. No. 16/418,199. |
File History for corresponding U.S. Appl. No. 15/430,419, filed Feb. 10, 2017 cited by Applicant in parent U.S. Appl. No. 16/418,199. |
File History for corresponding U.S. Appl. No. 62/293,710, filed Feb. 10, 2017 cited by Applicant in parent U.S. Appl. No. 16/418,199. |
Number | Date | Country | |
---|---|---|---|
20200367899 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16418199 | May 2019 | US |
Child | 16853135 | US |