The invention relates to an angioplasty device to be introduced into a conduit of the human body, which conduit is preferably a blood vessel, so as to permit the local widening of the conduit. This device is particularly useful for treating occlusions or stenoses of the blood vessels.
To treat a stenosis or an occlusion of a blood vessel, an angioplasty device can be used that is composed of a rod on which an inflatable balloon is fixed. Such a device is described in EP 1 897 584, for example. This device comprises a rod which is provided with an inflatable balloon and in which two conduits are formed. The first conduit is designed to receive a flexible guide wire for guiding the path of the device in the vessel as far as the zone that is to be treated, while the second conduit is in fluidic communication with the balloon, thus permitting the injection of a pressurized fluid into the balloon, in this particular case physiological saline, if appropriate mixed with an iodine contrast agent.
To fit this device in place, a contrast agent can be injected into the blood vessel in order to locate the stenosis. A guide wire is then introduced into the vessel to be treated in order to make it easier to introduce the angioplasty device into the area of the stenosis. A guide wire and a method for using it are described in the document FR 2 533 130, for example.
The angioplasty device is then introduced around the guide wire in such a way that the guide wire is located in the first conduit. Once the balloon has been introduced into the area of the stenosis, a pressurized fluid is injected into the balloon with the aid of the second conduit. The inflation of the balloon makes it possible to widen the blood vessel in the area of the stenosis. It is then once again necessary to visualize the blood vessel in order to check that the stenosis has indeed been rectified. To do this, the balloon catheter is withdrawn and replaced by an angiography catheter which has a multi-perforate end and which is positioned in line with or upstream from the treated lesion. The guide is then withdrawn and an iodine contrast agent is injected into the lumen of the angiography catheter. If a new angioplasty is required, the guide can be mounted again on the angiography catheter, and the catheter can then be withdrawn and replaced by the balloon catheter.
Alternatively, to make matters simpler, the guide wire can be withdrawn and the contrast agent can be injected though the lumen freed by the guide wire, as long as the diameter of this guide lumen is sufficient, given that the contrast agent is viscous. In cases where the stenosis has not been totally rectified, the balloon has to be repositioned at the location where the blood vessel is narrowed. To do this, a guide wire must be re-introduced into the first conduit in order to permit the repositioning of the balloon in the narrowed area of the blood vessel. This maneuver of repositioning the balloon can be repeated several times if the stenosis has not been completely rectified.
Thus, the treatment of a stenosis, or of an occlusion, involves a succession of treatment phases, during which the balloon is inflated, and of visualization phases, during which a contrast agent is injected. Between each treatment phase and visualization phase, the operator performing the injection must either withdraw the balloon and replace it by an angiography catheter or must withdraw the guide wire in order to use the freed channel. This successive introduction and withdrawal of the guide wire into and out of the first conduit is time-consuming and awkward for the surgeon to do.
Another disadvantage of these techniques is that the distribution of the contrast agent in the blood vessel always takes place in the direction of flow of the blood, with the result that if the vessel comprises branches between the injection point and the location of the lesion, some of the contrast agent is uselessly diffused into the adjoining vessels.
In addition, in the devices of the prior art, the contrast agent is injected into the blood vessel with the aid of the first conduit, such that it is injected into the whole of the blood vessel. Large amounts of contrast agent are therefore injected into the patient's blood, and this can have adverse consequences for the health of the patient.
It is an object of the invention to overcome the disadvantages of the prior art by making available a percutaneous transluminal angioplasty device with which it is possible to visualize the blood vessel without having to perform any additional maneuver. It is also an object of the invention to improve the quality of visualization while at the same time reducing the amounts of contrast agent that are injected into the patient's blood.
To this end, a first aspect of the invention concerns an angioplasty device comprising:
The angioplasty device thus comprises a third conduit and at least one infusion orifice situated in the distal part of the tubular body. This injection orifice permits the injection of a contrast agent into the blood without the need to withdraw the guide wire. The angioplasty device can therefore be repositioned very easily and very quickly. The injection orifice is preferably located less than 5 cm from the balloon. In cases where the tubular body comprises several injection orifices, the injection orifice farthest from the balloon is preferably located less than 5 cm from the balloon.
This device can therefore be used for the diagnosis of stenoses or occlusions, and it can also be used for their treatment. This device also makes it possible to check that the inflating of the balloon has indeed rectified the occlusion or the stenosis, without the need to remove the guide wire.
This device therefore serves as a visualization probe and, at the same time, as an instrument for treating the stenoses or occlusions.
Moreover, the contrast agent is injected locally by virtue of the infusion orifice situated in proximity to the balloon, which permits very precise visualization of the area of interest through injecting a small amount of contrast agent into the patient's blood.
The quality of visualization of the contrast agent can also be improved by distributing infusion orifices radially about the tubular body, downstream and upstream from the balloon, by which means it is possible to obtain a satisfactory distribution of the contrast agent, irrespective of the direction of flow of the blood.
The second conduit is leaktight in order to ensure that the fluid for inflating the balloon does not enter the patient's blood.
Advantageously, according to one embodiment, the first conduit is circular and has a diameter substantially equal to that of the guide wire. In this way, the conduit and the guide wire are in good contact and, by this means, the angioplasty device is more easily guided by the guide wire.
According to another embodiment, the first conduit is open radially on the third conduit in order to form a single conduit, the diameter of the single conduit being greater than the external diameter of the guide wire in the proximal part of the tubular body, the diameter of the single conduit being substantially equal to the external diameter of the guide wire in the distal end of the tubular body. In this embodiment, the infusion orifices are preferably situated upstream from the portion of the single conduit whose diameter is substantially equal to that of the guide wire, such that the contrast agent can be injected without the need to withdraw the guide wire, since the contrast agent exits through the infusion orifices that are situated upstream from the conduit portion that is narrower. This embodiment also allows the contrast agent to be injected at high pressure by withdrawing the guide from the distal part in such a way as to obtain a supplementary injection orifice. Moreover, during the passage of the tubular body around the guide wire, friction is minimized. This embodiment is also advantageous in terms of industrial production of the tubular body, since only two conduits have to be formed in the tubular body, instead of the three conduits present in the preceding embodiments.
The cross section of the third conduit must be chosen in such a way as to satisfy two contradictory conditions: it must be as large as possible in order to permit a rapid rate of injection of the contrast agent, of which the viscosity is high, and it must also be small enough to ensure that the device as a whole has the smallest possible diameter.
According to different embodiments:
The invention also relates to a tubular body according to one of the embodiments described above.
Other features and advantages of the invention will become clear from the following description and by reference to the attached figures, in which:
For greater clarity, identical or similar elements are designated by identical reference signs in all of the figures.
The angioplasty device shown in
The tubular body 1 additionally comprises injection orifices 12, which are formed in the wall of the tubular body and which are arranged radially upstream 12B and downstream 12A from the inflatable balloon 5. These injection orifices 12 are arranged in proximity to the inflatable balloon. The terms upstream and downstream refer to the direction of flow of the fluid in the angioplasty device.
Three conduits 6, 7, 8, which are shown in section in
The second conduit 7 connects the proximal end 3 of the tubular body to the inflatable balloon 5 in a leaktight manner. The proximal end 3 is provided with a second connector piece 10, which is attached in a leaktight manner to the second conduit. The connector piece 10 is designed to be attached to a device for injecting a pressurized fluid into the second conduit 7 in order to inflate the balloon. This pressurized fluid is advantageously a mixture of physiological saline and contrast agent.
The third conduit 8 connects the proximal end 3 of the tubular body to the infusion orifices 12. The proximal end 3 is additionally provided with a third connector piece 11, which is connected in a leaktight manner to the third conduit 8. The third conduit 8 permits the injection of a contrast agent into the blood vessel in order to visualize the narrowing of the blood vessel to be treated and in order to monitor the latter after the angioplasty.
Moreover, to make it easier to position the balloon at the location of the narrowing, in particular when the balloon is not inflated, a positioning ring 13 is placed in the balloon. This positioning ring 13 is detectable, just like the contrast agent, by X-ray. In a preferred embodiment, the tubular body can comprise two positioning rings, each of these rings being placed at the limit of the balloon so as to permit detection of the latter.
The arrangement of the conduits inside the tubular body can vary, as can be seen in
The treatment of a stenosis with the aid of the angioplasty device in
In a first step, the operator inserts a catheter into the vein to be treated and injects a contrast agent, for example iodine, into the blood vessel to be treated. By virtue of this contrast agent, the operator can observe the blood vessel by radiography and is thus able to locate the stenosis that is to be treated. The operator then introduces the guide wire into the vessel to be treated and thereafter inserts the angioplasty device into the blood vessel by sliding the first conduit over the guide wire. The guide wire facilitates the introduction of the angioplasty device despite the flexibility and the length of the latter.
The operator places the balloon in the area of the narrowing with the aid of the marker ring 13, which is radiolabeled. Once the balloon has reached the narrowed segment of the blood vessel, the operator inflates the balloon with the aid of the second conduit 7. The atheromatous deposits narrowing the vessel are then compressed against the walls of the blood vessel, thereby permitting an increase in the diameter of the internal lumen of the vessel. Once this maneuver has been performed, the balloon is deflated, again with the aid of the second conduit 7.
Then, with the aid of the third conduit, the operator injects a contrast agent into the patient's blood without having to carry out the manipulations necessary in the prior art. The injection of this contrast agent allows the operator to visualize the blood vessel after the inflation of the balloon, so as to be able to check that the narrowed segment has indeed been rectified. In cases where this narrowed segment has not been totally rectified by the first inflation, the operator can move the balloon in order to reposition it in the area of the remaining narrowed portion. This remaining narrowed portion is detected with the aid of the contrast agent. Once the balloon has been repositioned, the operator can re-inflate the balloon. He can then once again check whether this maneuver has been successful. The operator can repeat these widening/checking maneuvers as many times as is necessary and can do so without having to carry out any additional manipulation, which saves him considerable time and avoids possible incidents during the manipulation. In addition, the contrast agent is injected locally, by which means the practitioner is able to clearly visualize the area of interest without excessive contrast agent having to be injected into the patient's blood.
Of course, the invention is not limited to the above illustrative embodiments, and various modifications or variations can be envisioned. For example, other arrangements of the three conduits can be envisioned. It is also conceivable to add a fourth conduit 15 in the tubular body, for example for injecting medicaments or active substances into the blood.
Moreover, the tubular body can either be a solid cylinder in which three conduits are drilled or can be in the form of a cylindrical outer wall which surrounds the three conduits.
Number | Date | Country | Kind |
---|---|---|---|
0806472 | Nov 2008 | FR | national |
This application is a Continuation of U.S. Utility patent application Ser. No. 17/652,626, filed Feb. 25, 2022, which is a Continuation of U.S. Utility patent application Ser. No. 15/900,250, filed Feb. 20, 2018, and issued on Apr. 5, 2022 as U.S. Pat. No. 11,291,806, which is a Continuation of U.S. Utility patent application Ser. No. 14/974,221, filed Dec. 18, 2015, and issued on Apr. 3, 2018, as U.S. Pat. No. 9,931,492, which is a Continuation of U.S. Utility patent application Ser. No. 13/130,022, filed May 18, 2011, and issued on Feb. 2, 2016, as U.S. Pat. No. 9,248,263, which is a National Stage under 35 U.S.C. 371 of International Patent Application No. PCT/FR2009/001326, filed Nov. 18, 2009, which claims priority to French Patent Application No. 0806472, filed Nov. 19, 2008; the disclosures of all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 17652626 | Feb 2022 | US |
Child | 18663495 | US | |
Parent | 15900250 | Feb 2018 | US |
Child | 17652626 | US | |
Parent | 14974221 | Dec 2015 | US |
Child | 15900250 | US | |
Parent | 13130022 | May 2011 | US |
Child | 14974221 | US |