This application claims the benefit under 35 U.S.C. § 119(a) of Chinese Patent Application No. CN 201810512882.8, filed on May 25, 2018, which is incorporated herein by reference in its entirety herein
The present disclosure relates generally to electric tools and, more particularly, to an angle grinder and shield assembly thereof.
An angle grinder is an abrasive tool used for cutting and grinding. When in use, there are two general forms of working elements: cutting and grinding discs. Because of the high rotational speed of the angle grinder, when cutting an element using a saw blade, and a pressure is applied or a thick hard material is cut, it is easy for the working element to get stuck, and the saw blade and the cutting disc may be broken into elements which may then be splashed, or the machine may bounce out of control, which may damage items. In order to avoid such dangers, when using the angle grinder, a protective shield is usually installed. However, the structures of the respective shields of the grinding disc and the cutting disc are different, the grinding disc is provided with a semi-protective structure, while the cutting disc is provided with a full protective structure. Commonly in the market, both kinds of protective shields are shipped. When in use, however, for cutting or grinding operations, the protective shield needs to be replaced with a suitable one, which makes the operation very inconvenient.
In addition, when in use, sparks or particles may fly out along a tangent of the cutting disc that rotates at a high speed, resulting in high wear and tear of the shield.
An angle grinder in accordance with some examples includes a housing, an output shaft at least partially extending out of the housing and being rotatable relative to the housing about a first axis, a sleeve fixedly connected to the housing where the output shaft passes through the sleeve, a first shield surrounding the output shaft and detachably connected to the sleeve, a second shield surrounding at least a part of the first shield that is detachably connected to the first shield, and a connector configured for connecting the second shield to the first shield, wherein the second shield is formed or connected with a mounting element for mounting the connector, and the connector and the mounting element are separately formed.
In some examples, the mounting element is integrally formed with the second shield and the connector and the mounting element are detachably connected to each other.
In some examples, the first shield forms a first space opening toward a direction facing away from the first axis when the first shield is mounted onto the sleeve and a whole of the first shield and the second shield forms a second space that opens in a direction perpendicular to the first axis when the second shield is mounted onto the first shield.
In some examples, the mounting element at least partially inclines toward the first axis and is elastic.
In some examples, the connector is operative to not be displaced relative to the mounting element when the connector is connected to the mounting element.
In some examples, the connector is a metal element.
In some examples, on a surface of the connector is further coated a coating.
In some examples, the connector is formed with a buckle that is connected to the first shield.
In some examples, the connector is operative to be displaced relative to the mounting element when the connector is connected to the mounting element.
In some examples, the mounting element forms a first accommodation space configured for receiving the connector.
An example shield assembly for an angle grinder with an output shaft that is rotatable about a first axis is also described. The shield assembly includes a first shield surrounding the output shaft which is detachably connected to the angle grinder, a second shield surrounding at least a part of the first shield which is detachably connected to the first shield, and a connector configured for connecting the second shield to the first shield wherein the second shield is formed or connected with a mounting element for mounting the connector and the connector and the mounting element are separately formed.
The angle grinder 100 of the first example shown in
When the angle grinder 100 is installed with a grinding element for friction work, effective protection of sparks, debris, etc. can be achieved only by installing the first shield 13. When the angle grinder 100 is mounted with a cutting disc for cutting work, full protection of the shield can be achieved when the second shield 14 is assembled with the first shield 13 as seen, for example, in
The first shield 13, the second shield 14 and the manner of connection thereof will be specifically described below.
The first shield 13 and the second shield 14 are illustrated by way of example in
A second shield 14 surrounds the first shield 13 and is detachably connected to the first shield 13. The second shield 14 includes a connection assembly 15 for connecting with the first shield 13 and the second shield 141 for at least partially enclosing the first space. When the second shield 14 is connected to the first shield 13, the first shield 13 and the second shield 14 are collectively formed with a second space opening in a direction perpendicular to the first axis 102. Specifically, the second cover 141 includes a third cover 142 and a fourth cover 143. Presently, the third cover 142 is a semi-arc circle formed around the first axis 102 and the size of the circle is similar to that of the circle formed by the first cover 132a around the journal 131. The preset size of the third cover 142 is slightly larger than the first cover 132a. Further, the third cover 142 is axially bent at a circumferential position and extended to a predetermined size to form a fourth cover 143, thereby enabling the second shield 14 to sleeve the first shield 13. In this example, the second cover 141 is further formed with a fifth cover 144, which is disposed in parallel with the third cover 142. When the second shield 14 is mounted onto the first shield 13, the fifth shield 144 is actually located within a circumference surrounding the circumference of the journal 131 and away from the journal 131. And the third cover 142, the fourth cover 143, and the fifth cover 144 collectively form a second cover 141.
More specifically, the fourth cover 143 is further formed with a pair of connection assemblies 15 for connecting to the first shield 13. In this example, the connection assembly 15 includes a mounting element 151 integrally formed with the fourth cover 143 and a connector 152 detachably connected to the mounting element 151. As illustrated in
As illustrated in
The second end is formed with a buckle 152d that clamps the end of the second cover 132b. The mounting element 151 inclines toward the first axis 102 and has an elastic force, so when assembled to the mounting element 151, the connector 152 also inclines toward the first axis 102 and can transfer the elastic force of the mounting element 151, thereby clamping the first shield 13. It can be understood that the connector 152 may also be a plastic element, a resin element or other wear-resistant elements. When the connector 152 is a plastic element, a resin element or other accessories with weak wear resistance, compared to the metal element, since the above-mentioned accessory is lighter and the market price is lower, and the assembly property is high, therefore, the defect of insufficient wear resistance can be compensated by replacing the connector 152. Or it can be understood that when the connector 152 is a plastic element, a resin element or other accessories with weak wear resistance, the surface of the connector 152 can also be coated with a high temperature resistant and wear resistant coating to achieve the same effect as the metal part. In addition, since the plastic element and the resin element are lighter and more adapted to being assembled, the effect of the connector 152 coated with the high temperature resistant, wear resistant material can be viewed as performing better than the metal connector 152.
When the user operates the angle grinder 100 for friction work, the grinding element is loaded on the output shaft 11, at this moment, the protection requirement can be achieved just by installing the first shield 13. The first shield 13 achieves a half protection of the grinding element, i.e., forms a seal adjacent to the sleeve 12 and toward the user, forming an open first space in a direction facing away from the first axis 102.
When the user operates the angle grinder 100 for cutting work, the cutting disc is loaded on the output shaft 11, at this moment, due to the high protection requirements of the cutting operation, it is necessary to fully protect the cutting disc, therefore, on the basis of the first shield 13, the second shield 14 is sleeved to the first shield 13 in a first assembly direction 103 as illustrated. Since the second shield 14 has a pair of connection assembly 15, during the installation process, the buckle 152d of one of the connection assembly 15 is clamped to one end of the second cover 132b of the first cover 13, and the buckle 152d of the other connection assembly 15 is pressed to clamp the other end of the second cover 132b. Due to the elastic force of the connection assembly 15, the two connection assembly 15 will firmly clamp the two ends of the second covering 132b, So that the second shield 14 cannot be separated from the first shield 13 and deviated from the first assembly direction 103, thereby the second shield 14 is connected to the first shield 13. Since the third cover 142 and the fourth cover 143 of the second shield 14 cooperate with the first cover 132a of the first shield 13, a second accommodation space is formed. At this moment, the first shield 13 and the second shield 14 are integrally formed to form an open second space in a direction perpendicular to the first axis 102, so that the cutting disc is at least partially accommodated in the second accommodation space to form a full protection of the cutting disc.
In this example, the fourth cover 243 is provided with an opening at an end surrounding the first axial direction, and the opening is provided with the above-mentioned “L” shaped connector 245 fixedly connected to the fourth cover 243. The connector 245 at least partially protrudes from the curved surface of the fourth cover 243 or is at least partially located in the curved surface of the fourth cover 243, and is inclined toward the first axis direction and has an elastic force. In this example, the connector 245 is partially located on the curved surface of the fourth cover 243 and forms a buckle 245a for connecting the first shield. Due to the spark or particles flying out of the tangential direction of the cutting disc, the connector 245 is liable to fail under the action of high temperature or friction. Therefore, the connector 245 in the example is a metal element, which can effectively maintain the connection between the second shield 24 and the first shield under the action of high temperature or friction, and can effectively extend the service life of the second shield 24, thereby reducing replacement rate.
The above illustrates and describes basic principles, main features and advantages of the present disclosure. It is to be understood by those skilled in the art that the above examples do not limit the present disclosure in any form, and all solutions obtained by means of equivalent substitution or equivalent transformation fall within the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201810512882.8 | May 2018 | CN | national |
201820800463.X | May 2018 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
10556319 | Iwakami | Feb 2020 | B2 |
20060068690 | Koschel | Mar 2006 | A1 |
20110318999 | Boeck | Dec 2011 | A1 |
20160297052 | Aiken | Oct 2016 | A1 |
20170072534 | Nakamura | Mar 2017 | A1 |
20170072535 | Iwakami | Mar 2017 | A1 |
20210260722 | Otani | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
107263325 | Oct 2017 | CN |
Entry |
---|
https://web.archive.org/web/20170222092904/http://www.neonickel.com/alloys/stainless-steels/; hereinafter “Neonickel.com”) Date: Feb. 22, 2017. (Year: 2017). |
English Translation of Foreign Patent CN_107263325 (Year: 2017). |
Number | Date | Country | |
---|---|---|---|
20190358774 A1 | Nov 2019 | US |