The present disclosure relates generally to the field of currency handling systems and, more particularly, to systems, methods and apparatuses for processing currency bills.
A variety of techniques and apparatuses have been used to satisfy the requirements of automated currency handling machines. As businesses and banks grow, these businesses are experiencing a greater volume of paper currency. These businesses are continually requiring not only that their currency be processed more quickly but also processed with more options in a less expensive manner. At the upper end of sophistication in this area of technology are machines that are capable of rapidly discriminating and counting multiple currency denominations and then sorting the currency bills into a multitude of output compartments.
However, many of these high-end machines are extremely large such that they are commonly found only in large institutions. These machines are not readily available to businesses which have space constraints, but still have the need to process large volumes of currency. For example, one of these machines can cost over $500,000, and with added currency document receiving units, such as a strapping unit, additional output receptacles, or a shredder, the machines may be too large to fit within a room size found in many buildings.
Typically, in the handling of bulk currency, after the currency bills have been analyzed, denominated, authenticated, counted, and/or otherwise processed, the currency bills are sorted by denomination into separate output receptacles or cassettes. The resulting individual stacks of bills having a single denomination often must then be further processed so that the bills therein may be strapped. Bill strapping is a process whereby a stack of a specific number of bills of a single denomination are bounded together such as being secured with a paper strap. For example, one dollar bills may be segregated into stacks of one hundred $1 bills and then bound with a paper strap. Strapping facilitates the handling of currency by allowing the strapped stacks of bills to be counted rather than the individual currency bills. Traditionally, U.S. currency bills are strapped in stacks containing one hundred bills.
Some systems are capable of strapping bills while continuing to evaluate other currency bills or other currency documents. Some such systems are described in U.S. Patent Publication No. 2004/0003980, incorporated by reference herein in its entirety.
One limitation with the prior systems is the overall size of the system. While a multi-pocket document processing device may be 5 feet in length, a single additional strapping device may be 3 feet in length. Further, it is common for a multi-pocket currency document processing system to further include additional modular output receptacles, and multiple strapping devices. Thus, it is possible for a multi-pocket currency document processing system to have an overall length of, for example, 25 feet when including all of the additional currency document receiving units such as output receptacles and strapping devices. However, the depth of the multi-pocket processing system is typically less than 2 feet. Thus, a very long, narrow room may be used to house such a document processing system. However, such a long room may not be practical for many locations, thus it would be desirable to have a multi-pocket document processing device that is configured to have a shorter overall length.
According to some embodiments, currency and/or document processing systems are provided that have a non-linear configuration. For example, some embodiments have a generally L-shape or U-shape configuration.
According to some embodiments, a currency processing system is provided for processing a stack of currency bills, each bill having a respective denomination, that comprises a currency handling device, a first currency document receiving unit, and a first angular transport unit. The currency handling device has an input receptacle adapted to receive bills to be processed, one or more detectors adapted to retrieve information from a passing bill which is used to judge the passing bill, a plurality of output receptacles adapted to receive at least some of the bills processed by the device. The currency handling device also has a transport mechanism that defines a transport path between the input receptacle, past the one or more detectors, and the plurality of output receptacles. The transport mechanism is adapted to transport each bill individually or serially along the transport path. The transport mechanism is adapted to sort the bills into the plurality of output receptacles or to transport the bills out of the handling device based on one or more judgments of the bills as determined from the information obtained from the one or more detectors. The first currency document receiving unit is adapted to receive at least some bills from the handling device. The first angular transport unit is adapted to receive bills from the currency handling device and transport bills to the first currency document receiving unit. The angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis as the bills are transported through the angular transport unit. For example, in some embodiments, the transport mechanism of the angular transport unit rotates bills through an angle α about a vertical axis where α is from approximately 45° to approximately 135°. In some embodiments, α is about 90°.
According to some embodiments, a currency document processing system comprises a currency handling device and a first currency document receiving unit. The currency handling device has a cabinet that comprises a front side, a left side, and a right side. The currency handling device has one or more detectors adapted to retrieve information from a passing currency document. The information is used to make a judgment about the passing currency document. The currency document handling device has a transport mechanism that defines one or more transport paths past the one or more detectors. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths. The transport mechanism is adapted to transport at least some of the currency documents out of the handling device. The detectors and the transport mechanism reside in the cabinet. The front side of the cabinet lies generally in a first generally vertical plane. The first currency document receiving unit has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The first currency document receiving unit is adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first currency document receiving unit. The first currency document receiving unit has a front side. The front side of the first currency document receiving unit lies generally in a second generally vertical plane. The first and second generally vertical planes are offset from each other by an angle α, wherein the angle α is between about ten degrees (10°) and about one hundred and seventy degrees (170°). For example, according to some embodiments, α is approximately ninety degrees (90°)
Many additional embodiments are described below and in the accompanying figures in which like reference numbers refer to like features. Accordingly, the above summary is not intended to represent each embodiment, or every aspect, of the present disclosure. Additional features and benefits of the present disclosure will become apparent from the detail description, figures, and claims set forth below.
Other objects and advantages will become apparent upon reading the following detailed description in conjunction with the drawings in which:
a and 1b are top views of linear document processing systems;
a is a conceptual view of a currency document handling device according to some embodiments;
b is a perspective view of a currency document handling device according to some embodiments;
c is a front view of a currency document handling device according to some embodiments;
d is a perspective view of a currency document handling device according to some embodiments;
e is a front view of a currency document handling device according to some embodiments;
f is a front view of a currency document handling device according to some embodiments;
g is a perspective view of a currency document handling device according to some embodiments;
h is a perspective view of a currency document processing system comprising a document handling device and modular output receptacles according to some embodiments;
i is a front view of a strapping unit according to some embodiments;
a is a perspective view of a reduced width multi-pocket currency document processing system according to some embodiments;
b is a top view of the system of
a is a perspective view of angular transport unit according to some embodiments;
b is a perspective view of transport sections of an angular transport unit according to some embodiments;
c is top view of the transport sections of the angular transport unit of
d is a perspective view and
f is a top view of a vertical axis currency document rotating mechanism according to some embodiments;
g is a perspective view and
i depicts a top view of the motion of a currency document illustrating a change in the horizontal direction of motion of the currency document according to some embodiments;
j-5l are perspective views of various angular transport units according to some embodiments;
m-5n depict top views of the generalized motion of a document or currency bill as the horizontal direction of motion of the document is changed according to some embodiments;
a-6d and 7a-7d are top views of various alternative arrangements of components of currency document processing systems according to some embodiments;
a and 10b are top views of a connecting unit or angular transport unit according to some embodiments.
While the inventions disclosed herein are susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the inventions to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the inventions as defined by the appended claims.
When describing various embodiments, the term “currency bills” refers to official currency bills including both U.S. currency bills, such as a $1, $2, $5, $10, $20, $50, or $100 note, and foreign currency bills.
Foreign currency bills are bank notes issued by a non-U.S. governmental agency as legal tender, such as a Euro, Japanese Yen, or British Pound note.
“Substitute currency notes” are sheet-like documents similar to currency bills but are issued by non-governmental agencies such as casinos and amusement parks and include, for example, casino script and Disney Dollars. Substitute currency notes each have a denomination and an issuing entity associated therewith such as a $5 Disney Dollar, a $10 Disney Dollar, a $20 ABC Casino note and a $100 ABC Casino note.
“Currency notes” consist of currency bills and substitute currency notes.
“Substitute currency media” are documents that represent a value by some marking or characteristic such as a bar code, color, size, graphic, or text. Examples of “substitute currency media” include without limitation: casino cashout tickets (also variously called cashout vouchers or coupons) such as “EZ Pay” tickets issued by International Gaming Technology or “Quicket” tickets issued by Casino Data Systems; casino script; promotional media such as Disney Dollars or Toys 'R Us “Geoffrey Dollars”; or retailer coupons, gift certificates, gift cards, or food stamps. Accordingly, substitute currency media includes but is not limited to substitute currency notes. Substitute currency media may or may not be issued by a governmental body.
Substitute currency media may include a barcode, and these types of substitute currency media are referred to herein as “barcoded tickets.” Examples of barcoded tickets include casino cashout tickets such as “EZ Pay” tickets and “Quicket” cashout tickets, barcoded retailer coupons, barcoded gift certificates, or any other promotional media that includes a barcode.
The term “currency documents” includes both currency bills and “substitute currency media.”
The term “non-currency documents” includes any type of document, except currency documents.
An “output location” is a location to which a document or bill may be sent includes an output receptacle or pocket, a strapping unit or device, and/or a particular location with a strapping device, a shredder, and other locations to which a document or bill may be delivered.
A “document receiving unit” comprises one or more output locations. In some embodiments, a document receiving unit may be a modular document receiving unit.
According to some embodiments, document processing systems may comprise one or more components designed with a “modular” construction. “Modular” units or components are designed such that they may be coupled to and/or decoupled from each other and/or additional modular units and/or other components such as a main document judgment or processing or handling device such as a device comprising a document input receptacle.
Although many embodiments refer to the “denomination” of currency bills as a criterion used in judging the currency bills, other predetermined criteria can be used to judge the currency bills or documents, such as, for example, color, size, orientation, series, fitness, condition, etc.
Various embodiments described herein can be used to judge non-currency documents and/or currency documents according to one or more predetermined criteria, such as color, size, shape, orientation, series, fitness, condition, etc.
Overview
First, some exemplary linear document processing systems will be discussed in connection with
a and 1b are top views of linear document processing systems. In
The linear document processing system 110b shown in
Many types of currency handling devices 100 and document receiving units can be used in conjunction with the teachings of the present disclosure including those manufactured by Cummins-Allison Corp. and other companies. For example, the document and currency handling and processing devices, systems and methods and document receiving units disclosed in the following commonly-owned patents, applications, and published applications may be used in conjunction with the teachings of the present disclosure including the inclusion of the same in non-linear or angled document or currency processing systems:
U.S. patent application Ser. No. 09/502,666 filed Feb. 11, 2000 entitled “Currency Handling System Having Multiple Output Receptacles,” now issued as U.S. Pat. No. 6,398,000;
U.S. patent application Ser. No. 09/688,526 filed Oct. 16, 2000 entitled “Currency Handling System Having Multiple Output Receptacles,” now issued as U.S. Pat. No. 6,588,569;
U.S. patent application Ser. No. 09/688,538 filed Oct. 16, 2000 entitled “Currency Handling System Having Multiple Output Receptacles,” now issued as U.S. Pat. No. 6,601,687;
PCT published Application WO 01/59723.
U.S. patent application Ser. No. 09/635,181 filed Aug. 9, 2000 entitled “Method of Creating Identifiable Smaller Stacks of Currency Bills with a Larger Stack of Currency Bills,” now issued as U.S. Pat. No. 6,460,705;
U.S. patent application Ser. No. 10/068,977 filed Feb. 8, 2002 entitled “Multiple Pocket Currency Processing Device and Method,” now issued as U.S. Pat. No. 6,860,375;
U.S. patent application Ser. No. 10/460,071 filed Jun. 12, 2003 entitled “Currency Processing and Strapping Systems and Methods,” published as US Pat. Publication No. 2004-0003980;
U.S. patent application Ser. No. 10/256,818 filed Sep. 27, 2002 entitled “Currency Handling System Having Multiple Output Receptacles Interfaced with One or More Cash Processing Devices,” published as U.S. Pat. Publication No. 2003-0062242;
U.S. patent application Ser. No. 10/664,217 filed Sep. 17, 2003 entitled “Compact Multiple Pocket Processing System,” published as U.S. Pat. Publication No. 2004-0149538;
U.S. patent application Ser. No. 10/903,745 filed Jul. 30, 2004 entitled “Currency Processing Device, Method and System,” published as U.S. Pat. Publication No. 2005-0029168;
U.S. patent application Ser. No. 11/036,686 filed Jan. 14, 2005 entitled “Currency Processing Device, Method and System,” published as U.S. Pat. Publication No. 2005-0183928;
U.S. patent application Ser. No. 09/967,232 filed Sep. 28, 2001 entitled “System and Method for Processing Currency Bills and Substitute Currency Media In A Single Device,” published as U.S. Pat. Publication No. US 2002-0020603 A1;
U.S. patent application Ser. No. 10/205,144 filed Jul. 23, 2002 entitled “System and Method for Processing Currency Bills and Documents Bearing Barcodes in a Document Processing Device,” now issued as U.S. Pat. No. 6,843,418;
U.S. patent application Ser. No. 10/953,635 filed Sep. 29, 2004 and published as U.S. Pat. Publication No. US 2005-0040225 A1 entitled “System and Method For Processing Currency Bills and Documents Bearing Barcodes in A Document Processing Device”; and
U.S. patent application Ser. No. 10/662,930 filed Sep. 15, 2003 entitled “System and Method For Searching And Verifying Documents In A Document Processing Device,” published as U.S. Pat. Publication No. 2005-0060055 A1.
Each of the above patents, applications, and published applications is incorporated herein by reference in its entirety. These patents, applications, and published applications are hereinafter referred to as the “Cummins' patent documents.”
Some examples of document handling devices 100 are illustrated in
Referring now to
In operation, currency bills are fed, one by one (that is, individually or sequentially), from a stack of currency bills placed in the input receptacle 102 into a transport mechanism 104. The transport mechanism 104 guides currency bills past the evaluation region 108. As will be explained in more detail below, the evaluation region 108 comprises one or more sensors adapted to retrieve or detect information from passing documents or bills. The retrieved or detected information is then used to make one or more judgments about passing bills. For example, according to some embodiments, the retrieved information is used to determine along which of one or more transport paths a particular bill is to be sent and/or to which output receptacle 106a-106f or exit port 107a-107b a particular document is to be sent. For example, according to some embodiments wherein the device 100 is coupled to one or more document receiving units, the retrieved or detected information is used to determine to which internal output locations 106a-106f or external output location (via exit ports 107a-107b) to send a particular document or bill. Likewise, according to some embodiments, the retrieved information is used to determine whether to send a particular document through the facing or turn-over mechanism 110. According to some embodiments, a controller or processor coupled to the transport mechanism 104 and responsive to the information retrieved by the sensors controls the operation of the transport mechanism 104 to cause documents or bills to be directed along various transport paths and/or to different output locations.
According to some embodiments, the bill facing mechanism 110 is capable of rotating a bill 180° so that the face orientation of the bill is reversed. According to some embodiments, the leading edge of a bill (the wide dimension of the bill according to some embodiments) remains constant while the bill is rotated 180° about an axis parallel to the smaller dimension of the bill) so that the face orientation of the bill is reversed. That is, if a U.S. bill, for example, is initially presented with the surface bearing a portrait of a president facing down, it may be directed to the facing mechanism 110, whereupon it will be rotated 180° so that the surface with the portrait faces up. The decision may be taken to send a bill to the facing mechanism 110 when a selected mode of operation or other operator instruction calls for maintaining a given face orientation of bills as they are processed by the currency handling device 100. According to some embodiments, when the discriminating unit determines the face orientation of a bill does not have a desired face orientation, such a bill can be directed to the facing mechanism 110 before being delivered to an appropriate output location. Further details of examples of facing mechanisms which may be utilized for this purpose and methods and systems for employing the same are disclosed in U.S. Pat. Nos. 6,074,334 and 6,371,303, each of which is incorporated herein by reference in its entirety, and the above mentioned and previously incorporated Cummins' patent documents. Facing mechanisms such as those referred to above may be employed in conjunction with the various embodiments disclosed herein such as the devices illustrated in
Evaluation Region/Discriminating Unit
According to some embodiments, the evaluation region 108 or discriminating unit comprises one or more sensors adapted to analyze, authenticate, denominate, count, image, and/or otherwise judge documents or currency bills. For example, in some embodiments of the currency handling device (currency processing or judgment device) 100, the discriminating unit can detect, for example, bill or document type, denomination, authenticity, orientation, size, color, series, fitness, tears, holes, security threads, watermarks, stiffness, barcodes, optical variable devices (OVDs) such as holograms, skewed bills or documents, and/or overlapping or doubled bills or documents. The results of the above process or processes may be used to determine to which output location a bill is directed, whether to suspend to operation of the transport mechanism, or to otherwise control the operation of the document processing system.
For example, the characteristics of the evaluation region 108 or discriminating unit may vary according to the particular application and needs of the user. According to some embodiments, the evaluation region 108 or discriminating unit can accommodate a number and variety of different types of sensors depending on a number of variables. These variables are related to whether a particular embodiment of the device is adapted to denominate, authenticate, count, and/or otherwise process bills and what distinguishing characteristics are being examined, e.g. size, thickness, color, magnetism, reflectivity, absorbability, transmissivity, electrical conductivity, etc. The evaluation region 108 or discriminating unit may employ a variety of detectors including, but not limited to, size detection sensor(s), density sensor(s), a lower and/or an upper optical scan head, a single or multitude of magnetic sensors, thread sensor(s), infrared sensor(s), ultraviolet/fluorescent light scan head(s), image sensor(s) such an image sensor adapted to retrieve a complete or partial image of a document, barcode sensor(s), MICR sensor(s), and/or other radiation sensor(s). These detectors and a host of others are disclosed in commonly owned U.S. Pat. Nos. 6,278,795 and 5,687,963, each incorporated herein by reference in its entirety as well as the above mentioned and incorporated Cummins' patent documents such as, for example, U.S. Pat. Publication No. 2005-0060055 A1.
Additionally, the systems described herein may contain fitness sensors such as density sensors, reflectance sensors, magnetic sensors, correlation, UV and soil sensors, tear detectors, etc.
In general, according to some embodiments, the one or more sensors which are employed to count, denominate, authenticate, image, and/or otherwise discriminate, evaluate, analyze, image and/or otherwise process the bills in conjunction with one or more processors associated with these sensors may be referred to as a discriminating unit and the location or locations of the sensors along a transport path may be referred to an examination or evaluation region or regions. In some embodiments, all these sensors may be located in close proximity so as to define a single examination or evaluation region while in other embodiments the sensors may be located in different regions along the transport path so that several examination regions exist.
According to some embodiments, the detected characteristics or information may then be employed in conjunction with optical character recognition (OCR) to extract alphanumeric or other information such as serial numbers and/or the retrieved document images may be stored for subsequent retrieval and display or recreation. The images, extracted data and/or detected characteristics may be stored in memory and/or used within the document processing system 200 and/or the images, extracted data and/or detected characteristic information may be sent to external devices or systems for use and/or storage in external memory devices.
The currency handling device 100 may be controlled from an integrated or a separate controller or control unit (such as controller or control unit 120 illustrated in
The operator can control the operation of the currency handling device 100 and/or processing system 200 through the control unit and/or user-interface. Through the control unit and/or user-interface the operator can direct the bills into specific output receptacles 106a-106f and/or other output locations by selecting various modes such as pre-programmed or user-defined modes. In alternative embodiments, the user can select pre-programmed standard or user-defined modes or create new user-defined modes based on the particular requirements of the application. For example, the operator may select a mode which instructs the currency handling device 100 to sort bills by denomination. According to such a mode, one or more detectors in the evaluation region or evaluation unit 108 would retrieve information from passing bills which is used to denominate the bills. The transport mechanism would then be controlled to route bills of different denominations to different locations such as directing one dollar bills into the first output receptacle 106a, five dollar bills into the second output receptacle 106b, ten dollar bills into the third output receptacle 106c, etc. A multitude of pre-programmed or user-defined modes of operation are disclosed in the above previously incorporated Cummins' patent documents and in commonly assigned U.S. Pat. No. 6,278,795, incorporated herein by reference in its entirety, which may be employed in conjunction with the present devices, methods, and systems such as the devices illustrated in
Referring now to
d is a perspective view of a multi-pocket document handling device 100b which is similar to the device 100a of
In
Additional details, modes of operation, and embodiments related or similar to those illustrated in
f illustrates an alternative currency handling device 100d. The currency handling device 100d is similar to the previously described currency handling devices depicted in
g is another exemplary document or currency handling device 100e. The device 100e has an input hopper or receptacle 102 adapted to receive a stack of currency bills to be processed, a number of output receptacles or pockets 106a-106g which are laterally offset from the input hopper 102. The device 100e may also comprise an operator or user interface 122a adapted to receive information from and/or provide information to an operator or user. In the embodiment illustrated in
For example, the device 100e may be adapted to determine the denomination of the bills placed into the input hopper and then sort the bills into the various output receptacles based on their denomination, e.g., $1 bills may be routed to pocket 106a, $2 bills to pocket 106b, $5 bills to pocket 106c, etc. In some embodiments, pocket 106h may be used as a reject pocket and used to receive bills or documents which cannot be denominated as having one of the seven U.S. denominations, bills suspected to be counterfeit (suspect bills), and/or bills or documents meeting or failing to meet some other criterion.
According to some embodiments currency bills are placed in the input receptacle 102 with their wide edges generally parallel to the front of the machine, that is, parallel to the X-axis as indicated in
According to some embodiments, the multi-pocket sorter 100e is compact having a height (H1) of about 27 inches (about 68 cm), width (W1) of about 44 inches (about 110 cm), and a depth (D1) of about 25½ inches (about 65 cm) and weighs approximately 250 lbs. (about 113 kg). A central section 320 has a width (W1M) of about 14 inches (35 cm). A left section 326 has a width (W1L) of about 15 inches (about 38 cm). A right section 328 has a width (W1R) of about 15 inches (about 38 cm). Thus according to some embodiments an eight output receptacle sorter is provided which has a footprint (width×depth) of less than about 1122 in2 (about 8 ft2) (about 7250 cm2) and a volume of less than about 30,300 in3 (about 17½ ft3) (about ½ m3). Additionally details, embodiments, and modes of operation related or similar to
The various handling devices 100 described herein may be employed in conjunction with one or more of the document receiving units such as units comprising output receptacles and/or strapping units and/or shredders. For example, in some embodiments, modular output receptacles can be provided to add many more output receptacles to a currency processing system. Each modular unit may comprise one, two or more output receptacles. In some embodiments, several modular units may be added at one time to a currency processing system.
In general, when a modular document receiving unit is coupled directly or indirectly to a document handling device 100, the system may be adapted to permit documents such as currency bills to be sent to one or more output locations residing in the document receiving unit. When a modular document receiving unit is decoupled from a document handling device 100, documents may no longer be sent to such a removed document receiving unit. According to some embodiments, the document processing system contains sensors adapted to detect when, how many, the location(s), and/or what types of modular document receiving units are coupled directly or indirectly to a document handling device. Additionally or alternatively, an operator interface associated with a document handling device may be provided to permit an operator to indicate when, how many, the location(s), and/or what types of modular document receiving units are coupled directly or indirectly to a document handling device. According to some embodiments, the document handling device or system comprises an interface adapted to permit an operator to program the system to send documents to the various output locations present in a document processing system according to one or more criteria detected from processed documents and/or based on one or more selected modes of operation.
Strapping
In general, some embodiments of the document or currency processing systems comprise strapping systems comprising one or more strapping units in combination with a document or currency handling device comprising an input receptacle, a document or currency evaluating unit or region, and an output receptacle or a plurality of output receptacles. In some embodiment, a currency evaluating unit may be adapted to discriminate the denomination of processed bills and/or to authenticate processed bills. The handling device is adapted to count the number of documents or bills transported into each pocket. According to some embodiments, the device is adapted to stop transporting additional documents or bills into a particular output receptacle or location once the number of documents or bills has reached a strap limit. At that point, the stack of bills in an output receptacle which has reached a strap limit may be strapped by a strapping unit. The devices described in connection with
i is a front view of an example strapping unit 300-3. As shown, the strapping unit 300-3 is coupled to the side of a document handling device 100. Bills or documents enter the strapping unit 300-3 at area 3602 and are transported to one to one of two stacking positions or receptacles 3604a,b. In some embodiments, bills or documents are sent to a particular one of the stacking receptacles 3604a,b until a strap limit is reached. When a strap limit is reached, incoming documents then begin to be delivered to the other stacking receptacle. In the meantime, the complete stack of documents (a stack having the number of documents defined by a strap limit) are then transferred to a strapping position 3610 where the stack is strapped. Once a stack has been strapped, it is then transferred into a strapped currency or document storage bin 3620a,b. Also illustrated in
According to some embodiments, the strapping systems or units used in the document or currency processing systems according to the present concepts are adapted to strap bundles of strapped currencies. For example, some embodiments are adapted to place a strap around a stack of ten straps of notes, each strap containing one hundred notes. Such an arrangement of a strap about ten straps of notes, each strap having one hundred notes is referred to as a standard bundle of notes—one bundle having one thousand notes.
Additionally details, embodiments, and modes of operation of strapping systems and units such as those related or similar to that shown in
Additional details concerning document or currency handling devices 100, systems, and methods such as those illustrated and described in conjunction with
Reduced Width Processing Systems and Angled Transport Units
Turning now to
As can be seen in
According to some embodiments, angled transport document or currency processing system are provided which have one or more output locations closer to the input receptacle than for corresponding linearly arranged systems. For example, in the embodiment illustrated in
While the document handling device 100 depicted in
Likewise, while the angular transport units 500-1, 500-2 are depicted in
The operation of the processing system 200a according to some embodiments will now be described using the example wherein $20 bills have been designated to be strapped with the first strapping unit 300′ and $10 bills have been designated to be strapped with the second strapping unit with reference to
In the meantime, any incoming $20 bills are directed to the second stacking position 3604b. More specifically, the 101st through the 200th $20 bill sent to the first strapping unit 300′ are stacked in stacking position 3604b. Once the 200th $20 bill has been delivered to the second stacking position 3604b, the now complete stack of one hundred $20 bills in stacking position 3604b is then transferred to the strapping position 3610 where it is strapped and then to one of the strapped currency storage bins 3620a,b. In the meantime, any incoming $20 bills are directed to the first stacking position 3604a, i.e., the 201st-300th $20 bills.
Similarly, in the present example, when the first $10 bill is detected it is routed into a stacking position 3604a of the second strapping unit 300″. Using a strap limit of one hundred bills as an example, the next ninety-nine $10 bills are also routed to stacking position 3604a of the second strapping unit 300″. However, the 101st $10 bill is directed to stacking position 3604b of the second strapping unit 300″. The stack of one hundred $10 bills are then transferred from the stacking position 3604a to the strapping position 3610 where the stack of one hundred $10 bills is strapped with some of the strapping or banding material 3632. The strapped stack of $10 bills is then deposited into one of the strapped currency storage bins 3620a,b.
In the meantime, any incoming $10 bills are directed to the second stacking position 3604b. More specifically, the 101st through the 200th $10 bill sent to the second strapping unit 300″ are stacked in stacking position 3604b. Once the 200th $10 bill has been delivered to the second stacking position 3604b, the now complete stack of one hundred $10 bills in stacking position 3604b is then transferred to the strapping position 3610 where it is strapped and then to one of the strapped currency storage bins 3620a,b. In the meantime, any incoming $10 bills are directed to the first stacking position 3604a, i.e., the 201st-300th $20 bills.
This process is continued with each set of hundred bills being delivered to alternating ones of the stacking positions 3604a,b of both the first and second strapping units 300′, 300″. Such a procedure increases the throughput of the strapping units 300′,b and system 200a as the operation the strapping units need not be suspended while one stack of bills is being strapped.
For a bill to be routed to the first strapping unit 300′ the bill passes through the first angular transport unit 500-1 to be rotated so that the bill may enter the first strapping unit 300′.
For a bill to be routed to the second strapping unit 300″ the bill passes through the first angular transport unit 500-1 to be rotated so that the bill may enter the first strapping unit 300′. The bill then is transported through the first strapping unit 300′ to the second angular transport unit 500-2. The bill is rotated by the second angular transport unit 500-2 so that the bill may enter the second strapping unit 300″.
According to some embodiments, bill location sensors are positioned throughout the transport path of the processing system 200a to monitor and keep track of the location of each bill along the transport paths of the system 200a. While the embodiment depicted in
According to some alternate embodiments, it is contemplated that one or more additional output receptacle units may replace at least one of the strapping units. For example, one or both of the strapping units 300′, 300″ shown in
According to yet a further alternate embodiment, it is contemplated that a currency document shredding device may replace at least one of the strapping units.
According to a further alternate embodiment it is contemplated that a third angular transport unit may also be used in accord with the present concepts to connect another strapping unit or additional output receptacles to a document processing system. According to some such embodiments, the system has a generally G-shape.
Turning next to
The second, third, and fourth transport sections 5200-5400 rotate a bill approximately 90° about a generally vertical axis, such that a bill leaving fifth section 5500 of the angular transport unit 500-1 is traveling in a direction generally normal to the direction of travel of a bill entering the entry transport section 5100. According to some embodiments, the rotation of a bill or document about a generally vertical axis is accomplished using a rotating system comprising three bill or document rotating mechanisms—a first horizontal axis document rotating mechanism, a vertical axis document rotating mechanism, and a second horizontal axis rotating mechanism.
According to some embodiments, a first horizontal axis bill rotating mechanism twists or rotates a bill or document traveling in a first generally horizontal plane to traveling in a first generally vertical plane by rotating the bill about a generally horizontal axis. A vertical axis bill rotating mechanism then rotates the bill or document traveling in the first generally vertical plane to traveling in a second generally vertical plane by rotating the bill about a generally vertical axis. The first and second generally vertical planes are offset from each other by angle α. According to some embodiments, the angle α is about 90° and the second generally vertical plane is generally normal to the first generally vertical plane. Then a second horizontal axis bill rotating mechanism twists or rotates a bill or document traveling in the second generally vertical plane to traveling in a second generally horizontal plane by rotating the bill about a horizontal axis. According to some embodiments, the first and second horizontal planes are the same plane.
According to some embodiments, a first horizontal axis bill rotating mechanism twists or rotates a bill or document traveling in a first generally horizontal direction while lying in a first generally horizontal plane to traveling in the first generally horizontal direction while lying in a first generally vertical plane by rotating the bill about a horizontal axis. According to some embodiments, the first horizontal bill rotating mechanism rotates the document about a horizontal axis parallel to the first generally horizontal direction such that before, during, and after rotation, the forward direction of the document remains the same, that is, in the first generally horizontal direction. A vertical axis bill rotating mechanism then rotates the bill or document traveling in the first generally vertical plane in the first generally horizontal direction to traveling in a second generally vertical plane in a second generally horizontal direction by rotating the bill about a generally vertical axis. The first and second generally vertical planes and the first and second generally horizontal directions are offset from each other by angle α. According to some embodiments, the angle α is about 90° and the second generally vertical plane is generally normal to the first generally vertical plane and the second generally horizontal direction is generally normal or perpendicular to the first generally horizontal direction. Then a second horizontal axis bill rotating mechanism twists or rotates a bill or document traveling in the second generally horizontal direction while lying in the second generally vertical plane to traveling in the second generally horizontal direction while lying in a second generally horizontal plane by rotating the bill about a horizontal axis. According to some embodiments, the first and second horizontal planes are the same plane. According to some embodiments, the second horizontal bill rotating mechanism rotates the document about a horizontal axis parallel to the second generally horizontal direction such that before, during, and after rotation, the forward direction of the document remains the same, that is, in the second generally horizontal direction.
Turning back to
According to some embodiments, the angular transport unit 500-1 has a depth D5A and width W5A of about 28 inches (about 2⅓ feet) (about 0.7 meters) and a height of H5A of about 42½ inches (about 3½ feet) (about 1 meter).
Referring next to
Referring to
d is a perspective view and
As shown in
According to some embodiments, the first belt 5210 is further maintained in an appropriate position by a first belt guide roller 5218. The first belt guide roller 5218 presses against a side of the first belt 5210 opposite a side of the first belt 5210 that contacts a document. The first belt guide roller 5218 places tension on the first belt 5210 to help to maintain the position of the first belt 5210 during operation. Similarly, the second belt 5220 is further maintained in an appropriate position by a second belt guide roller 5228. The second belt guide roller 5228 presses against a side of the second belt 5220 opposite a side of the second belt 5220 that contacts a document. The second belt guide roller 5228 places tension on the second belt 5220 to help to maintain the position of the second belt 5220 during operation. The first and second belt guide rollers 5218, 5228 help to alleviate the need for rollers on each side of the first and second belt 5210, 5220 as used in certain prior bill rotating mechanisms.
According to some embodiments, the angular transport unit comprises guides 5250, 5252, 5254 to assist in maintaining the end of documents during the twisting of the documents as they are transported through the bill rotating or twisting mechanism 5200.
f is a top view of the third transport section or bill rotating mechanism 5300. As illustrated, the third transport section is a vertical axis bill rotating mechanism 5300. The third transport section 5300 is adapted to rotate a bill about the Z-axis as the bill moves from a first end 5302 to a second end 5304 of the third transport section 5300. As shown in
g is a perspective view and
Starting from the first end 5402, the first belt 5410 is disposed about a first roller 5412 and the second belt 5420 is disposed about a second roller 5422 The first roller 5412 is disposed adjacent to the second roller 5422. Each roller is connected to and rotates about a respective shaft. At the second end 5404 of the fourth transport section 5400, a second end of the first belt 5410 is disposed about a third roller 5414 and a second end of the second belt 5420 is disposed about a fourth roller 5424. The third roller 5414 is disposed adjacent to the fourth roller 5424. Each roller 5414, 5424 is connected to and rotates about respective shafts.
As shown in
According to some embodiments, the first belt 5410 is further maintained in an appropriate position by a first belt guide roller 5418. The first belt guide roller 5418 presses against a side of the first belt 4510 opposite the side of the first belt 4510 that contacts a document. The first belt guide roller 5418 places tension on the first belt 4510 to help to maintain the position of the first belt 4510 during operation. Similarly, the second belt 5420 is further maintained in an appropriate position by a second belt guide roller 5428. The second belt guide roller 5428 presses against a side of the second belt 5420 opposite the side of the second belt 5420 that contacts a document. The second belt guide roller 5428 places tension on the second belt 5420 to help to maintain the position of the second belt 5420 during operation. The first and second belt guide rollers 5418, 5428 help to alleviate the need for rollers on each side of the first and second belt 5410, 5420 as used in certain prior bill rotating mechanisms.
According to some embodiments, the angular transport unit comprises guides 5450, 5452, 5454 to assist in maintaining the end of documents during the twisting of the documents as they are transported through the bill rotating or twisting mechanism 5400.
Returning to
It is contemplated according to other alternative embodiments of an angular transport unit that a bill or document may be rotated from about 45° to about 100° about the Z-axis, in that an angle formed between a line in the negative X-direction of
It is contemplated according to yet other alternative embodiments of an angular transport unit that a bill or document may be rotated from about 45° to about 135° or from about 10° to about 170° about a second axis that is generally normal to a first axis. The first axis is parallel to a direction of motion of the bill. It is also contemplated according to some embodiments of an angular transport unit that a bill or document may be rotated from about 45° to about 135° or from about 10° to about 170° about an axis that is generally normal to a plane in which the document generally lies upon entering the angular transport unit. It is also contemplated according to some embodiments of an angular transport unit that a bill or document may be rotated from about 45° to about 135° or from about 10° to about 170° about a generally vertical axis that is generally normal to a horizontal plane. In an angular transport unit that rotates a bill from abut 45° to an angle less than 90°, the rotation of a bill about the second axis is less than that of an angular transport unit that is a right-angle transport unit. Similarly, in an angular transport unit that rotates a bill more than 90° to about 135°, the rotation of a bill about the second axis is greater than that of an angular transport unit that is a right-angle transport unit. An angular transport unit with an angle of rotation about the second axis from about 45° to about 135° may be useful in certain locations where an angled wall exists, or a certain space limitation exists that make an angle other than 90° desirable.
It is further contemplated that the rotation described in the second section 5200 and the fourth section 5400 may use other bill rotating mechanisms, or a portion of other bill rotating mechanisms, such as those described in previously incorporated commonly-owned U.S. Pat. Nos. 6,074,334, 6,398,000, 6,588,569, 6,601,687 as well as U.S. Pat. Publication Nos. 2003-0062242, 2004-0149538, 2005-0029168, and 2005-0183928 each of which is incorporated herein by reference in its entirety.
According to some embodiments, the central portion of the bill remains at a generally identical position along the Z-axis as the bill is moved through the angular transport unit. As a bill is transported through the angular transport unit the leading edge of the bill is not changed. Further, according to some embodiments, the transport speed within the angular transport unit is identical to the transport speed of the remainder of the bill processing and strapping system 4000.
i depicts a top view of the generalized motion of a document as the horizontal direction of motion of the document is changed according to some embodiments. According to some embodiments, the generalized motion depicted in
The bill or document 590 is transported in the first generally vertical plane in the first generally horizontal direction from Position 3 and is rotated about a generally vertical axis (the Z-axis as depicted) in Position 4 so that the bill or document 590 is traveling in a second generally vertical plane in a second generally horizontal direction and the bill is transported to Position 5. The first and second generally vertical planes and the first and second generally horizontal directions are offset from each other by angle α. According to some embodiments including the depicted embodiment, the angle α is about 90° and the second generally vertical plane is generally normal to the first generally vertical plane and the second generally horizontal direction is generally normal or perpendicular to the first generally horizontal direction. As depicted, the second generally vertical plane is the YZ plane and the second generally horizontal axis is the Y-direction along the Y-axis. According to some embodiments, angle α is between about 45° and about 135°. According to some embodiments, angle α is between about 10° and about 170°.
As the bill or document 590 is transported from Position 5 to Position 7, it is transported in the second generally horizontal direction (the direction of Arrow B and the Y-direction) while being rotated or twisted from lying in the second generally vertical plane (YZ plane as depicted) to lying in a second generally horizontal plane by rotating the bill about a horizontal axis (the Y-axis as depicted). According to some embodiments, the first and second horizontal planes are the same plane, namely, the XY plane. According to some embodiments, the document is rotated about a horizontal axis parallel to the second generally horizontal direction such that before, during, and after rotation, the forward direction of the document remains the same, that is, in the second generally horizontal direction.
According to some embodiments, documents 590 are transported from Position 1 to Position 7 while maintaining the same leading edge 590a and the same forward speed. According to some embodiments, the forward direction of documents 590 is changed from being in a first horizontal direction such as the negative X-direction to a second horizontal direction such as the Y-direction while maintaining the same leading edge 590a and the same forward speed. According to some embodiments, the forward direction of documents 590 is changed from being in a first horizontal direction such as the negative X-direction to a second horizontal direction such as the Y-direction by first rotating the documents about a first horizontal axis, then rotating the documents about a vertical axis, and then rotating the documents about a second horizontal axis while maintaining the same leading edge 590a and the same forward speed.
According to some embodiments, the forward direction of documents 590 is changed from being in a first horizontal direction such as the negative X-direction to a second horizontal direction such as the Y-direction by first rotating the documents about a first horizontal axis passing orthogonally through the leading and trailing edges of the documents, then rotating the documents about a vertical axis, and then rotating the documents about a second horizontal axis passing orthogonally through the leading and trailing edges of the documents while maintaining the same leading edge 590a. According to some such embodiments, the first, second, and third rotations are performed while maintaining the same forward speed of each document.
According to some embodiments, the forward direction of documents 590 is changed from being in a first direction a second direction by first rotating the documents about a first axis parallel to the direction of forward movement of the document or parallel to the transport direction or the length of the transport path. For example, the transport section 5200 may be adapted to rotate documents about a first axis parallel to the direction of forward movement of the documents or parallel to the transport direction or the length of the transport path.
Documents may then be rotated about a second axis perpendicular to the direction of forward movement of the document or perpendicular to the transport direction or the length of the transport path or parallel to the width of the transport path. For example, the transport section 5300 may be adapted to rotate documents about a second axis perpendicular to the direction of forward movement of the documents or perpendicular to the transport direction or the length of the transport path or parallel to the width of the transport path. According to some embodiments, the second axis lies in a plane defined by the document or the transport path. According to some embodiments, the second axis is parallel to the leading edge of a document. For example, the transport section 5300 may be adapted to rotate documents about a second axis which is parallel to the leading edge of the documents.
Documents may then be rotated about a third axis parallel to the direction of forward movement of the document or parallel to the transport direction or the length of the transport path. For example, the transport section 5400 may be adapted to rotate documents about a third axis parallel to the direction of forward movement of the documents or parallel to the transport direction or length of the transport path.
In the embodiments depicted in
According to some embodiments, a currency processing system is adapted to coordinate the decision whether to route a bill or document through turnover mechanism 110 in a currency handling device or not with the initial face orientation of a bill or document and the number of angular transport units a bill will traverse before reaching its final destination in the currency processing system. An example will be provided with respect to the processing system 200a depicted in
Continuing the above example, for $5 bills which are routed to document receiving unit 300″, these bills pass through two angular transport units which cause bills arriving at the document receiving unit 300″ to have the same orientation as they did when they entered the first angular transport unit 500-1. Thus if a $5 bill is fed from an input receptacle of the currency handling device 100 in a face-up manner, such a $5 bill may be routed directly to the document receiving unit 300″ without being routed through a bill turnover mechanism 110 of the currency handling device. The transport of the $5 bill through the first angular transport unit 500-1 causes the bill to be turned over so and the transport of the bill through the second angular transport unit 500-2 causes the bill to be turned over again so that it arrives in an output location with the document receiving unit 300″ in a face-up manner. Conversely, if a $5 bill is fed from the input receptacle in a face-down manner, the system 200a may be adapted to route the bill through the turnover mechanism 110 (turning the bill face-up) before being routed to the angular transport unit 500-1 (turning the bill face-down again) and then to the second angular transport unit 500-2 (turning the bill face-up again) and then to the document receiving unit 300″.
According to some embodiments, documents or bills may enter and/or exit an angular transport unit in a manner other than lying in a generally horizontal plane. For example,
k is a perspective view of an angular transport unit 500-3 adapted to receive documents lying in a generally horizontal plane (e.g., XY plane) via an entry port 507-3a and adapted to transport documents out of the angular transport unit 500-3 with the documents lying in a generally vertical plane (e.g., YZ plane) via an exit port 507-3b. According to some such embodiments, the angular transport unit 500-3 may comprise a horizontal axis bill rotating mechanism (e.g., rotating mechanism 5200) and a vertical axis bill rotating mechanism such as bill rotating mechanism 5300. According to some embodiments, document processing systems employing angular transport mechanism(s) 500-3 may comprise a horizontal axis bill rotating mechanism (e.g., rotating mechanism 5400) in a component such as a document receiving unit 300 positioned downstream (exit port 507-3b side) of the angular transport mechanism 500-3 which rotates a document from lying in a vertical plane to lying in a horizontal plane.
l is a perspective view of an angular transport unit 500-4 adapted to receive documents lying in a generally vertical plane (e.g., XZ plane) via an entry port 507-4a and adapted to transport documents out of the angular transport unit 500-4 with the documents lying in a generally horizontal plane (e.g., XY plane) via an exit port 507-4b. According to some such embodiments, the angular transport unit 500-4 need only comprise a vertical axis bill rotating mechanism such as bill rotating mechanism 5300 and a horizontal axis bill rotating mechanism (e.g., rotating mechanism 5400). According to some embodiments, document processing systems employing angular transport mechanism(s) 500-4 may comprise a horizontal axis bill rotating mechanism (e.g., rotating mechanism 5200) in a component such as a document handling device 100 or a document receiving unit 300 positioned upstream (entry port 507-4a side) of the angular transport mechanism 500-4 which rotates a document from lying in a horizontal plane to lying in a vertical plane.
In document processing systems employing angular transport mechanism(s) 500-2, 500-3, 500-4, component devices positioned upstream of the angular transport mechanisms 500-2, 500-3, 500-4 may comprise exit ports adapted to mate with entry ports 507-2a, 507-3a 507-4a while component devices downstream of angular transport mechanisms 500-2, 500-3, 500-4 may comprise entry ports adapted to mater with exit ports 507-2b, 507-3b, 507-4b.
According to some embodiments, the forward speed of a document and the leading edge of the document remains constant during its movement through an angular transport unit. According to some embodiments, the forward speed of a document and the leading edge of the document remains constant during its movement through an angular transport unit including during the rotation of the document about a first horizontal axis, a vertical axis, and a second horizontal axis.
According to some embodiments, angular transport units 500 are provided that combine the movement described above in connection with two or more of the horizontal and vertical rotating mechanisms 5200-5400 into one or two transport sections. For example, according to some embodiments, the rotation of a bill about a horizontal axis such as in section 5200 is combined with the rotation of a bill about a vertical axis such as in section 5300 in a single transport section. For example, belts 5210, 5220 may be bent around a vertical axis between the entry 5202 and the exit 5204 of the transport section 5200. According to such embodiments, in addition to twisting documents about a horizontal axis as they move from the entry 5202 to the exit 5204, the transport section 5200 may also rotate the bills about a vertical axis so as to change the horizontal component of movement from being defined solely by one horizontal axis (such as the X-axis) to being defined solely or additionally by another horizontal axis (such as the Y-axis).
m depicts a top view of the generalized motion of a document or currency bill as the horizontal direction of motion of the document is changed according to some embodiments. In
According to some embodiments, the document movement depicted in
According to some embodiment, the document is rotated about the Z-axis by an angle α. According to some embodiments including the depicted embodiment, the angle α is about 90°. According to some embodiments, angle α is between about 45° and about 135°. According to some embodiments, angle α is between about 10° and about 170°.
n depicts a top view of the generalized motion of a document or currency bill as the horizontal direction of motion of the document is changed according to some embodiments. In
After Position 2, the leading edge of the document becomes edge 570c. As depicted in
According to some embodiments, a belt and/or roller transport system may be employed to achieve the motion depicted in
According to some embodiment, the forward horizontal direction of motion of a document is changed as depicted in
According to some embodiments, a component of motion in a second horizontal direction (e.g., the Y-direction or along the Y-axis) is added to a document before a component of motion in a first horizontal direction (e.g., the X-direction or along the X-axis) is stopped. For example, referring to
Turning now to
b depicts a document or currency processing system 600b comprising a document or currency handling device 100, a first document receiving unit 300a, a second document receiving unit 300b, a third document receiving 300c, a first angular transport unit 500, a fourth document receiving unit 300d, and a fifth document receiving unit 300e. According to some embodiments, a single angular transport unit may be used to provide a generally L-shaped document processing system 600b. According to some embodiments, the first document receiving unit 300a is a modular output receptacle unit and the document receiving units 300b-300e are strapping units. According to some embodiments, the angular transport unit 500 is a right angle transport unit. According to other embodiments the angular transport unit changes the forward direction of documents by an angle other than 90° as previously described. According to some embodiments, the various components of the currency processing system 600b are similar or generally identical to those previously described herein. According to other embodiments, other types of document handling devices, angular units, modular units, output receptacle units and/or strapping units are utilized. As shown in
Turning now to
As shown in
Turning now to
Turning now to
According to some embodiments, the currency handling device 8100 comprises a document or currency rotating unit or mechanism adapted to change the forward motion of document from being defined by the X-axis or a combination of the X-axis and the Z-axis to being defined by the Y-axis or a combination of the Y-axis and the Z-axis. According to some embodiments, the currency handling device 8100 may comprise an angular transport unit 500. According to some embodiments, currency or documents are moved from the currency handling device 8100 to the document receiving unit 8300 by moving the documents in a direction defined by the Y-axis.
Next, as shown in
According to some embodiments, the currency handling device 9100 comprises a document or currency rotating unit or mechanism adapted to change the forward motion of document from being defined by the X-axis or a combination of the X-axis and the Z-axis to being defined by the Y-axis or a combination of the Y-axis and the Z-axis. According to some embodiments, the currency handling device 9100 may comprise an angular transport unit 500. According to some embodiments, currency or documents are moved from the currency handling device 9100 to the document receiving unit 9300 by moving the documents in a direction defined by the Y-axis.
A connecting unit or angular transport unit 10500 is depicted in
According to some embodiments the connecting or angular transport unit 10500 is adapted to couple two other components of a document processing system such as a document handling device 100 and a document receiving unit 300 or two document receiving units 300 in a non-linear fashion. For example, according to some embodiments, the connecting or angular transport unit 10500 is a right angle transport unit and is adapted to connect to two components of a document processing system to each other in a perpendicular manner. For example, according to some embodiments, the connecting or angular transport unit 10500 is adapted to connect two components of a document processing system to each other in a manner such that the angle formed between the two components is about 90°. According to some embodiments, the connecting or angular transport unit 10500 is adapted to connect two components of a document processing system to each other in a manner such that the angle formed between the two components is an angle other than 90° (e.g., from about 10° to about 170°) as previously described. According to some embodiments, the connecting or angular transport unit 10500 is adapted to connect two components of a document processing system to each other in a manner such that the angle formed between the two components is about 45°.
According to some embodiments the connecting or angular transport unit 10500 changes the horizontal component of the forward direction of documents by about 90°. According to some embodiments the connecting or angular transport unit 10500 changes the horizontal component of the forward direction of documents by an angle other than 90° (e.g., from about 10° to about 17°). According to some embodiments the connecting or angular transport unit 10500 changes the horizontal component of the forward direction of documents by about 45°.
According to some embodiments the connecting or angular transport unit 10500 changes the forward direction of documents by about 90° about a vertical axis. According to some embodiments the connecting or angular transport unit 10500 changes the forward direction of documents by an angle other than 90° (e.g., from about 10° to about 17°) about a vertical axis. According to some embodiments the connecting or angular transport unit 10500 changes the forward direction of documents by about 45° about a vertical axis.
With respect to
According to some embodiments, a method is provided for processing documents utilizing a document processing system having a document handling device and a first document receiving unit. The method comprises the act of receiving a plurality of documents in an input receptacle of the document handling device. The method further comprises transporting at least some of the documents, one at a time, from the input receptacle and out of the document handling device and into the first document receiving unit. The method further comprises rotating the documents by an angle α about a vertical axis in the document handling device before transporting the documents into the document receiving unit.
According to some embodiments, a method is provided for processing documents utilizing a document processing system having a document handling device, a first document receiving unit, and a first angular transport unit. The method comprises the act of receiving a plurality of documents in an input receptacle of the document handling device. The method further comprises transporting at least some of the documents, one at a time, from the input receptacle and out of the document handling device and into the first angular transport unit. The method further comprises rotating the documents transported into the first angular transport unit by an angle α about a vertical axis in the first angular transport unit. The method further comprises transporting the documents transported into the first angular transport unit out of the first angular transport unit and into the document receiving unit.
According to some embodiments, a method is provided for processing documents utilizing a document processing system having a document handling device, a first document receiving unit, and a first angular transport unit. The method comprises the act of receiving a plurality of documents in an input receptacle of the document handling device. The method further comprises transporting the documents, one at a time, from the input receptacle past one or more detectors and retrieving information from the documents using the one or more detectors. The method further comprising the act of sorting the documents based on the retrieved information and transporting at least some of the some documents out of the document handling device and into the first angular transport unit. The method further comprises rotating the documents transported into the first angular transport unit by an angle α about a vertical axis in the first angular transport unit. The method further comprises transporting the documents transported into the first angular transport unit out of the first angular transport unit and into the document receiving unit.
The method according to any of embodiments 1-2 comprising transporting documents into and out of the first angular unit such that a document enters the first angular transport unit traveling in a first generally horizontal direction and exits the first angular transport unit traveling in a second generally horizontal direction that is offset from the first generally horizontal direction by the angle α.
The method according to any of embodiments 0-3 wherein the document handling device and the document receiving unit each comprise at least one output receptacle and together comprise a plurality of output receptacles. The method further comprises transporting the bills, one at a time, from the input receptacle to one of the plurality of output receptacles.
The method according to any of embodiments 0-4 wherein the documents are currency bills and the method further comprises the act of determining the denomination of the bills within the document handling device.
The method of embodiment 5 wherein the bills are sorted into a plurality of output receptacles based on their denominations so that each output receptacles receives bills of only one denomination.
The method according to any of embodiments 0-6 wherein the documents are currency bills, the document handling device is a currency handling device and the document receiving unit is a currency receiving unit.
The method according to any of embodiments 0-6 wherein the documents are currency documents, the document handling device is a currency document handling device and the document receiving unit is a currency document receiving unit.
The method according to any of embodiments 0-6 wherein the documents are currency notes, the document handling device is a currency note handling device and the document receiving unit is a currency note receiving unit.
According to some embodiments, a method of processing currency bills utilizes a currency processing and strapping system having a currency handling device, a first currency strapping unit, and a first angular transport unit is provided. The method comprises the act of receiving a plurality of bills in an input receptacle of the currency handling device. The method further comprises the act of transporting the bills individually or one at a time from the input receptacle to one of a plurality of output receptacles or locations located within either the currency handling device or the first currency strapping unit. The method comprises the act of determining the denomination of the bills within the currency handling device. The method further comprises sorting the bills into the plurality of output receptacles or locations based on their denominations so that each output receptacle or location receives bills of only one denomination. The method comprises transporting bills to the output locations within the first strapping unit through the first angular transport unit from the currency handling device. The method further comprises rotating the bills about an vertical axis by an angle α in the first angular transport unit, such that a bill entering the first angular transport unit traveling in a first generally horizontal direction exits the first angular transport unit traveling in a second generally horizontal direction that is offset from the first generally horizontal direction by the angle α.
According to some embodiments, a method is provided for processing currency bills utilizing a currency processing system having a currency processing unit or currency handling device, a first modular output receptacle unit, and a first angular transport unit. The currency handling device and the output receptacle unit comprise each have at least one output receptacle and together comprise a plurality of output receptacles. The method comprises the act of receiving a plurality of bills in an input receptacle of the currency handling device. The method further comprises the act of transporting the bills, one at a time, from the input receptacle to one of the plurality of output receptacles. The method further comprises the act of determining the denomination of the bills within the currency handling device. The method further comprises sorting the bills into the plurality of output receptacles based on their denominations so that each output receptacles receives bills of only one denomination. The method comprises routing bills from the currency handling device to the at least one output receptacle within the first modular output receptacle unit through the first angular transport unit. The method comprises rotating the bills by an angle α about a vertical axis in the first angular transport unit, such that a bill entering the first angular transport unit traveling in a first generally horizontal direction exits the first angular transport unit traveling in a second generally horizontal direction that is offset from the first generally horizontal direction by the angle α.
The method according to any of embodiments 0-11 wherein the angle α is between about 10° and about 170°.
The method according to any of embodiments 0-12 wherein the angle α is between about 45° and about 135°.
The method according to any of embodiments 0-13 wherein the angle α is about 45°.
The method according to any of embodiments 0-13 wherein the angle α is about 90°.
The method according to embodiment 15 comprising rotating the bills by 90° about a vertical axis in the first angular transport unit, such that a bill entering the first angular transport unit traveling in a first generally horizontal direction exits the first angular transport unit traveling in a second generally horizontal direction that is generally normal to the first generally horizontal direction.
According to some embodiments, an angular transport unit is provided for use with a document processing system for processing documents. The angular transport unit comprises a first transport section, a second transport section, and a third transport section. The first transport section is adapted to receive documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the document processing system. The first transport section is further adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction. The second transport section is adapted to rotate the documents by an angle α about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis. The first generally horizontal axis is generally normal to the generally vertical axis. The second generally horizontal axis is generally normal to the vertical axis. The third transport section is adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction. The third transport section is further adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a document processing system for processing documents is provided. The angular transport unit comprises a first transport section, a second transport section, and a third transport section. The first transport section is adapted to receive documents traveling one at a time in a first direction along a first axis from a first device of the document processing system and is further adapted to rotate the documents approximately 90° about the first axis as the document moves in the first direction. The second transport section is adapted to rotate the documents by an angle α about a second axis causing the documents to move in a second direction along a third axis. The first axis is normal or generally normal to the second axis. The third axis is normal or generally normal to the second axis. The third transport section is adapted to rotate documents approximately 90° about the third axis as the document moves in the second direction. The third transport section is further adapted to transport the documents in the second direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a document processing system is provided. The angular transport unit is adapted to receive documents traveling one at a time in a first direction along a first axis from a first device of the document processing system and is further adapted to rotate the documents approximately 90° about the first axis as the document moves in the first direction. The angular transport unit is further adapted to rotate the documents by an angle α about a second axis causing the documents to move in a second direction along a third axis. The first axis is normal or generally normal to the second axis. The third axis is normal or generally normal to the second axis. The angular transport unit is further adapted to rotate documents approximately 90° about the third axis as the document moves in the second direction. The angular transport unit is further adapted to transport the documents in the second direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a document processing system is provided. The angular transport unit is adapted to receive documents traveling one at a time in a first direction along a first axis from a first device of the document processing system and is further adapted to rotate the documents by an angle α about a second axis causing the documents to move in a second direction along a third axis. The first and third axes are normal or generally normal to the second axis. The angular transport unit is further adapted to transport the documents in the second direction from the angular transport unit to a second device of the document processing system.
The angular transport unit of according to any of embodiments 18-20 wherein the first and third axes are generally horizontal.
According to some embodiments, an angular transport unit for use with a document processing system is provided. The angular transport unit comprises a first horizontal axis document rotating mechanism, a vertical axis document rotating mechanism, and a second horizontal axis rotating mechanism.
The angular transport unit of embodiment 22 adapted to be coupled to first and second devices and adapted receive documents from the first device and transport received documents to the second device.
The angular transport unit of embodiment 23 wherein the first device is a document handling device and the second device is a document receiving unit.
The angular transport unit of embodiment 23 wherein the first and second devices are document receiving units.
The angular transport unit according to any of embodiments 23-25 wherein the angular transport unit is adapted to be coupled to the first and second devices such that the first and second devices are offset from each other by an angle α.
The angular transport unit according to any of embodiments 17-26 wherein the documents are currency bills.
The angular transport unit according to any of embodiments 17-26 wherein the documents are currency documents.
The angular transport unit according to any of embodiments 17-26 wherein the documents are currency notes.
According to some embodiments, an angular transport unit for use with a currency processing system for processing currency documents is provided. The angular transport unit comprises a first transport section, a second transport section, a third transport section, a fourth transport section and a fifth transport section. The first transport section is adapted to receive documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the document processing system. The second transport section is adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction. The third transport section is adapted to rotate the documents by an angle α about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis. The first generally horizontal axis is generally normal to the generally vertical axis. The second generally horizontal axis is generally normal to the vertical axis. The fourth transport section is adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction. The fifth transport section is adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a currency processing system for processing currency documents is provided. The angular transport unit comprises a first transport section, a second transport section, and a third transport section. The first transport section is adapted to receive documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the document processing system. The first transport section is further adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction. The second transport section is adapted to rotate the documents by an angle α about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis. The first generally horizontal axis is generally normal to the generally vertical axis. The second generally horizontal axis is generally normal to the vertical axis. The third transport section is adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction. The third transport section is further adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a currency processing system for processing currency documents is provided. The angular transport unit comprises a first transport section, a second transport section, a third transport section, a fourth transport section and a fifth transport section. The first transport section is adapted to receive documents traveling one at a time in a first direction along a first axis from a first device of the document processing system. The second transport section is adapted to rotate the documents approximately 90° about the first axis as the document moves in the first direction. The third transport section is adapted to rotate the documents by an angle α about a second axis causing the documents to move in a second direction along a third axis. The first axis is generally normal to the second axis. The third axis is generally normal to the second axis. The fourth transport section is adapted to rotate documents approximately 90° about the third axis as the document moves in the second direction. The fifth transport section is adapted to transport the documents in the second direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a currency processing system for processing currency documents is provided. The angular transport unit comprises a first transport section, a second transport section, and a third transport section. The first transport section is adapted to receive documents traveling one at a time in a first direction along a first axis from a first device of the document processing system and is further adapted to rotate the documents approximately 90° about the first axis as the document moves in the first direction. The second transport section is adapted to rotate the documents by an angle α about a second axis causing the documents to move in a second direction along a third axis. The first axis is normal to the second axis. The first axis is normal to the third axis. The third axis is generally normal to the second axis. The third transport section is adapted to rotate documents approximately 90° about the third axis as the document moves in the second direction. The third transport section is further adapted to transport the documents in the second direction from the angular transport unit to a second device of the document processing system.
The transport unit according to any of embodiments 17-33 wherein the angle α is between about 10° and about 170°.
The transport unit according to any of embodiments 17-34 wherein the angle α is between about 45° and about 135°.
The transport unit according to any of embodiments 17-35 wherein the angle α is about 45°.
The transport unit according to any of embodiments 17-35 wherein the angle α is about 90°.
The transport unit according to any of embodiments 17-35 wherein angle α is approximately 90° and the first and second axes are generally horizontal axes and the first generally horizontal axis is generally normal to the second generally horizontal axis.
According to some embodiments, an angular transport unit for use with a currency processing system for processing currency documents is provided. The angular transport unit comprises a first transport section, a second transport section, a third transport section, a fourth transport section and a fifth transport section. The first transport section is adapted to receive documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the document processing system. The second transport section is adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction. The third transport section is adapted to rotate the documents approximately from about 45° to about 100° about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis. The first generally horizontal axis is normal to the generally vertical axis. The first generally horizontal axis is normal to the second generally horizontal axis. The second generally horizontal axis is generally normal to the vertical axis. The fourth transport section is adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction. The fifth transport section is adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, an angular transport unit for use with a currency processing system for processing currency documents is provided. The angular transport unit comprises a first transport section, a second transport section, and a third transport section. The first transport section is adapted to receive documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the document processing system. The first transport section is further adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction. The second transport section is adapted to rotate the documents approximately from about 45° to about 100° about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis. The first generally horizontal axis is normal to the generally vertical axis. The first generally horizontal axis is normal to the second generally horizontal axis. The second generally horizontal axis is generally normal to the vertical axis. The third transport section is adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction. The third transport section is further adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the document processing system.
According to some embodiments, a currency document connecting unit comprises a cabinet adapted to be coupled to a currency document handling device and a currency document receiving unit. When coupled to the handling device and the receiving unit, the handling device, the connecting unit, and the receiving unit are configured in a generally L-shaped manner. The connecting unit has an input port that is adapted to receive currency documents from the currency handling device when coupled thereto. The connecting unit has an output port that is adapted to permit currency documents to be sent to the currency document receiving unit when coupled thereto. The connecting unit has a transport mechanism adapted to receive currency documents from the input port and transport them serially to the output port.
According some embodiments, a currency document connecting unit comprises a cabinet adapted to be coupled to a first currency document receiving unit and a second currency document receiving unit. When coupled to the first and second currency document receiving units, the first and second currency document receiving units and the connecting unit are configured in a generally L-shaped manner. The connecting unit has an input port that is adapted to receive currency documents from the first currency document receiving unit when coupled thereto. The connecting unit has an output port adapted to permit currency documents to be sent to the second currency document receiving unit when coupled thereto. The connecting unit has a transport mechanism adapted to receive currency documents from the input port and transport them serially to the output port.
According to another embodiment, a currency document connecting unit comprises a cabinet, an input port, an output port, and a transport mechanism. The cabinet is adapted to be coupled to a currency document handling device and a currency document receiving unit such that when coupled to the handling device and the receiving unit, the document handling device and the receiving unit are oriented at approximately ninety degrees (90°) relative to each other. The input port is adapted to receive currency documents from the currency document handling device when coupled thereto. The output port is adapted to permit currency documents to be sent to the currency document receiving unit when coupled thereto. The transport mechanism is adapted to receive currency documents from the input port and transport them serially to the output port.
According some embodiments, a currency document connecting unit comprises a cabinet, an input port, an output port, and a transport mechanism. The cabinet is adapted to be coupled to a first currency document receiving unit and a second currency document receiving unit such that when coupled to the two receiving units, the two receiving units are oriented at approximately ninety degrees (90°) relative to each other. The input port is adapted to receive currency documents from the first currency document receiving unit when coupled thereto. The output port is adapted to permit currency documents to be sent to the second currency document receiving unit when coupled thereto. The transport mechanism is adapted to receive currency documents from the input port and transport them serially to the output port.
According to another embodiment, a currency document connecting unit comprises a cabinet, an input port, an output port, and a transport mechanism. The cabinet is adapted to be coupled to a currency document handling device and a currency document receiving unit such that when coupled to the handling device and the receiving unit, the document handling device and the receiving unit are oriented relative to each other such that the document handling device and the receiving unit are offset from each other by an angle α. The input port is adapted to receive currency documents from the currency document handling device when coupled thereto. The output port is adapted to permit currency documents to be sent to the currency document receiving unit when coupled thereto. The transport mechanism is adapted to receive currency documents from the input port and transport them serially to the output port.
According some embodiments, a currency document connecting unit comprises a cabinet, an input port, an output port, and a transport mechanism. The cabinet is adapted to be coupled to a first currency document receiving unit and a second currency document receiving unit such that when coupled to the two receiving units, the two receiving units are oriented relative to each other such that the two receiving units are offset from each other by an angle α. The input port is adapted to receive currency documents from the first currency document receiving unit when coupled thereto. The output port is adapted to permit currency documents to be sent to the second currency document receiving unit when coupled thereto. The transport mechanism is adapted to receive currency documents from the input port and transport them serially to the output port.
The connecting unit according to any of embodiments 45-46 wherein the angle α is between about 10° and about 170°.
The connecting unit according to any of embodiments 45-47 wherein the angle α is between about 45° and about 135°.
The connecting unit according to any of embodiments 45-48 wherein the angle α is about 45°.
The connecting unit according to any of embodiments 45-48 wherein the angle α is about 90°.
According to some embodiments, a currency processing system is provided for processing a stack of currency bills, each bill having a respective denomination. The system comprises a currency handling device, a first currency receiving unit, and a first angular transport unit. The currency handling device has an input receptacle adapted to receive bills to be processed, an evaluation unit comprising one or more detectors adapted to retrieve information from a passing bill which is used to denominate a passing bill, and a transport mechanism that defines a transport path between the input receptacle, past the evaluating unit, and to an exit of the handling device. The transport mechanism is adapted to transport each bill individually along the transport path. The first currency receiving unit is adapted to receive at least some bills processed by the evaluating unit of the currency handling device. The first angular transport unit is adapted to receive bills from the currency handling device and transport bills to the first currency receiving unit. The angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis as the bills are transported through the angular transport unit.
The system of embodiment 51 wherein the angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis by an angle α as the bills are transported through the angular transport unit.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a currency document handling device, a first currency document receiving unit, and a first angular transport unit. The currency document handling device has an input receptacle adapted to receive currency documents to be processed, one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about passing currency documents, and a transport mechanism adapted to transport at least some of the currency documents, one a time, from the input receptacle, past the one or more detectors, and to an exit of the handling device. The first currency document receiving unit is adapted to receive at least some bills processed by the currency document handling device. The first angular transport unit is adapted to receive currency documents from the currency handling device and transport currency documents to the first currency document receiving unit. The angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis as the bills are transported through the angular transport unit.
The system of embodiment 53 wherein the angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis by an angle α as the bills are transported through the angular transport unit.
The system according to any of embodiments 53-54 wherein the currency documents are currency bills, the currency document handling device is a currency handling device and the currency document receiving unit is a currency receiving unit.
The system according to any of embodiments 53-54 wherein the currency documents are currency notes, the currency document handling device is a currency note handling device and the currency document receiving unit is a currency note receiving unit.
According to some embodiments, a currency document processing system comprises a currency document handling device and a first currency document receiving unit. The currency document handling device has a cabinet that comprises a front side, a left side, and a right side. The currency document handling device has an input receptacle adapted to receive currency documents, and one or more detectors adapted to retrieve information from passing currency documents. The information retrieved from a passing currency document is used to make a judgment about the passing currency document. The currency document handling device has a transport mechanism that defines one or more transport paths from the input receptacle and past the one or more detectors. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths. The transport mechanism is adapted to transport at least some of the currency documents out of the handling device. The detectors and the transport mechanism reside in the cabinet. The front side of the cabinet lies generally in a first generally vertical plane. The first currency document receiving unit has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The first currency document receiving unit is adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first currency document receiving unit. The first currency document receiving unit has a front side. The front side of the first currency document receiving unit lies generally in a second generally vertical plane. The first and second generally vertical planes are offset from each other by an angle α.
According to some embodiments, a currency document processing system comprises a currency handling device and a first modular unit. The currency handling device has a cabinet comprising a front side, a back side, a left side and a right side. The front side lies generally in a first generally vertical plane and the back side lies in a second generally vertical plane which is generally parallel to the first generally vertical plane. The currency handling device has an input receptacle adapted to receive a stack of currency documents, one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about the passing currency documents, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths. The transport mechanism is adapted to transport at least some of the currency documents into the plurality of output receptacles in the currency handling device or out of the handling device. The input receptacle, the detectors, the output receptacles and the transport mechanism reside in the cabinet. The first modular unit has one or more output locations. The first modular unit also has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The first modular unit is adapted to receive at least some currency documents processed by the currency handling device and to transport the received currency documents along the one or more transport paths of the first modular unit to the one or more output locations. The first modular unit has a front side. The front side of the first modular unit lying generally in a third generally vertical plane. The first and third generally vertical planes are offset from each other by an angle α.
According to some embodiments, a currency document processing system comprises a currency handling device and a first modular unit. The currency handling device has a cabinet comprising a front side, a back side, a left side and a right side. The front side lies generally in a first generally vertical plane and the back side lies in a second generally vertical plane which is generally parallel to the first generally vertical plane. The currency handling device has one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about the passing currency documents, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths past the one or more detectors. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths. The transport mechanism is adapted to transport at least some of the currency documents into the plurality of output receptacles or out of the handling device. The detectors, the output receptacles and the transport mechanism reside in the cabinet. The first modular unit has one or more output locations. The first modular unit also has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The first modular unit is adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first modular unit to the one or more output locations. The first modular unit has a front side. The front side of the first modular unit lies generally in a third generally vertical plane. The first and third generally vertical planes are offset from each other by an angle α.
The system according to any of embodiments 58-59 wherein the first modular unit comprises a strapping unit.
The system according to any of embodiments 58-59 wherein the first modular unit comprises one or more output receptacles.
The system according to any of embodiments 58-59 wherein the first modular unit comprises a shredder.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a currency document handling device, a first currency document receiving unit, and a first angular transport unit. The currency handling device has an input receptacle adapted to receive currency documents to be processed, one or more detectors adapted to retrieve information from passing currency documents, and a transport mechanism adapted to transport at least some of the currency documents, one at a time, from the input receptacle, past the one or more detectors, and to an exit of the handling device. The first currency receiving unit is adapted to receive at least some currency documents processed by the currency document handling device. The first angular transport unit is adapted to receive bills from the currency handling device and transport bills to the first currency receiving unit. The angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis by an angle α as the bills are transported through the angular transport unit.
The system according to any of embodiments 52, 54-63 wherein the angle α is between about 10° and about 170°.
The system according to any of embodiments 52, 54-64 wherein the angle α is between about 45° and about 135°.
The system according to any of embodiments 52, 54-65 wherein the angle α is about 45°.
The system according to any of embodiments 52, 54-65 wherein the angle α is about 90°.
According to a further embodiment, a currency document processing system comprises a currency document handling device, and a currency document receiving unit. The currency document handling device has an input receptacle adapted to receive a stack of currency documents, one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about the passing currency documents, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths, and to transport at least some of the currency documents into the plurality of output receptacles or to the currency document receiving unit. The currency document receiving unit has one or more output locations. The receiving unit also has a transport mechanism to transport currency documents individually along one or more transport paths. The currency document receiving unit is adapted to receive at least some currency documents processed by the currency document handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output locations. The currency document handling device and the currency document receiving unit are configured in a generally L-shaped manner.
According to some embodiments, a currency document processing system comprises a currency document handling device and a currency document receiving unit. The currency document handling device has one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about the passing currency documents, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths past the one or more detectors. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths and to transport at least some of the currency documents into the plurality of output receptacles or to the currency document receiving unit. The currency document receiving unit has one or more output locations. The receiving unit also has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The currency document receiving unit is adapted to receive at least some currency documents processed by the currency document handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output locations. The currency document handling device and the currency document receiving unit are configured in a generally L-shaped manner.
According some embodiments, a currency document handling device comprises an input receptacle adapted to receive a stack of currency documents, one or more detectors to retrieve information from a passing currency document which is used to make a judgment about the passing currency document. The handling device further comprises a plurality of output receptacles adapted to receive at least some of the currency documents, a modular exit port, and a transport mechanism that defines one or more transport paths from the input receptacle, past the one or more detectors, and to the plurality of output receptacles and the exit port. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths. The currency document handling device has a cabinet. The exit port is positioned on a side of the cabinet. The currency document handling device is adapted to be optionally coupled to a currency document receiving unit. The currency document receiving unit has one or more output locations. The receiving unit also has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The currency document receiving unit is adapted to receive at least some currency documents processed by the currency handling device when coupled to the currency document handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output locations. The currency handling device is adapted to be coupled to the currency document receiving unit such that when coupled together the currency handling device and the currency document receiving unit are configured in a generally L-shaped manner.
According to some embodiments, a currency document handling device comprises one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about the passing currency documents. The handling device further comprises a plurality of output receptacles adapted to receive at least some of the currency documents, a modular exit port, and a transport mechanism that defines one or more transport paths past the one or more detectors, and to the plurality of output receptacles and the exit port. The transport mechanism is adapted to transport each currency document individually along the one or more transport paths. The currency document handling device has a cabinet. The exit port is positioned on a side of the cabinet. The currency document handling device is adapted to be optionally coupled to a currency document receiving unit. The receiving unit has one or more output locations. The receiving unit also has a transport mechanism adapted to transport currency documents individually along one or more transport paths. The currency document receiving unit is adapted to receive at least some currency documents processed by the currency handling device when coupled to the currency document handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output locations. The currency handling device is adapted to be coupled to the receiving unit such that when coupled together the currency handling device and the receiving unit are configured in a generally L-shaped manner.
The system according to any of embodiments 70-71 wherein the currency document handling device is adapted to be coupled in a generally L-shaped manner to a currency document receiving unit which is a strapping unit.
The system according to any of embodiments 70-71 wherein the currency document handling device is adapted to be coupled in a generally L-shaped manner to a currency document receiving unit which comprises one or more output receptacles.
The system according to any of embodiments 70-71 wherein the currency document handling device is adapted to be coupled in a generally L-shaped manner to a currency document receiving unit which is a shredder.
According to some embodiments, a currency document receiving unit comprises a currency document input port, one or more output locations, a first transport mechanism adapted to receive currency documents from the input port and transport the currency documents individually along one or more transport paths. The currency document receiving unit further comprises a cabinet adapted to be coupled to a currency handling device such that when coupled together the currency handling device and the currency document receiving unit are configured in a generally L-shaped manner. The currency document receiving unit is adapted to receive at least some currency documents processed by the currency handling device when coupled to the currency document handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output locations. The currency document handling device comprises one or more detectors adapted to retrieve information from passing currency documents which is used to make judgments about the passing currency documents, an exit port, and a second transport mechanism defining one or more transport paths past the one or more detectors to the exit port. The second transport mechanism is adapted to transport each currency document individually along the one or more transport paths.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a generally rectangularly-shaped currency document handling device, a generally rectangularly-shaped currency document receiving unit, and an angular transport unit. The currency document handling device is coupled to the angular transport unit and the angular transport unit is coupled to the currency document receiving unit. The currency document handling device, the angular transport unit, and the currency document receiving unit are coupled together in a non-linear manner.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a currency document handling device, a currency document receiving unit, and an angular transport unit. The currency document handling device is coupled to the angular transport unit and the angular transport unit is coupled to the currency document receiving unit. The currency document handling device, the angular transport unit, and the currency document receiving unit are coupled together in a non-linear manner.
The system according to any of embodiments 76-77 wherein the first angular transport unit is adapted to receive currency documents from the currency handling device and transport currency documents to the first currency receiving unit. The angular transport unit has a transport mechanism adapted to rotate bills about a vertical axis by an angle α as the bills are transported through the angular transport unit.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a generally rectangularly-shaped currency document handling device and a generally rectangularly-shaped currency document receiving unit. The currency document handling device and the currency document receiving unit are coupled together in a non-linear manner.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a currency document handling device and a currency document receiving unit. The currency document handling device and the currency document receiving unit are coupled together in a non-linear manner.
The system according to any of embodiments 76-80 wherein the currency document handling device has an input receptacle adapted to receive currency documents to be processed, one or more detectors adapted to retrieve information from passing currency documents, and a transport mechanism adapted to transport at least some of the currency documents, one at a time, from the input receptacle, past the one or more detectors, and to an exit of the handling device. The currency document receiving unit is adapted to receive at least some currency documents processed by the currency document handling device.
The system according to any of embodiments 76-81 wherein the currency document handling device and a currency document receiving unit are arranged in a non-linear manner such that an angle α is defined between the currency document handling device and a currency document receiving unit.
The system of embodiment 82 wherein the angle α is between about 10° and about 170°.
The system of embodiment 82 wherein the angle α is between about 45° and about 135°.
The system of embodiment 82 wherein the angle α is about 45°.
The system of embodiment 82 wherein the angle α is about 90°.
The system according to any of embodiments 76-86 wherein the currency document handling device is a currency handling device and the currency document receiving unit is a currency receiving unit.
The system according to any of embodiments 76-86 wherein the currency document handling device is a currency note handling device and the currency document receiving unit is a currency note receiving unit.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system resides in a three-dimensional space defined by a X-axis, a Y-axis, and a Z-axis. The system comprises a currency document handling device and a currency document receiving unit. The currency document handling device is coupled to the currency document receiving unit. The currency document handling device has a transport mechanism adapted to transport currency documents, one at a time, such that the motion of the documents can be defined exclusively by changes in the X-axis and the Z-axis, the motion of the documents in the currency document handling device generally not changing along the Y-axis. The currency document receiving unit has a transport mechanism adapted to transport currency documents, one at a time, such that the motion of the documents can be defined exclusively by changes in the Y-axis and the Z-axis, the motion of the documents in the document receiving unit generally not changing along the X-axis.
The system of embodiment 89 wherein the currency document handling device is coupled to the currency document receiving unit via an angular transport unit coupled between the currency document handling device and the currency document receiving unit and wherein the angular transport unit has a transport mechanism adapted to receive currency documents from the currency document handling device having a motion defined exclusively by changes in the X-axis and Z-axis and to rotate the currency documents such that their motion can be defined exclusively by changes in the Y-axis and Z-axis and adapted to transport the rotated documents to the currency document receiving unit.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a currency document handling device and a currency document receiving unit. The currency document handling device having a footprint having a front edge. The currency document receiving unit having a footprint. The currency document handling device is coupled to the currency document receiving unit such that at least part of the footprint of the currency document receiving unit is positioned in front of the front edge of the footprint of the currency document handling device. The currency document handling device having a transport mechanism adapted to transport currency documents, one at a time, to a transport mechanism of the currency document receiving unit. The transport mechanism of the currency document receiving unit is adapted to transport currency documents, one at a time, along one or more transport paths in the currency document receiving unit. The transport mechanism of the currency document receiving unit is adapted to transport currency documents received from the currency document handling device to a position in front of the front edge of the footprint of the currency document handling device.
According to some embodiments, a currency document processing system is provided for processing a stack of currency documents. The system comprises a currency document handling device and a currency document receiving unit. The currency document handling device having a footprint having a back edge. The currency document receiving unit having a footprint. The currency document handling device is coupled to the currency document receiving unit such that at least part of the footprint of the currency document receiving unit is positioned in back of the back edge of the footprint of the currency document handling device. The currency document handling device having a transport mechanism adapted to transport currency documents, one at a time, to a transport mechanism of the currency document receiving unit. The transport mechanism of the currency document receiving unit is adapted to transport currency documents, one at a time, along one or more transport paths in the currency document receiving unit. The transport mechanism of the currency document receiving unit is adapted to transport currency documents received from the currency document handling device to a position in back of the back edge of the footprint of the currency document handling device.
The system according to any of embodiments 91-92 wherein the currency document handling device is coupled to the currency document receiving unit via an angular transport unit coupled between the currency document handling device and the currency document receiving unit.
A currency document processing system for processing a stack of currency documents including currency bills, each bill having a respective denomination, the system comprising: a currency handling device having an input receptacle adapted to receive currency documents including bills to be processed, an evaluation unit comprising one or more detectors adapted to retrieve information from a passing bill which is used to denominate the passing bill, a plurality of output receptacles adapted to receive at least some of the bills processed by the evaluating unit, and a transport mechanism defining a transport path between the input receptacle, past the evaluating unit, and the plurality of output receptacles, the transport mechanism being adapted to transport each bill individually along the transport path, the transport mechanism being adapted to route the bills into the plurality of output receptacles or to transport the bills out of the handling device based on the denomination of the bills as determined from the information obtained from the one or more detectors so that an individual one of the output receptacles contains bills having the same denomination; a first currency document receiving unit adapted to receive at least some bills processed by the evaluating unit; and a first angular transport unit, the angular transport unit adapted to receive bills from the currency handling device and transport bills to the first currency document receiving unit, the angular transport unit having a transport mechanism adapted to rotate bills from approximately forty five degrees (45°) to approximately one hundred thirty-five degrees (135°) about a vertical axis as the bills are transported through the angular transport unit.
The system of embodiment 94, wherein the handling device, the first strapping unit, and the first angular transport unit form a generally L-shaped system.
The system of embodiment 94, wherein the system has a width of approximately 6.5 feet and a depth of approximately 5 feet.
The system of embodiment 94, wherein the first currency document receiving unit comprises a bill receiving assembly having a plurality of output receptacles.
The system of embodiment 94, wherein the first currency document receiving unit comprises a strapping unit for strapping stacks of bills.
The system of embodiment 98, wherein the first strapping unit comprises one or more output receptacles having a stack limit which determines how many bills will form a complete stack of bills, the first strapping unit being adapted to receive bills one at a time after the bills are transported through the currency handling device, the first strapping unit being adapted to strap stacks of bills after being placed in a strapping position, the first strapping unit having a stack moving mechanism adapted to move a stack of bills selected for strapping from any of the one or more output receptacles of the first strapping unit to the strapping position.
The system of embodiment 98 further comprising: a second strapping unit for strapping stacks of bills; and a second angular transport unit, the angular transport unit adapted to receive bills from the first stacking unit and transport bills to the second strapping unit, the angular transport unit having a transport mechanism adapted to rotate bills from approximately forty-five degrees (45°) to approximately one hundred thirty-five degrees (135°) about a vertical axis as the bills are transported through the angular transport unit.
The system of embodiment 100, wherein the handling device, the first strapping unit, the first angular transport unit, and the second strapping device, and the second angular transport unit form a generally U-shaped system.
The system of embodiment 100, wherein the system has a width of approximately 6.5 feet and a depth of approximately 6.5 feet.
The system of embodiment 94, wherein the first angular transport unit comprises a first bill rotating section, a second bill rotating section, and an intermediate section between the first and second bill rotating sections, wherein a bill is rotated approximately 90° about a first horizontal axis in the first bill rotating section, the bill is rotated from approximately 45° to approximately 135° about a vertical axis in the intermediate section, and the bill is rotated approximately 90° about a second horizontal axis in the second bill rotating section, wherein the first horizontal axis is generally normal to the second horizontal axis, and the first horizontal axis and the second horizontal axis are each generally normal to the vertical axis.
The system of embodiment 94, wherein bills are transported through the system in excess of 400 bills per minute.
The system of embodiment 94, wherein bills are transported through the system in excess of 1200 bills per minute.
A method for processing and strapping currency documents including currency bills utilizing a currency processing and strapping system having a currency processing unit, a first currency strapping unit, and an angular transport unit, the method comprising the acts of: receiving a plurality of bills in an input receptacle of the currency handling device; transporting individually the bills from the input receptacle to one or more of a plurality of output receptacles located within the currency handling device and the first currency strapping unit; determining the denomination of the bills within the currency handling device; sorting the bills into the plurality of output receptacles based on their denominations so that each output receptacles receives bills of only one denomination; routing bills to be transported to one or more output receptacles located within the first strapping unit through the angular transport unit from the currency handling device; rotating bills the act of routing sends to the angular transport unit from about 45° to about 135° about a vertical axis, such that a bill entering the angular transport unit traveling in a first generally horizontal direction exits the angular transport unit traveling in a second generally horizontal direction that is from about 45° to about 135° from the first generally horizontal direction; monitoring whether a complete stack of bills of the same denomination have been received in any of the output receptacles of the first strapping unit; moving a complete stack of bills from one of the plurality of output receptacles of the first strapping unit to a strapping position; strapping a complete stack of bills that is placed in the strapping position.
The method of embodiment 106 further comprising: using a stack carrying structure to transport a complete stack of bills to the strapping position; and using a conveyor belt adapted to support and move the carrying structure from at least one loading position to the strapping position, the conveyor belt being positioned proximate the output receptacles and the strapping position.
The method of embodiment 106, wherein the strapping position is adapted to receive stacks of bills from more than one of the plurality of output receptacles within the first strapping unit.
The method of embodiment 106, wherein the act of transporting occurs at a rate of at least 400 bills per minute.
The method of embodiment 106, wherein the act of transporting occurs at a rate of at least 1200 bills per minute.
An angular transport unit for use with a currency document processing system, the angular transport unit comprising: a first transport section adapted to receive currency documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the currency processing system; a second transport section adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction; a third transport section adapted to rotate the documents approximately 90° about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis, the first generally horizontal axis being normal to the generally vertical axis, the first generally horizontal axis being normal to the second generally horizontal axis, the second generally horizontal axis being generally normal to the vertical axis; a fourth transport section adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction; and a fifth transport section adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the currency processing system.
The angular transport unit of embodiment 111, wherein the first device is a currency handling device.
The angular transport unit of embodiment 111, wherein the second device is a currency strapping unit.
The angular transport unit of embodiment 111, wherein the second transport section has a first document guide and a second document guide adapted to support a document as the document rotates about the first generally horizontal axis.
The angular transport unit of embodiment 111, wherein the fourth transport section has a first document guide and a second document guide adapted to support a document as the document rotates about the second generally horizontal axis.
A method for processing currency documents including currency bills utilizing a currency processing system having a currency processing unit, a first modular output receptacle unit, and a first angular transport unit, the method comprising the acts of: receiving a plurality of bills in an input receptacle of the currency processing unit; transporting individually the bills from the input receptacle to one of a plurality of output receptacles located within the currency processing unit and the first modular output receptacle unit; determining the denomination of the bills within the currency processing unit; sorting the bills into the plurality of output receptacles based on their denominations so that each output receptacles receives bills of only one denomination; routing bills to be transported to one or more output receptacles located within the first modular output receptacle unit through the first angular transport unit from the currency handling device; and rotating bills the act of routing sends to the first angular transport unit 90° about a vertical axis, such that a bill entering the first angular transport unit traveling in a first generally horizontal direction exits the first angular transport unit traveling in a second generally horizontal direction that is generally normal to the first generally horizontal direction.
The method of embodiment 116, wherein the act of transporting occurs at a rate of at least 400 bills per minute.
The method of embodiment 116, wherein the act of transporting occurs at a rate of at least 1200 bills per minute.
A currency processing system for processing a stack of currency documents including currency bills, each bill having a respective denomination, the system comprising: a currency handling device having an input receptacle adapted to receive bills to be processed, an evaluation unit comprising one or more detectors adapted to retrieve information from a passing bill which is used to denominate the passing bill, and a transport mechanism defining a transport path between the input receptacle, past the evaluating unit, and out of the handling device; a first currency document receiving unit adapted to receive at least some bills processed by the evaluating unit; and a first angular transport unit adapted to receive bills from the currency handling device and transport bills to the first currency document receiving unit, the angular transport unit having a transport mechanism adapted to rotate bills about a vertical axis as the bills are transported through the angular transport unit.
An angular transport unit for use with a currency document processing system, the angular transport unit comprising: a first transport section adapted to receive currency documents traveling one at a time in a first generally horizontal direction along a first generally horizontal axis from a first device of the currency processing system; a second transport section adapted to rotate the documents approximately 90° about the first generally horizontal axis as the document moves in the first generally horizontal direction; a third transport section adapted to rotate the documents from approximately 45° to approximately 135° about a generally vertical axis causing the documents to move in a second generally horizontal direction along a second generally horizontal axis, the first generally horizontal axis being normal to the generally vertical axis, the second generally horizontal axis being generally normal to the vertical axis; a fourth transport section adapted to rotate documents approximately 90° about the second generally horizontal axis as the document moves in the second generally horizontal direction; and a fifth transport section adapted to transport the documents in the second generally horizontal direction from the angular transport unit to a second device of the currency processing system.
A currency document processing system comprising: a currency handling device having a cabinet comprising a front side, a left side and a right side, having an input receptacle adapted to receive currency documents, one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents out of the handling device, wherein the detectors and the transport mechanism reside in the cabinet, the front side of the cabinet lying generally in a first generally vertical plane; a first currency document receiving unit having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the first currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first currency document receiving unit; the first currency document receiving unit having a front side, the front side of the first currency document receiving unit lying generally in a second generally vertical plane; wherein the first and second generally vertical planes are offset from each other by an angle α, wherein the angle α is between about ten degrees (10°) and about one hundred and seventy degrees (170°).
The currency processing system of embodiment 121 wherein the angle α is between about forty five degrees (45°) and about one hundred thirty-five degrees (135°).
The currency processing system of embodiment 121 wherein the angle α is between about eighty degrees (80°) and about one hundred degrees (100°).
The currency processing system of embodiment 121 wherein the angle α is about ninety degrees (90°).
A currency document processing system comprising: a currency handling device having a cabinet comprising a front side, a left side and a right side, one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, and a transport mechanism defining one or more transport paths past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents out of the handling device, wherein the detectors and the transport mechanism reside in the cabinet, the front side of the cabinet lying generally in a first generally vertical plane; a first currency document receiving unit having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the first currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first currency document receiving unit; the first currency document receiving unit having a front side, the front side of the first currency document receiving unit lying generally in a second generally vertical plane; wherein the first and second generally vertical planes are offset from each other by an angle α, wherein the angle α is between about ten degrees (10°) and about one hundred and seventy degrees (170°).
A currency document processing system comprising: a currency handling device having a cabinet comprising a front side, a back side, a left side and a right side, the front side lying generally in a first generally vertical plane and the back side lying in a second generally vertical plane which is generally parallel to the first generally vertical plane, the currency handling device having an input receptacle adapted to receive a stack of currency documents, one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or out of the handling device, wherein the input receptacle, the detectors, the output receptacles and the transport mechanism reside in the cabinet; a first modular unit having one or more output receptacles or strapping units, the first modular unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the first modular unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first modular unit to the one or more output receptacles or strapping units; the first modular unit having a front side, the front side of the first modular unit lying generally in a third generally vertical plane; wherein the first and third generally vertical planes are offset from each other by an angle α, wherein the angle α is between about ten degrees (10°) and about one hundred and seventy degrees (170°).
A currency document processing system comprising: a currency handling device having a cabinet comprising a front side, a back side, a left side and a right side, the front side lying generally in a first generally vertical plane and the back side lying in a second generally vertical plane which is generally parallel to the first generally vertical plane, the currency handling device having one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or out of the handling device, wherein the detectors, the output receptacles and the transport mechanism reside in the cabinet; a first modular unit having one or more output receptacles or strapping units, the first modular unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the first modular unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the first modular unit to the one or more output receptacles or strapping units; the first modular unit having a front side, the front side of the first modular unit lying generally in a third generally vertical plane; wherein the first and third generally vertical planes are offset from each other by an angle α, wherein the angle α is between about ten degrees (10°) and about one hundred and seventy degrees (170°).
A currency document processing system comprising: a currency handling device having an input receptacle adapted to receive a stack of currency documents, one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or to a currency document receiving unit; and the currency document receiving unit having one or more output receptacles or strapping units, the receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device and the currency document receiving unit are configured in a generally L-shaped manner.
The currency document processing system of embodiment 128 wherein the currency handling device and the currency document receiving unit reside in an integrated generally L-shaped cabinet.
The currency document processing system of embodiment 128 wherein the currency handling device and the currency document receiving unit reside in separate cabinets and wherein the two cabinets are coupled to each other in a generally L-shaped manner.
The currency document processing system of embodiment 130 wherein the currency handling device is adapted to be coupled to the currency document receiving unit in a modular fashion and wherein the currency handling device is adapted to operate without being coupled to currency document receiving unit such that when the currency handling device is not coupled to the currency document receiving unit the currency handling device is adapted not to route bills to the currency document receiving unit.
A currency document processing system comprising: a currency handling device having one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or to a currency document receiving unit; and the currency document receiving unit having one or more output receptacles or strapping units, the receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device and the currency document receiving unit are configured in a generally L-shaped manner.
The currency document processing system of embodiment 132 wherein the currency handling device and the currency document receiving unit reside in an integrated generally L-shaped cabinet.
A currency document processing device comprising: an input receptacle adapted to receive a stack of currency documents; one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document; a plurality of output receptacles adapted to receive at least some of the currency documents; a modular exit port; and a transport mechanism defining one or more transport paths from the input receptacle, past the one or more detectors, and to the plurality of output receptacles and the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths; the currency document processing device having a cabinet; the exit port being positioned on a side of the cabinet; the currency document processing device being adapted to be optionally coupled to a currency document receiving unit, the currency document receiving unit having one or more output receptacles or strapping units, the receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the currency document receiving unit being adapted to receive at least some currency documents processed by the currency document processing device when coupled to the currency document processing device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency document processing device is adapted to be coupled to the currency document receiving unit such that when coupled together the currency processing device and the currency document receiving unit are configured in a generally L-shaped manner.
The currency document processing system of embodiment 134 wherein the currency processing device is adapted to be coupled to the currency document receiving unit in a modular fashion and wherein the currency processing device is adapted to operate without being coupled to currency document receiving unit such that when the currency processing device is not coupled to the currency document receiving unit the currency processing device is adapted not to route bills to the exit port.
A currency document processing device comprising: one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document; a plurality of output receptacles adapted to receive at least some of the currency documents; a modular exit port; and a transport mechanism defining one or more transport paths past the one or more detectors, and to the plurality of output receptacles and the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths; the currency document processing device having a cabinet; the exit port being positioned on a side of the cabinet; the currency document processing device being adapted to be optionally coupled to a currency document receiving unit, the currency document receiving unit having one or more output receptacles or strapping units, the receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, the currency document receiving unit being adapted to receive at least some currency documents processed by the currency document processing device when coupled to the currency document processing device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency document processing device is adapted to be coupled to the currency document receiving unit such that when coupled together the currency document processing device and the currency document receiving unit are configured in a generally L-shaped manner.
The currency document processing system of embodiment 136 wherein the currency processing device is adapted to be coupled to the currency document receiving unit in a modular fashion and wherein the currency processing device is adapted to operate without being coupled to currency document receiving unit such that when the currency processing device is not coupled to the currency document receiving unit the currency processing device is adapted not to route bills to the exit port.
A currency document receiving unit comprising: a currency document input port; one or more output receptacles or strapping units; a transport mechanism adapted to receive currency documents from the input port and transport the currency documents individually along one or more transport paths; and a cabinet, wherein the cabinet is adapted to be coupled to a currency handling device such that when coupled together the currency handling device and the currency document receiving unit are configured in a generally L-shaped manner; the currency document receiving unit being adapted to receive at least some currency documents processed by the currency handling device when coupled to the currency document handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device comprising one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, an exit port, and a transport mechanism defining one or more transport paths past the one or more detectors to the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths.
A currency document connecting unit comprising: a cabinet adapted to be coupled to a currency handling device and a currency document receiving unit such that when coupled to the handling device and the receiving unit, the processing unit, the connecting unit, and the receiving unit are configured in a generally L-shaped manner; an input port adapted to receive currency documents from the currency processing unit when coupled thereto; an output port adapted to send currency documents to the currency document receiving unit when coupled thereto; and a transport mechanism adapted to receive currency documents from the input port and transport them serially to the output port.
An currency document connecting unit comprising: a cabinet adapted to be coupled to a first currency document receiving unit and a second currency document receiving unit such that when coupled to the two receiving units, the connecting unit and the two receiving units are configured in a generally L-shaped manner; an input port adapted to receive currency documents from the first currency document receiving unit when coupled thereto; an output port adapted to send currency documents to the second currency document receiving unit when coupled thereto; and a transport mechanism adapted to receive currency documents from the input port and transport them serially to the output port.
An currency document connecting unit comprising: a cabinet adapted to be coupled to a currency handling device and a currency document receiving unit such that when coupled to the handling device and receiving unit, the processing unit and the receiving unit are oriented at approximately ninety (90°) degrees from each other; an input port adapted to receive currency documents from the currency processing unit when coupled thereto; an output port adapted to send currency documents to the currency document receiving unit when coupled thereto; and a transport mechanism adapted to receive currency documents from the input port and transport them serially to the output port.
An currency document connecting unit comprising: a cabinet adapted to be coupled to a first currency document receiving unit and a second currency document receiving unit such that when coupled to the two receiving units, the two receiving units are oriented at approximately ninety (90°) degrees from each other; an input port adapted to receive currency documents from the first currency document receiving unit when coupled thereto; an output port adapted to send currency documents to the second currency document receiving unit when coupled thereto; and a transport mechanism adapted to receive currency documents from the input port and transport them serially to the output port.
An angular transport unit for use with a currency document processing system, the angular transport unit comprising: a first transport section adapted to receive currency documents traveling one at a time in a first direction along a first axis from a first device of the currency processing system; a second transport section adapted to rotate the documents approximately 90° about the first axis as the document moves in the first direction; a third transport section adapted to rotate the documents from approximately 45° to approximately 135° about a second axis generally normal to the first axis causing the documents to move in a second direction along a third axis; a fourth transport section adapted to rotate documents approximately 90° about the third axis as the document moves in the second direction; and a fifth transport section adapted to transport the documents in the second direction from the angular transport unit to a second device of the currency processing system.
The angular transport unit of embodiment 143, wherein the first device is a currency handling device.
The angular transport unit of embodiment 144, wherein the second device is a currency strapping unit.
The angular transport unit of embodiment 143, wherein the angular transport unit, the first device, and the second device are contained with a housing.
A currency document processing system comprising: a currency handling device having an input receptacle adapted to receive a stack of currency documents, one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or to one or more currency document receiving units; and the one or more currency document receiving units having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device and the or more currency document receiving units are configured in a generally U-shaped manner.
The currency document processing system of embodiment 147 wherein the currency handling device and the currency document receiving unit reside in an integrated generally U-shaped cabinet.
The currency document processing system of embodiment 147 wherein the currency handling device and the one or more currency document receiving units reside in separate cabinets and wherein the cabinets are coupled to each other in a generally U-shaped manner.
The currency document processing system of embodiment 149 wherein the currency handling device is adapted to be coupled to the one or more currency document receiving units in a modular fashion and wherein the currency handling device is adapted to operate without being coupled to the one or more currency document receiving units such that when the currency handling device is not coupled to the one or more currency document receiving units the currency handling device is adapted not to route bills to the one or more currency document receiving units.
A currency document processing system comprising: a currency handling device having one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or to one or more currency document receiving units; and the one or more currency document receiving units having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device and the one or more currency document receiving units are configured in a generally U-shaped manner.
The currency document processing system of embodiment 151 wherein the currency handling device and the one or more currency document receiving units reside in an integrated generally U-shaped cabinet.
A currency document processing device comprising: an input receptacle adapted to receive a stack of currency documents; one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document; a plurality of output receptacles adapted to receive at least some of the currency documents; a modular exit port; and a transport mechanism defining one or more transport paths from the input receptacle, past the one or more detectors, and to the plurality of output receptacles and the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths; the currency document processing device having a cabinet; the exit port being positioned on a side of the cabinet; the currency document processing device being adapted to be optionally coupled to one or more currency document receiving units, the one or more currency document receiving units having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit being adapted to receive at least some currency documents processed by the currency document processing device when coupled to the currency document processing device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency document processing device is adapted to be coupled to the one or more currency document receiving units such that when coupled together the currency processing device and the one or more currency document receiving units are configured in a generally U-shaped manner.
The currency document processing system of embodiment 153 wherein the currency processing device is adapted to be coupled to the one or more currency document receiving units in a modular fashion and wherein the currency processing device is adapted to operate without being coupled to currency document receiving unit such that when the currency processing device is not coupled to the one or more currency document receiving units the currency processing device is adapted not to route bills to the exit port.
A currency document processing device comprising: one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document; a plurality of output receptacles adapted to receive at least some of the currency documents; a modular exit port; and a transport mechanism defining one or more transport paths past the one or more detectors, and to the plurality of output receptacles and the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths; the currency document processing device having a cabinet; the exit port being positioned on a side of the cabinet; the currency document processing device being adapted to be optionally coupled to one or more currency document receiving units, each currency document receiving unit having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit being adapted to receive at least some currency documents processed by the currency document processing device when coupled to the currency document processing device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency document processing device is adapted to be coupled to the one or more currency document receiving units such that when coupled together the currency document processing device and the one or more currency document receiving units are configured in a generally U-shaped manner.
The currency document processing system of embodiment 155 wherein the currency processing device is adapted to be coupled to the one or more currency document receiving units in a modular fashion and wherein the currency processing device is adapted to operate without being coupled to the one or more currency document receiving units such that when the currency processing device is not coupled to the one or more currency document receiving units the currency processing device is adapted not to route bills to the exit port.
A currency document processing system comprising: a currency handling device having an input receptacle adapted to receive a stack of currency documents, one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths from the input receptacle and past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or to one or more currency document receiving units; and the one or more currency document receiving units having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device and the or more currency document receiving units are configured in a generally S-shaped manner.
The currency document processing system of embodiment 157 wherein the currency handling device and the currency document receiving unit reside in an integrated generally S-shaped cabinet.
The currency document processing system of embodiment 157 wherein the currency handling device and the one or more currency document receiving units reside in separate cabinets and wherein the cabinets are coupled to each other in a generally S-shaped manner.
The currency document processing system of embodiment 159 wherein the currency handling device is adapted to be coupled to the one or more currency document receiving units in a modular fashion and wherein the currency handling device is adapted to operate without being coupled to the one or more currency document receiving units such that when the currency handling device is not coupled to the one or more currency document receiving units the currency handling device is adapted not to route bills to the one or more currency document receiving units.
A currency document processing system comprising: a currency handling device having one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document, a plurality of output receptacles adapted to receive at least some of the currency documents, and a transport mechanism defining one or more transport paths past the one or more detectors, the transport mechanism being adapted to transport each currency document individually along the one or more transport paths, the transport mechanism being adapted to transport at least some of the currency documents into the plurality of output receptacles or to one or more currency document receiving units; and the one or more currency document receiving units having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit adapted to receive at least some currency documents processed by the currency handling device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency handling device and the one or more currency document receiving units are configured in a generally S-shaped manner.
The currency document processing system of embodiment 161 wherein the currency handling device and the one or more currency document receiving units reside in an integrated generally S-shaped cabinet.
A currency document processing device comprising: an input receptacle adapted to receive a stack of currency documents; one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document; a plurality of output receptacles adapted to receive at least some of the currency documents; a modular exit port; and a transport mechanism defining one or more transport paths from the input receptacle, past the one or more detectors, and to the plurality of output receptacles and the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths; the currency document processing device having a cabinet; the exit port being positioned on a side of the cabinet; the currency document processing device being adapted to be optionally coupled to one or more currency document receiving units, the one or more currency document receiving units having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit being adapted to receive at least some currency documents processed by the currency document processing device when coupled to the currency document processing device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency document processing device is adapted to be coupled to the one or more currency document receiving units such that when coupled together the currency processing device and the one or more currency document receiving units are configured in a generally S-shaped manner.
The currency document processing system of embodiment 163 wherein the currency processing device is adapted to be coupled to the one or more currency document receiving units in a modular fashion and wherein the currency processing device is adapted to operate without being coupled to currency document receiving unit such that when the currency processing device is not coupled to the one or more currency document receiving units the currency processing device is adapted not to route bills to the exit port.
A currency document processing device comprising: one or more detectors adapted to retrieve information from a passing currency document which is used to make a judgment about the passing currency document; a plurality of output receptacles adapted to receive at least some of the currency documents; a modular exit port; and a transport mechanism defining one or more transport paths past the one or more detectors, and to the plurality of output receptacles and the exit port; the transport mechanism being adapted to transport each currency document individually along the one or more transport paths; the currency document processing device having a cabinet; the exit port being positioned on a side of the cabinet; the currency document processing device being adapted to be optionally coupled to one or more currency document receiving units, each currency document receiving unit having one or more output receptacles or strapping units, each receiving unit also having a transport mechanism adapted to transport currency documents individually along one or more transport paths, each currency document receiving unit being adapted to receive at least some currency documents processed by the currency document processing device when coupled to the currency document processing device and transport the received currency documents along the one or more transport paths of the currency document receiving unit to the one or more output receptacles or strapping units; wherein the currency document processing device is adapted to be coupled to the one or more currency document receiving units such that when coupled together the currency document processing device and the one or more currency document receiving units are configured in a generally S-shaped manner.
The currency document processing system of embodiment 165 wherein the currency processing device is adapted to be coupled to the one or more currency document receiving units in a modular fashion and wherein the currency processing device is adapted to operate without being coupled to the one or more currency document receiving units such that when the currency processing device is not coupled to the one or more currency document receiving units the currency processing device is adapted not to route bills to the exit port.
The method of embodiment 106 further comprising the act of placing the strapped stack of bills into at least one storage bin.
According to some embodiments, documents such as bills are transported from the input receptacle 102 to the one or more internal or external output locations while maintaining a constant leading edge throughout the transporting act or transport mechanisms such as those embodiments discussed above in connection with, for example,
In some embodiments, documents such as currency bills are transported, scanned, denominated, authenticated, imaged and/or otherwise processed at a rate equal to or greater than 400 documents or bills per minute such as those embodiments discussed above in connection with, for example,
While many of the above embodiments have been described in conjunction with U.S. currency, systems according to some embodiments may alternatively or additionally process currency of other countries such as the Euro, United Kingdom, France, Germany, Japan, Spain, Canada, Italy, Brazil, Mexico, Taiwan, and Saudi Arabia. Likewise, the above systems may support the processing of multiple types of documents including, for example, checks, deposit slips, header documents, currency bills, substitute currency notes, currency notes, substitute currency media, currency documents, barcoded tickets, etc.
In some embodiments of the document or currency handling systems described above such as those embodiments discussed above in connection with, for example,
In various alternative embodiments, the currency handling systems described above such as those embodiments discussed above in connection with, for example,
In some embodiments of the document or currency processing systems described above such as those embodiments discussed above in connection with, for example,
In some embodiments such as those embodiments discussed above in connection with, for example,
In some embodiments such as those embodiments discussed above in connection with, for example,
While the concepts disclosed herein are susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and herein described in detail. It should be understood, however, that it is not intended to limit the inventions to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the inventions as defined by the appended claims.
The present application claims priority to co-pending U.S. Provisional Patent Application Ser. No. 60/810,232, entitled “Currency Processing System with Angled Transport” which was filed on Jun. 1, 2006 and co-pending U.S. Provisional Patent Application Ser. No. 60/864,334, entitled “Angled Currency Processing System” which was filed on Nov. 3, 2006, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3362532 | Riddle et al. | Jan 1968 | A |
3671035 | Reist | Jun 1972 | A |
3972520 | McKeefry | Aug 1976 | A |
3976198 | Carnes et al. | Aug 1976 | A |
4025420 | Horino | May 1977 | A |
4744468 | Goi et al. | May 1988 | A |
5115918 | DeWitt et al. | May 1992 | A |
5163672 | Mennie | Nov 1992 | A |
5207788 | Geib | May 1993 | A |
5295196 | Raterman et al. | Mar 1994 | A |
5310062 | Stevens et al. | May 1994 | A |
5390910 | Mandel et al. | Feb 1995 | A |
5467405 | Raterman et al. | Nov 1995 | A |
5467406 | Graves et al. | Nov 1995 | A |
D369984 | Larsen | May 1996 | S |
5536002 | Yoshida et al. | Jul 1996 | A |
5564544 | Takemoto et al. | Oct 1996 | A |
5633949 | Graves et al. | May 1997 | A |
5640463 | Csulits | Jun 1997 | A |
5652802 | Graves et al. | Jul 1997 | A |
5687963 | Mennie | Nov 1997 | A |
5692067 | Raterman et al. | Nov 1997 | A |
5704491 | Graves | Jan 1998 | A |
5724438 | Graves | Mar 1998 | A |
5740897 | Gauselmann | Apr 1998 | A |
5751840 | Raterman et al. | May 1998 | A |
5790693 | Graves et al. | Aug 1998 | A |
5790697 | Munro et al. | Aug 1998 | A |
5806650 | Mennie et al. | Sep 1998 | A |
5815592 | Mennie et al. | Sep 1998 | A |
5822448 | Graves et al. | Oct 1998 | A |
5832104 | Graves et al. | Nov 1998 | A |
5867589 | Graves et al. | Feb 1999 | A |
5870487 | Graves et al. | Feb 1999 | A |
5875259 | Mennie et al. | Feb 1999 | A |
5905810 | Jones et al. | May 1999 | A |
5909502 | Mazur | Jun 1999 | A |
5909503 | Graves et al. | Jun 1999 | A |
5912982 | Munro et al. | Jun 1999 | A |
5938044 | Weggesser | Aug 1999 | A |
5943655 | Jacobsen | Aug 1999 | A |
5960103 | Graves et al. | Sep 1999 | A |
5966456 | Jones et al. | Oct 1999 | A |
5982918 | Mennie et al. | Nov 1999 | A |
5992601 | Mennie et al. | Nov 1999 | A |
6012565 | Mazur | Jan 2000 | A |
6021883 | Casanova et al. | Feb 2000 | A |
6026175 | Munro et al. | Feb 2000 | A |
6028951 | Raterman et al. | Feb 2000 | A |
6068194 | Mazur | May 2000 | A |
6072896 | Graves et al. | Jun 2000 | A |
6073744 | Raterman et al. | Jun 2000 | A |
6074334 | Mennie et al. | Jun 2000 | A |
6128402 | Jones et al. | Oct 2000 | A |
6220419 | Mennie | Apr 2001 | B1 |
6237739 | Mazur et al. | May 2001 | B1 |
6241069 | Mazur et al. | Jun 2001 | B1 |
6256407 | Mennie et al. | Jul 2001 | B1 |
6278795 | Anderson et al. | Aug 2001 | B1 |
6311819 | Stromme et al. | Nov 2001 | B1 |
6318537 | Jones et al. | Nov 2001 | B1 |
6328166 | Sakai | Dec 2001 | B1 |
6351551 | Munro et al. | Feb 2002 | B1 |
6363164 | Jones et al. | Mar 2002 | B1 |
6371303 | Klein et al. | Apr 2002 | B1 |
6378683 | Mennie | Apr 2002 | B2 |
6381354 | Mennie et al. | Apr 2002 | B1 |
6398000 | Jenrick et al. | Jun 2002 | B1 |
6459806 | Raterman et al. | Oct 2002 | B1 |
6460705 | Hallowell | Oct 2002 | B1 |
6493461 | Mennie et al. | Dec 2002 | B1 |
6539104 | Raterman et al. | Mar 2003 | B1 |
6560355 | Graves et al. | May 2003 | B2 |
6588569 | Jenrick et al. | Jul 2003 | B1 |
6601687 | Jenrick et al. | Aug 2003 | B1 |
6603872 | Jones et al. | Aug 2003 | B2 |
6621919 | Mennie et al. | Sep 2003 | B2 |
6628816 | Mennie et al. | Sep 2003 | B2 |
6636624 | Raterman et al. | Oct 2003 | B2 |
6647136 | Jones et al. | Nov 2003 | B2 |
6650767 | Jones et al. | Nov 2003 | B2 |
6654486 | Jones et al. | Nov 2003 | B2 |
6659258 | Otsuka | Dec 2003 | B2 |
6661910 | Jones et al. | Dec 2003 | B2 |
6665431 | Jones et al. | Dec 2003 | B2 |
6676127 | Johnson et al. | Jan 2004 | B2 |
6678401 | Jones et al. | Jan 2004 | B2 |
6678402 | Jones et al. | Jan 2004 | B2 |
6705470 | Klein et al. | Mar 2004 | B2 |
6721442 | Mennie et al. | Apr 2004 | B1 |
6724926 | Jones et al. | Apr 2004 | B2 |
6724927 | Jones et al. | Apr 2004 | B2 |
6731785 | Mennie et al. | May 2004 | B1 |
6731786 | Jones et al. | May 2004 | B2 |
6748101 | Jones et al. | Jun 2004 | B1 |
6772886 | Werner et al. | Aug 2004 | B2 |
6778693 | Jones et al. | Aug 2004 | B2 |
6798899 | Mennie et al. | Sep 2004 | B2 |
6810137 | Jones et al. | Oct 2004 | B2 |
6811016 | Blair | Nov 2004 | B2 |
6843418 | Jones et al. | Jan 2005 | B2 |
6860375 | Hallowell et al. | Mar 2005 | B2 |
6866134 | Stromme et al. | Mar 2005 | B2 |
6868954 | Stromme et al. | Mar 2005 | B2 |
6880692 | Mazur et al. | Apr 2005 | B1 |
6896116 | Deaville et al. | May 2005 | B2 |
6913130 | Mazur et al. | Jul 2005 | B1 |
6913260 | Maier et al. | Jul 2005 | B2 |
6915893 | Mennie | Jul 2005 | B2 |
6929109 | Klein et al. | Aug 2005 | B1 |
6955253 | Mazur et al. | Oct 2005 | B1 |
6957733 | Mazur et al. | Oct 2005 | B2 |
6959800 | Mazur et al. | Nov 2005 | B1 |
6962247 | Maier et al. | Nov 2005 | B2 |
6980684 | Munro et al. | Dec 2005 | B1 |
6994200 | Jenrick et al. | Feb 2006 | B2 |
6996263 | Jones et al. | Feb 2006 | B2 |
7000828 | Jones | Feb 2006 | B2 |
7016767 | Jones et al. | Mar 2006 | B2 |
7082216 | Jones et al. | Jul 2006 | B2 |
7092560 | Jones et al. | Aug 2006 | B2 |
7103206 | Graves et al. | Sep 2006 | B2 |
7103438 | Hallowell et al. | Sep 2006 | B2 |
7146245 | Jones et al. | Dec 2006 | B2 |
7149336 | Jones et al. | Dec 2006 | B2 |
7158662 | Chiles | Jan 2007 | B2 |
7171032 | Jones et al. | Jan 2007 | B2 |
7187795 | Jones et al. | Mar 2007 | B2 |
7191657 | Maier et al. | Mar 2007 | B2 |
7197173 | Jones et al. | Mar 2007 | B2 |
7200255 | Jones et al. | Apr 2007 | B2 |
7201320 | Csulits et al. | Apr 2007 | B2 |
7219083 | Bellucci et al. | May 2007 | B2 |
7232024 | Mazur et al. | Jun 2007 | B2 |
7248731 | Raterman et al. | Jul 2007 | B2 |
7256874 | Csulits et al. | Aug 2007 | B2 |
7269279 | Chiles | Sep 2007 | B2 |
20010006557 | Mennie et al. | Jul 2001 | A1 |
20010015311 | Mennie | Aug 2001 | A1 |
20010019624 | Raterman et al. | Sep 2001 | A1 |
20010035603 | Graves et al. | Nov 2001 | A1 |
20020001393 | Jones et al. | Jan 2002 | A1 |
20020020603 | Jones et al. | Feb 2002 | A1 |
20020056605 | Mazur et al. | May 2002 | A1 |
20020085245 | Mennie et al. | Jul 2002 | A1 |
20020085745 | Jones et al. | Jul 2002 | A1 |
20020103757 | Jones et al. | Aug 2002 | A1 |
20020104785 | Klein et al. | Aug 2002 | A1 |
20020107801 | Jones et al. | Aug 2002 | A1 |
20020118871 | Jones et al. | Aug 2002 | A1 |
20020122580 | Jones et al. | Sep 2002 | A1 |
20020126885 | Mennie et al. | Sep 2002 | A1 |
20020126886 | Jones et al. | Sep 2002 | A1 |
20020131630 | Jones et al. | Sep 2002 | A1 |
20020136442 | Jones et al. | Sep 2002 | A1 |
20020145035 | Jones | Oct 2002 | A1 |
20020154804 | Jones et al. | Oct 2002 | A1 |
20020154805 | Jones et al. | Oct 2002 | A1 |
20020154806 | Jones et al. | Oct 2002 | A1 |
20020154807 | Jones et al. | Oct 2002 | A1 |
20020154808 | Jones et al. | Oct 2002 | A1 |
20020186876 | Jones et al. | Dec 2002 | A1 |
20030009420 | Jones | Jan 2003 | A1 |
20030015395 | Hallowell et al. | Jan 2003 | A1 |
20030015396 | Mennie | Jan 2003 | A1 |
20030059098 | Jones et al. | Mar 2003 | A1 |
20030062242 | Hallowell et al. | Apr 2003 | A1 |
20030081824 | Mennie et al. | May 2003 | A1 |
20030108233 | Raterman et al. | Jun 2003 | A1 |
20030121752 | Stromme et al. | Jul 2003 | A1 |
20030121753 | Stromme et al. | Jul 2003 | A1 |
20030132281 | Jones et al. | Jul 2003 | A1 |
20030139994 | Jones | Jul 2003 | A1 |
20030168308 | Maier et al. | Sep 2003 | A1 |
20030174874 | Raterman et al. | Sep 2003 | A1 |
20030182217 | Chiles | Sep 2003 | A1 |
20030198373 | Raterman et al. | Oct 2003 | A1 |
20030202690 | Jones et al. | Oct 2003 | A1 |
20040003980 | Hallowell et al. | Jan 2004 | A1 |
20040016621 | Jenrick et al. | Jan 2004 | A1 |
20040016797 | Jones et al. | Jan 2004 | A1 |
20040028266 | Jones et al. | Feb 2004 | A1 |
20040083149 | Jones | Apr 2004 | A1 |
20040145726 | Csulits et al. | Jul 2004 | A1 |
20040149538 | Sakowski | Aug 2004 | A1 |
20040153408 | Jones et al. | Aug 2004 | A1 |
20040154964 | Jones | Aug 2004 | A1 |
20040164483 | Focke et al. | Aug 2004 | A1 |
20040173432 | Jones | Sep 2004 | A1 |
20040251110 | Jenrick et al. | Dec 2004 | A1 |
20050029168 | Jones et al. | Feb 2005 | A1 |
20050035034 | Long et al. | Feb 2005 | A1 |
20050040225 | Csulits et al. | Feb 2005 | A1 |
20050047642 | Jones et al. | Mar 2005 | A1 |
20050060055 | Hallowell et al. | Mar 2005 | A1 |
20050060059 | Klein et al. | Mar 2005 | A1 |
20050060061 | Jones | Mar 2005 | A1 |
20050077142 | Tam et al. | Apr 2005 | A1 |
20050086271 | Jones et al. | Apr 2005 | A1 |
20050087422 | Maier et al. | Apr 2005 | A1 |
20050108165 | Jones et al. | May 2005 | A1 |
20050117791 | Raterman et al. | Jun 2005 | A2 |
20050117792 | Graves et al. | Jun 2005 | A2 |
20050150738 | Hallowell et al. | Jul 2005 | A1 |
20050163361 | Jones et al. | Jul 2005 | A1 |
20050163362 | Jones et al. | Jul 2005 | A1 |
20050169511 | Jones | Aug 2005 | A1 |
20050173221 | Maier et al. | Aug 2005 | A1 |
20050183928 | Jones et al. | Aug 2005 | A1 |
20050207634 | Jones et al. | Sep 2005 | A1 |
20050213803 | Mennie et al. | Sep 2005 | A1 |
20050241909 | Mazur et al. | Nov 2005 | A1 |
20050249394 | Jones et al. | Nov 2005 | A1 |
20050265591 | Jones et al. | Dec 2005 | A1 |
20050276458 | Jones et al. | Dec 2005 | A1 |
20050278239 | Jones et al. | Dec 2005 | A1 |
20060010071 | Jones et al. | Jan 2006 | A1 |
20060054455 | Kuykendall et al. | Mar 2006 | A1 |
20060078186 | Freeman et al. | Apr 2006 | A1 |
20060182330 | Chiles | Aug 2006 | A1 |
20060195567 | Mody et al. | Aug 2006 | A1 |
20060210137 | Raterman et al. | Sep 2006 | A1 |
20060274929 | Jones et al. | Dec 2006 | A1 |
20070076939 | Jones et al. | Apr 2007 | A1 |
20070078560 | Jones et al. | Apr 2007 | A1 |
20070095630 | Mennie et al. | May 2007 | A1 |
20070112674 | Jones et al. | May 2007 | A1 |
20070122023 | Jenrick et al. | May 2007 | A1 |
20070172107 | Jones et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
06-219620 | Aug 1994 | JP |
11-105837 | Apr 1999 | JP |
WO 9111778 | Aug 1991 | WO |
WO 9217394 | Oct 1992 | WO |
WO 9323824 | Nov 1993 | WO |
WO 9524691 | Sep 1995 | WO |
WO 9610800 | Apr 1996 | WO |
WO 9636933 | Nov 1996 | WO |
WO 9730422 | Aug 1997 | WO |
WO 9743734 | Nov 1997 | WO |
WO 9745810 | Dec 1997 | WO |
WO 9812662 | Mar 1998 | WO |
WO 9813785 | Apr 1998 | WO |
WO 9824052 | Jun 1998 | WO |
WO 9824067 | Jun 1998 | WO |
WO 9835323 | Aug 1998 | WO |
WO 9840839 | Sep 1998 | WO |
WO 9847100 | Oct 1998 | WO |
WO 9850892 | Nov 1998 | WO |
WO 9859323 | Dec 1998 | WO |
WO 9909511 | Feb 1999 | WO |
WO 9914668 | Mar 1999 | WO |
WO 9923601 | May 1999 | WO |
WO 9941695 | Aug 1999 | WO |
WO 9948040 | Sep 1999 | WO |
WO 9948042 | Sep 1999 | WO |
WO 0024572 | May 2000 | WO |
WO 0108108 | Feb 2001 | WO |
WO 0159685 | Aug 2001 | WO |
WO 0159723 | Aug 2001 | WO |
WO 0229735 | Apr 2002 | WO |
WO 02054360 | Jul 2002 | WO |
WO 03005312 | Jan 2003 | WO |
WO 03028361 | Apr 2003 | WO |
WO 03029913 | Apr 2003 | WO |
WO 03030113 | Apr 2003 | WO |
WO 03067532 | Aug 2003 | WO |
WO 03107282 | Dec 2003 | WO |
WO 2004010367 | Jan 2004 | WO |
WO 2004027717 | Apr 2004 | WO |
WO 2004036508 | Apr 2004 | WO |
WO 2004038631 | May 2004 | WO |
WO 2004068422 | Aug 2004 | WO |
WO 2005013209 | Feb 2005 | WO |
WO 2005017842 | Feb 2005 | WO |
WO 2005028348 | Mar 2005 | WO |
WO 2005029240 | Mar 2005 | WO |
WO 2005036445 | Apr 2005 | WO |
WO 2005076229 | Aug 2005 | WO |
WO 2006039439 | Apr 2006 | WO |
WO 2006076289 | Jul 2006 | WO |
WO 2006076634 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080006505 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
60864334 | Nov 2006 | US | |
60810232 | Jun 2006 | US |